





# Course Specification

— (Bachelor)

Course Title: Lanthanides & Actinides

Course Code: 424CHEM3

**Program: Bachelor of science in Chemistry** 

**Department: Physical Sciences** 

**College: College of Science** 

Institution: Jazan University (JU)

Version: TP-153 2024

**Last Revision Date**: 5/5/2024

## **Table of Contents**

| A. General information about the course:                                       | 3 |
|--------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 |
| C. Course Content                                                              | 5 |
| D. Students Assessment Activities                                              | 6 |
| E. Learning Resources and Facilities                                           | 6 |
| F. Assessment of Course Quality                                                | 7 |
| G. Specification Approval                                                      | 7 |
| H. Attachments                                                                 | 8 |
| 1- Practical Work                                                              | 8 |
| 2- Blue Print                                                                  | 9 |





#### A. General information about the course:

#### 1. Course Identification

| 1. | 1. Credit hours: (3h )  |              |           |            |              |         |       |                |
|----|-------------------------|--------------|-----------|------------|--------------|---------|-------|----------------|
|    |                         |              |           |            |              |         |       |                |
| 2. | Course type             |              |           |            |              |         |       |                |
| A  | □University             | □College     | ⊠ De      | epartment  | □Tr          | ack     |       | □Others        |
| В. | B. ⊠ Required □Elective |              |           |            |              |         |       |                |
| 3. | Level/year at which     | n this cours | e is offe | red: (Lev  | el 8 / y     | /ear 4) |       |                |
| 4  | Course general Des      | cription:    |           |            |              |         |       |                |
|    | Course Title            | Course       | Contact   | Hours (CH) |              |         |       |                |
|    |                         | Number       | Lec.      | Prac.      | unit<br>(CU) | Year    | Level | Pre- requisite |
|    | Lanthanides & Actinides | 424CHEM3     | 2         | 1          | 3            | 4       | 8     | 322CHEM4       |

This course aims to give the students some information about the nuclear fission and fusion, how to measure the doses of radiation, recognizing the effect of radiation and the methods of protection and giving an idea about the elements of lanthanides and actinides

#### Course objectives: They are to identify the following.

- 1. Recognizing the concept of nuclear fission and fusion.
- 2. Recognizing the method of measuring of low and high radiation doses.
- 3. Recognizing the effect of radiation on biological systems and the ways of protection.
- 4. Recognizing the lanthanides and actinides elements.
- 5. Recognizing the electronic structures, chemical and physical properties, and the reactions of those elements

#### **Syllabus: A-Theoretical contents**

- Lanthanides Group: Comparative study between lanthanides and transition elements Comparative study between lanthanides and alkaline earth metals The electronic structure of the elements Different oxidation states The physical properties such as magnetic, spectral and color properties Electronic shield Methods of separation: Fractional crystallization, ion exchange, etc.
- Actinides Group: electronic structure Methods of preparation Radiation decay Element enrichment.

#### **Syllabus: B-Practical contents**

Experimental work illustrating selected parts of the theoretical content.

#### 5. Pre-requirements for this course (if any):

322CHEM4

| 6. Co-requisites for this course (if any | y) | ) |
|------------------------------------------|----|---|
|------------------------------------------|----|---|

None





## 7. Course Main Objective(s):

This course aims to give the students some information about the nuclear fission and fusion, how to measure the doses of radiation, recognizing the effect of radiation and the methods of protection and giving an idea about the elements of lanthanides and actinides

#### 2. Teaching mode (mark all that apply)

| No | Mode of Instruction                       | Contact Hours | Percentage |
|----|-------------------------------------------|---------------|------------|
| 1  | Traditional classroom                     | 60            | 100        |
| 2  | E-learning                                |               |            |
|    | Hybrid                                    |               |            |
| 3  | <ul> <li>Traditional classroom</li> </ul> |               |            |
|    | <ul><li>E-learning</li></ul>              |               |            |
| 4  | Distance learning                         |               |            |

#### **3. Contact Hours** (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 30            |
| 2.    | Laboratory/Studio | 30            |
| 3.    | Field             |               |
| 4.    | Tutorial          |               |
| 5.    | Others (specify)  |               |
| Total |                   | 60            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                                   | Code of CLOs g Outcomes aligned with program |                                             | Assessment<br>Methods |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|-----------------------|
| 1.0  | Knowledge and understanding; (Upon completio to)                                                                                           |                                              | on of the course, stu                       | dent will be able     |
| 1.1  | Demonstrate abroad knowledge<br>and understanding on the<br>properties, occurrence, separation<br>and uses of lanthanides and<br>actinides | K(1.1)                                       | lecture / discussion Seminars /presentation | Objective<br>question |



| Code | Course Learning Outcomes                                                                                                                            | Code of CLOs<br>aligned with<br>program | Teaching<br>Strategies                                      | Assessment<br>Methods                                 |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--|
| 1.2  | Describe the radioactivity of unstable isotopes, fission and fusion reactions and their applications.  (M)                                          | K(1.2)                                  | lecture / discussion / Seminars /Individual presentation    | Essay question                                        |  |
| 2.0  | Skills; (Upon completion of the c                                                                                                                   | ourse, student wi                       | ll be able to)                                              |                                                       |  |
| 2.1  | Demonstrate the knowledge and skills required to solve problems in the nuclear equation, radioactivity half-life, decay series, fission and fusion. | S(2.1)                                  | lecture / discussion / Seminars /Individual presentation    | Solving<br>Problems                                   |  |
| 2.2  | Practice the experimental skills and to write a report in laboratory representing the obtained results.  (M)                                        | S(2.2)                                  | Lab work, group<br>work                                     | Objective question, Essay question, lab report rubric |  |
| 2.3  | Follow proper procedures and regulations for safe handling and use of chemicals.                                                                    | S(2.3)                                  | lab demonstrations / hands-on student learning activities   | Safety exam                                           |  |
| 3.0  | Values, autonomy, and responsibility; (Upon completion of the course, student will be able to)                                                      |                                         |                                                             |                                                       |  |
| 3.1  | Working as group leader and as a<br>member of a team in Lab.<br>(M)                                                                                 | V(3.1)                                  | lab demonstrations / whole group and small group discussion | Practical group<br>work Rubric                        |  |

## **C.** Course Content

| No | List of Topics                                                                         | Contact Hours |
|----|----------------------------------------------------------------------------------------|---------------|
| 1. | Introduction                                                                           | 2             |
|    | Electronic structure, oxidation states, abundance, extraction and uses of lanthanides. | -             |
| 2. | Separation of the lanthanide elements.                                                 | 2             |
| 3. | Chemical properties of (+iii), (+iv) and (+ii) lanthanides compounds.                  | 2             |
| 4. | Colour and spectra of lanthanides.                                                     | 2             |
| 5. | Magnetic properties, lanthanide contraction and complexes.                             | 2             |
| 6. | Electronic structure, oxidation states and occurrence of actinides.                    | <b>3</b>      |
| 7. | Preparation of actinides.                                                              | 2             |
| 8. | General properties of actinides.                                                       | 3             |
| 9. | Occurrence, extraction and chemical properties of thorium and uranium.                 | 2             |

| 10.   | Structure, forces and stability of the nucleus.                                     | 2        |
|-------|-------------------------------------------------------------------------------------|----------|
| 11.   | Modes of decay, half-life period, binding energy and nuclear stability              | 3        |
| 12.   | $Nuclear\ fission, nuclear\ power\ stations, moderators\ and\ types\ of\ reactors.$ | 2        |
| 13.   | Nuclear fusion and some applications of radioactive isotopes.                       | <b>3</b> |
| 14.   | Selected Experiments related to course topics.                                      | 30       |
| Total |                                                                                     | 60       |

#### **D. Students Assessment Activities**

| No | Assessment Activities * |                       | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|-----------------------|--------------------------------------|-----------------------------------------|
| 1. |                         | Homework assignment   | 2-6                                  | 2 %                                     |
| 2. |                         | Lecture Quizzes       |                                      | 3 %                                     |
| 3. |                         | Mid-term exam         | <i>6-8</i>                           | <i>15 %</i>                             |
| 4. |                         | LAB Sheet             | 10                                   | <b>5</b> %                              |
| 5. | Dunation                | Quiz in Safety        | 10-11                                | 4%                                      |
| 6. | Practical<br>work       | Final practical exam  | 14                                   | 7 %                                     |
| 7. | WOIK                    | Lab report            | 2-13                                 | 8 %                                     |
| 8. |                         | Group work evaluation | 2-13                                 | 6%                                      |
| 9. | Final Exam              |                       | 16-17                                | <i>50</i> %                             |
|    | Total                   |                       |                                      | 100 %                                   |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

#### **E. Learning Resources and Facilities**

## **1. References and Learning Resources**

| Essential References     | <ol> <li>Lee, J. D. (2009) Concise Inorganic Chemistry, 5 th Edition Authorized<br/>Reprint Published by Blackwell Science Limited, France.</li> <li>F. Albert Cotton, Geoffrey Wilkinson, Paul L. Gaus. Basic Inorganic<br/>Chemistry, 3rd Edition ISBN: 978-0-471-50532-7 January 1995,</li> </ol>                  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | <ol> <li>Simon A. Cotton, (2013) Lanthanide and Actinide Chemistry, Macmillan<br/>Education, 204p.</li> <li>Walter D. Loveland, David J. Morrissey, Glenn T. Seaborg (2017) Modern<br/>Nuclear Chemistry, John Wiley &amp; Sons.</li> </ol>                                                                           |
| Electronic Materials     | <ul> <li>https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry</li> <li>https://www.britannica.com/science/lanthanum</li> <li>https://byjus.com/jee/f-block-elements/</li> </ul>                                                                                                                                |
| Other Learning Materials | <ul> <li>https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Book%3A_Introductory_Chemistry_(CK-12)/06%3A_The_Periodic_Table/6.14%3A_Lanthanides_and_Actinides</li> <li>https://chem.libretexts.org/Special:Search?qid=&amp;fpid=230&amp;fpth=&amp;query=Lanhanides+and+actinides&amp;type=wiki</li> </ul> |





## 2. Required Facilities and equipment

| Items                                                                           | Resources                                     |
|---------------------------------------------------------------------------------|-----------------------------------------------|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | 1 Lecture room(s) for groups of 50 students   |
| Technology equipment (Projector, smart board, software)                         | Smart board, Data show, Black board, internet |
| Other equipment (Depending on the nature of the specialty)                      | none                                          |

## F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor                        | Assessment Methods                      |  |
|---------------------------------------------|---------------------------------|-----------------------------------------|--|
| Effectiveness of teaching                   | Student                         | Likert-type Survey CES)<br>Indirect     |  |
| Effectiveness of<br>Students assessment     | Instructor & Course coordinator | Classroom evaluation (direct & indirect |  |
| Quality of learning resources               | Program coordinator             | Indirect                                |  |
| The extent to which CLOs have been achieved | Assessment committee            | Indirect                                |  |
| Other                                       |                                 |                                         |  |

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

## **G. Specification Approval**

| COUNCIL /COMMITTEE | Physical Sciences Department Council     |  |  |  |
|--------------------|------------------------------------------|--|--|--|
| REFERENCE NO.      | Psci2415                                 |  |  |  |
| DATE               | 28/03/1446 Corresponding to 1 / 10 /2024 |  |  |  |





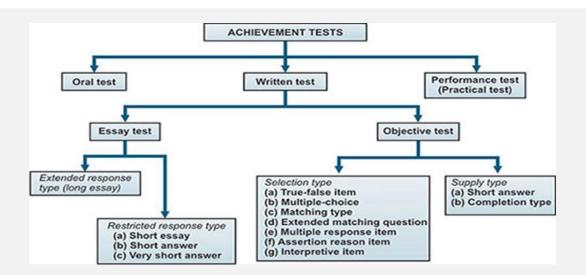
## H. Attachments

## 1- Practical Work

| # | EXPERMENTS                       | Equipment, Chemicals and Tools. | No of weeks for each experiment |  |
|---|----------------------------------|---------------------------------|---------------------------------|--|
| 1 | Introduction and lab safety      |                                 | One week                        |  |
| 2 | The Structure of Atoms           | Theoretical calculation         | Two weeks                       |  |
| 3 | Chemical Periodicity             | Theoretical calculation         | Two weeks                       |  |
| 4 | Chemical Bonding                 | Theoretical calculation         | Two weeks                       |  |
| 5 | Exam                             | Theoretical calculation         | Two weeks                       |  |
|   | Molecular Structure and Covalent |                                 |                                 |  |
| 6 | Bonding                          | Theoretical calculation         | Two weeks                       |  |
|   | Theories                         |                                 |                                 |  |
| 7 | Coordination                     | The exetical calculation        | Two weeks                       |  |
| ' | Compounds                        | Theoretical calculation         |                                 |  |
| 8 | Revision                         |                                 | One week                        |  |
| 9 | Final Exam                       |                                 | One week                        |  |






## 2- Blue Print

| Course Name | Lanthanides & Actinides |
|-------------|-------------------------|
| Course Code | 424CHEM -3              |

| PLOs  | K1  | K2  | S1  | S2  | S3  | S4  | V1  | V2  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| CLOs  | 1.1 | 1.2 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 3.2 |
| Marks | 10  | 18  | 42  | 20  | 4   |     | 6   | -   |

| Learning  | PLOs | CLOs    | Assessment  | Assessment Tool | No of     | Marks of the | Weight of the |
|-----------|------|---------|-------------|-----------------|-----------|--------------|---------------|
| Domain    |      |         | Туре        |                 | Questions | Assessment   | Assessment    |
|           | K1   | 1.1     | Quiz        | Objective Q     | 2         | 2            | 1             |
| Knowledge |      | (10 M)  | Mid term    | Objective Q     | 8         | 4            | 2             |
| &         |      |         | Final Exam  | Objective Q     | 14        | 7            | 7             |
| understan | K2   | 1.2     | Quiz        | Essay Q         | 2         | 2            | 1             |
| ding      |      | ( 18 M) | Mid term    | Essay Q         | 4         | 4            | 4             |
|           |      |         | Final Exam  | Essay Q         | 7         | 13           | 13            |
|           | S1   | 2.1     | H.W         | Solving         | 2         | 2            | 2             |
|           |      | ( 42 M) |             | Problems and    |           |              |               |
|           |      |         |             | Essay Q         |           |              |               |
|           |      |         | Quiz        | Solving         | 2         | 2            | 1             |
|           |      |         |             | Problems and    |           |              |               |
|           |      |         |             | Essay Q         |           |              |               |
|           |      |         | Mid term    | Solving         | 2         | 3            | 9             |
|           |      |         |             | Problems and    | 3         | 6            |               |
|           |      |         |             | Essay Q         |           |              |               |
| Skills    |      |         | Final Exam  | Solving         | 4         | 12           | 30            |
|           |      |         |             | Problems and    | 6         | 18           |               |
|           |      |         |             | Essay Q         |           |              |               |
|           | S2   | 2.2     | Practical   | Objective Q     | 2         | 2            | 2             |
|           |      | ( 20 M) | Sheet       | Essay Q         | 3         | 3            | 3             |
|           |      |         | Lab Report  | Lab Rubric      | 5         | 5            | 8             |
|           |      |         | Final Lab   | I Task          | 7         | 7            | 7             |
|           |      |         | Exam        | experiment      |           |              |               |
|           | S3   | 2.3     | Safety Exam | Objective Q     | 8         | 4            | 4             |
|           |      | (4 M)   |             |                 |           |              |               |
|           | V1   | 3.1     | Continuous  | Group           | 1         | 6            | 6             |
| Value     |      | ( 6 M)  | assessment  | evaluation      |           |              |               |
|           |      |         |             | rubric          |           |              |               |
| TOT       | AL   | 100     |             |                 | •         | 1            | 100           |



