

Course Specification

— (Bachelor)

Course Title: CHEMISTRY OF NATURAL PRODUCTS

Course Code: 436CHEM3

Program: Bachelor of Science in Chemistry

Department: Physical Sciences

College: Science

Institution: Jazan University (JU)

Version: TP 153 2024

Last Revision Date: 5/5/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7
H. Attachments	8
1- Practical Work	8
2- Blue Print	9

A. General information about the course:

1. Course Identification

1. Credit hours: (3h)					
2. C	ourse type				
A.	□University	□College	☑ Department	□Track	□Others
В.	⊠ Required		□Elect	tive	
3. Level/year at which this course is offered: (Level 8 // year 4)					
4. C	4. Course general Description:				

Course Title	Course	Contact Hours (CH)		Credit unit	Year	Lovel	Pre- requisite
Number		Lec.	Prac.	(0)	rear	Level	Pre- requisite
Chemistry of Natural Products	436CHEM2	2	1	3	4	8	232CHEM3

Course objectives: They are to identify the following.

- **A** Main classes of natural products and their types.
- * Terpenoid; importance, classification, extraction, isolation, and structure elucidation.
- Alkaloids; importance, classification, extraction, isolation, and structure elucidation.
- Natural phenolic compounds; classification, extraction, isolation, and structure elucidation.

Syllabus: A-Theoretical contents

❖ Definition and classification of different classes of natural products and their isolation by different chromatographic methods- Structure elucidation by means of physical and chemical methods. Some chemical reactions and biosynthesis of terpenes, steroids, alkaloids and natural phenolic (flavonoids, xanthones, anthraquinons and coumarins

Syllabus: A-Practical contents

Preparation and identification of some organic compounds, (such as aspirin - Benzoyl Glycine – benzamide - phthalimide - picric acid - P- nitro-acetanilide, etc.)

5. Pre-requirements for this course (if any):

232 CHEM-3

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

This course aims to provide students with the basic knowledge about the main classes of natural products, means of extraction, isolation, structure characterization, and their most important uses

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100
2	E-learning		
	Hybrid		
3	 Traditional classroom 		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	
3.	Field	30
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with progra m	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Upor to)	n completic	on of the course,	student will be able
1.1	Demonstrate a broad knowledge and understanding of the principles of natural product chemistry, concepts and terminology related to secondary metabolites including the different classes of them such as terpenes, alkaloids, phenols, steroids etc. (M)	K(1.1)	Lectures, directed reading, group discussion and assignments	Objective question
1.2	Know the different strategies for extraction and isolation of secondary	K(1.2)	Lectures, directed	Objective question, Essay question

Code	Course Learning Outcomes	Code of CLOs aligned with progra m	Teaching Strategies	Assessment Methods
	metabolites from their sources and outline the importance and uses of these compounds. (M)		reading, group discussion and assignments	
2.0	Skills; (Upon completion of the course,	student wil	ll be able to)	
2.1	Demonstrate knowledge and ability to think critically to distinguish and compare between different types of secondary metabolites and how to isolate and elucidate the structure of these compounds by the different methods. (P)	S(2.1)	Lectures, directed reading, group discussion and assignments	Objective question, Essay question, Solving Problems
2.2	Conducting experiments to isolate secondary metabolites from their sources and identify them as well as synthesis important organic compounds in lab, analyze results and write a scientific report about them. (M)	S(2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Know and follow appropriate procedures and regulations for the safe handling, use and disposal of chemicals. (P)	S(2.3)	Lab work	MCQ Safety exam
3.0	Values, autonomy, and responsibility; (Lable to)	lpon comp	letion of the cour	rse, student will be
3.1	Work as a group leader in cooperation with other colleagues. (P)	V(3.1)	Group work	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to natural products, classification, extractions, isolation, and structure elucidation	3
2.	Terpenoid; importance, classification, extraction, isolation, and structure elucidation.	10
3.	Alkaloids; importance, classification, extraction, isolation, and structure elucidation.	6
4.	8	
5.	Miscellaneous natural products	3
6.	Selected experiments on preparation, isolation, and purification of simple organic compounds	30
	Total	60

D. Students Assessment Activities

No		Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment		3-15	3%
2.	Quiz		9-10	2%
3.	Mid-te	rm exam	6-8	15%
	Lab	Safety EXAM	10	4%
		Lab reports	2-14	5%
4.		Final sheet exam	15	6%
		Final practical exam	15	10%
		Group work evaluation	2-14	5%
5	Final E	xam	16-17	50 %
6	Total			100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	-كيمياء المنتجات الطبيعية – الجزء النظري, أ.د. طاهر حسن, جامعة البعث, مديرية الكتب المطبوعات الجامعية المطبوعات الطبيعية، د. حسن بن محمد الحازمي، جامعة الملك سعود-عمادة شؤون المكتبات، - 1995		
Supportive References	 Chemistry of Natural Products, S.V. Bhat, B.A. Nagasampagi, S. Minakshi, Springer, 2005 Chemistry of Natural Products, Ayodhya Singh, Campus Books International, 2004 Natural Products Isolation, S. D. Saker, Z. Latif, A. I. Gray, 2nd ed., Humana Press, Totowa, New Jersey, 2006. 		
Electronic Materials	https://chem.libretexts.org https://chem.libretexts.org/Bookshelves/Organic Chemistry/Book		
Other Learning Materials	 www.wikipedia.org https://www.slideshare.net/ShvetaArya/chemistry-of-naturalproducts 		

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 1Lecture room for groups of 30 students. 1 Laboratory for group of 15 students

Items	Resources
Technology equipment (projector, smart board, software)	Data show, smart Board, Chem Draw, power point and Active Inspire.
Other equipment (depending on the nature of the specialty)	Glassware, chemicals, hotplates, water bathes and flam.

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect
Effectiveness of Students assessment	Instructor & Course coordinator	Class room evaluation (direct and indirect)
Quality of learning resources	Program committee	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

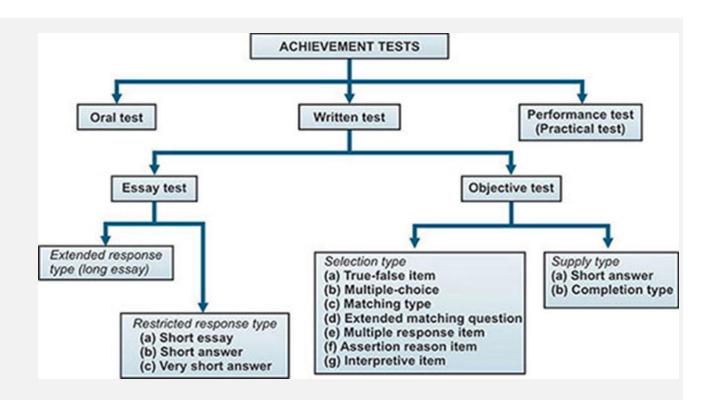
COUNCIL /COMMITTEE	Physical Sciences Department Council				
REFERENCE NO.	Psci2415				
DATE	28/03/1446 Corresponding to 1 / 10 /2024				

H. Attachments

1- Practical Work

	Experiment	Equipment, Chemicals and Tools	Week Due	Remarks			
1		1					
2	Preparation of Aspirin	of Aspirin Salicylic acid, acetic anhydride					
3	Preparation of acetanilide	Aniline, and acetic anhydride	3	The required equipment			
4	Preparation of benzophenone Oxime	Benzophenone and hydroxylamine hydrochloride	4	and tools for teaching the practical part are:			
5	benzalacetophenone (Chalcone)	Benzaldehyde, Acetophenone, Ethanol, and Sodium hydroxide	5	- UV/Vis Spectrophotometer			
6	Preparation of dibenzalacetone (Chalcone)	Benzaldehyde, Acetophenone, acetone, and Sodium hydroxide	6	- IR spectrophotometer - NMR spectrometer - Hotplate magnetic			
7	Preparation of benzoin	Benzaldehyde and Potassium cyanide	7	stirrer - Condensers			
8	Preparation of Phthalimide	Phthalic anhydride and Urea 8		- Separating funnels			
9	Preparation of Phthalyl glycine	Phthalic anhydride and Glycine	9	- Rotary evaporator			
10	Preparation of 7- hydroxycoumarine	Resorcinol, ethyl acetoacetate, and sulphuric acid	10	- Melting point apparatus			
11	Preparation of 4-methy Umbelliferon	Resorcinol, ethyl acetoacetate and conc. H2SO4 acid	11	- Heating mantle - TLC sheets			
12	Preparation of Phenylazo-β-naphthol	Aniline, Sodium nitrite, Conc. HCl, β-naphthol, and Sodium hydroxide	12	- Capillary tubes			
13	IR spectra of selected prepared compounds	Infra-Red Spectroscopy apparatus	13				
14	Extraction of caffeine from green tea	Green tea, chloroform, and separating funnel	14				
15	Final shee	15					

Instructors select experiments according to availability of chemicals and tools


2- Blue Print

Course Name	Chemistry of Natural Products
Course Code	436CHEM-3

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	12	20	38	21	4		5	

Learning	DI O	CI O	Assessment	Assessment	No of	Marks of the	Weight of the
Domain	PLOs	CLOs	Type	Tool	Questions	Assessment	Assessment
	K1	1.1 (12 M)	Quiz	Objection	1	0.5	0.5
			Mid term	Objective question	1(2)	3.5	3.5
Knowledge &			Final Exam		1(4)	8	8
understanding		1.2 (20 M)	Quiz	Objective	1	0.5	0.5
	K2		Mid term	question,	1(5)	5.5	5.5
	K2		Final Exam	Essay question,	1(7)	14	14
		2.1 (38 M)	HW	Objective	3(5)	3	3
	S 1		Quiz	question,	1(2)	1	1
			Mid term	Essay	1(3)	6	6
			Final Exam	question, Solving Problems,	1(7)	28	28
	S2	2.2 (21 M)	Lab Report	Lab report rubric	10	5	5
Skills			Final sheet exam	Objective question, Essay question,	3	6	6
			Final practical exam	l Task experiment	1	10	10
	S 3	2.3 (4 M)	Safety Quiz	MCQ Safety exam	8	4	4
Value	V1	3.1 (5 M)	Continuous assessment	Group work evaluation rubric		5	5
TOTAL		100		100			

