

Course Specification

— (Bachelor)

Course Title: Quantum Chemistry

Course Code: 447CHEM3

Program: Bachelor of Science in Chemistry

Department: Physical Sciences

College: College of Science

Institution: Jazan University (JU)

Version: TP 153 2024

Last Revision Date: 5/5/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7
H. Attachments	8
1- Practical Work	8
2- Blue Print	8

A. General information about the course:

1. Course Identification

1. C	1. Credit hours: (3 h)								
2. C	ourse type								
Α.	□University	□College		⊠ Depar	rtment	□Track		□Others	
В.	⊠ Required				□Electiv	e			
3. L	evel/year at w	hich this cou	ırse is	offered	l: Level 7	/ Year	4		
4. C	4. Course general Description:								
Cou	rse Title	Course	Conto	act Hours	Credit				
		Number	(CH)		unit (CU)	Year	Level	Pre-	
			Lec.	Prac.				requisite	
Que	antum chemistry	447CHEM3	3	0	3	4	7	Math 202	

This course aims to give students the basic principles of quantum theory and its applications on some chemical systems

Course objectives: They are to identify the following.

- o The nature of the classical mechanics as well as its failure to describe microscopic particles
- The historical development of the quantum theory and its postulates
- o The application of quantum theory for H-atom as an example of simple chemical systems

Syllabus: A-Theoretical contents

classical mechanics – black body radiation and photoelectric effect – Hydrogen electronic spectra – Compton-effect – De Broglie relation and dual nature of microscopic particles- Schrödinger equation- solution of SE for a particle in one (two and three) dimensional box – solution of SE for rigid rotor – solution of SE for harmonic oscillator – solution of SE for H-atom.

Syllabus: A-Practical contents

none

5. Pre-requirements for this course (if any):

Math 202

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

This course aims to give students the basic principles quantum theory and its applications on some chemical systems

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100 %
2	E-learning		
	Hybrid		
3	 Traditional classroom 		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (L	lpon completion of the	ne course, studen	t will be able to)
1.1	Demonstrate a broad knowledge and understanding the course topics as, classical mechanics – black body radiation and photoelectric effect – Hydrogen electronic spectra – Compton-effect – De Broglie relation and dual nature of microscopic particles- Schrödinger equation,	K (1.1)	Lecture group work discussion	Objective Q
1.2	Describe the difference between classical and quantum mechanics, photoelectric effect, the contribution of scientists (Max Planck, Einstein, De Broglie, Heisenberg, Bohr, Balmer,	K(1.2)	Lecture group work discussion	Short answer Questions

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	and Schrödinger) to the quantum theory.			
2.0	Skills; (Upon completion of the cour	se, student will be al	ole to)	
2.1	Demonstrate the knowledge and numeracy skills in quantum mechanical solution of the rigid rotor and harmonic oscillator and the validity of the Schrödinger equation to model the particle in a box problem	S(2.1)	lecture group work discussion	Solving Problems & chart analysis
2.2	make effective use of communication, and online technology about quantum chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language.	S((2.4)	project-based learning Technology- enabled learning	Research presentation rubric
3.0	Values, autonomy, and responsib	ility; (Upon completi	on of the course,	student will be
3.1	Act with integrity and good ethics in chemistry profession and their obligation to society	V(3.2)	Research activities	Ethic check rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Historical Development of the quantum theory	
2.	Schrödinger equation	9
3.	Postulates of the quantum theory	8
4.	4. Evaluation of the quantum theory	
5.	5. Applications of the quantum theory	
6.	Presentation Session	2
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HW	2-12	5
2.	Mid-term Exam1	6-8	15
3.	Mid-term Exam2	12-14	15
4.	Presentation Session	14	3
4.	Ethic check	14	2
5.	Final EXAM	16-17	60
	Total	100	

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Molecular Quantum Mechanics, Atkins PW, Friedman RS 4th ed. Oxford: Oxford University Press; 2005.		
Supportive References	Quantum Chemistry: A Unified Approach, David B. Cook, 2nd Edition, mperial College Press; 2012.		
Electronic Materials	Some course contents and materials are posted on Black board sites		
Other Learning Materials	 Faculty - Department of Chemistry - Simon Fraser University (sfu.ca) Chemistry BSc (Hons) - Undergraduate Courses - University of Liverpool Periodic Table of Elements and Chemistry (chemicool.com) The Orbitron: a gallery of atomic orbitals and molecular orbitals (shef.ac.uk) Home Department of Chemistry (queensu.ca) 11.2: Quantum Numbers for Electrons - Chemistry LibreTexts Search - Chemistry LibreTexts www.wikipedia.org/ ibrequency imarefa.org Courses Chemistry & Biochemistry Academics WPI		

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation	1 Lecture room(s) for groups of 50 students
rooms, etc.)	

Items	Resources
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	none

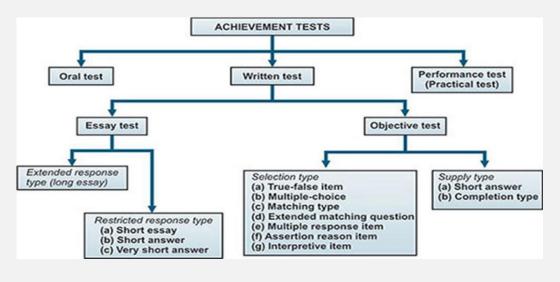
F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of Students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council					
REFERENCE NO.	Psci2415					
DATE	28/03/1446 Corresponding to 1 / 10 /2024					


H. Attachments

1- Practical Work

None

2- Blue Print

Course Name Quantum Chemistry									
Course Code 447 CHEM									
PLOs		K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1		1.2	2.1			2.2		3.1
Marks	12		21	62					2
Learning		PLOs	CLOs	Assessment Type	Assessment		No of Questions	Marks of the Assessment	Weight of the Assessment
		K1	1.1 (12M)	HW	Objective Q		2	2	1
				Mid-term	Objective Q		4	2	4
Knowledge	Knowledge &			Final Exam	Objective	Objective Q		7	7
understanding			1.2 (21M)	HW	Objective Q		2	2	2
				Mid-term	Objective Q		5	5	6
				Final Exam	Objective Q		7	13	13
Skills		S1	1 2.1 (62M)	HW	Objective Q ,Solving Problems & chart analysis		3	3	2
				Mid-term	Objective Q ,Solving Problems & chart analysis		6	17	20
				Final Exam	Objective Problems analysis	Q ,Solving & chart	8	40	40
	S4	2.2 (3M)	Research presentation		Research rubric		-	3	
					PPT design			-	
					Oral discu				
Value V2 3.1 Research ethic check		ethic checl	k rubric			2			
TOTAL 100								100	

