

Course Specification

— (Bachelor)

Course Title: Methods of Instrumental Analysis

Course Code: 415CHEM4

Program: Bachelor of Science in Chemistry

Department: Physical Sciences

College: College of Science

Institution: Jazan University (JU)

Version: TP153 2024

Last Revision Date: 5/5/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7
H. Attachments	8
1- Practical Work	8
2- Blue Print	9

A. General information about the course:

1. Course Identification

1. Credit hours: (4 hrs)
--------------------	-------	---

2. C	2. Course type						
A.	□University	□College	⊠ Depa	rtment	□Track	□Others	
В.	⊠ Required			□Electi	ve		
	2			_			

3. Level/year at which this course is offered: (Level 6 - Year 3)

4. Course general Description:

4. Course general Description

Course Title	Course	Contact Hour	Hours (CH)				Pre-
	Number		Prac.	(CU)	Year	Level	requisite
Methods of Instrumental Analysis	415CHEM4	3	2	4	3	6	212CHEM3

This course aims to give students the basic principles of methods of instrumental analysis and their applications

Course objectives: They are to identify the following.

- Recognizing the Electromagnetic Radiation.
- Recognizing the Molecular Ultraviolet and Visible Absorption Spectroscopy.
- Recognizing the Infra-Red Spectroscopy, Spectrum of IR and IR Instrumentation.
- Recognizing the Atomic and emission Spectrometry as well as NMR, MS and X-Ray Spectroscopy

Syllabus: A-Theoretical contents

Spectroscopic methods: Introduction to electromagnetic radiation and molecular transitions, UV- and visible radiations and spectrophotometer, Laws of spectral absorption, Fluorimetry, Infra-red spectrometer, atomic absorption and atomic emission spectrometers, NMR spectrometer, Mass spectrometry, X-ray absorption and fluorescence.

Syllabus: B-Practical contents

- Selected experiments related to instrumental analysis (See attachment)

5. Pre-requirements for this course (if any):

212 CHEM4

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

This course aims to give students the basic principles of methods of instrumental analysis and their applications

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3x15 =45	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes Knowledge and understanding; (Upon	Code of CLOs aligned with program completion	Teaching Strategies of the course, stu	Assessment Methods dent will be able
1.1	Demonstrate a broad understanding and knowledge in different topics of the course as, electromagnetic radiation, molecular transitions after absorption of light, electronic transitions, dual nature of light radiations and use of analytical instruments for qualitative and quantitative chemical analysis and in	K(1.1)	lecture / discussion Seminars /presentation	Objective questions

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	addition the necessary background in Physics and Mathematics.			
1.2	Describe correctly Chemical phenomena using instrumental analysis principles and scientific reasoning	K(1.2)	lecture / discussion / Seminars /Individual presentation	Objective questions
2.0	Skills; (Upon completion of the course,	student will l	oe able to)	
2.1	Demonstrate an ability in critical thinking, analytical reasoning and solving problems concerning with instrumental analysis (in measurement and modeling of chemical systems)	S(2.1)	lecture / discussion / Seminars /Individual presentation	Solving Problems & chart analysis & Essay questions
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments in the field of instrumental analysis and to write a report representing the scientific data.	S(2.2)	Lab work, group work	Lab final exam / lab report rubric/ Objective questions
2.3	Examine his material and lab safety background to Follow proper procedures and regulations for safe handling and use of chemicals.	S(2.3)	lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsibility be able to)	; (Upon com	pletion of the cour	se, student will
3.1	Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Types of Instrumental Analysis Methods and Applications of Instrumental Methods of analysis and Advantage of instrumental analysis	3
2.	Electromagnetic field, Elementary theoretical basis of spectroscopy, Electronic Excitations, Electronic absorption	4

8.	X-Ray Analysis, What is X-Ray? , Generation of X-Rays, Sampling, Identifying and Quantization of Compounds	6
7.	Atomic Emission Spectroscopy, Recording and Analysis, Inductively coupled plasma (ICP) and advantages of ICP	3
6.	Atomic spectroscopy, Atomic Absorption Spectroscopy (AAS), Atomic Emission Spectroscopy (AES), Steps of Atomic Absorption measurement, Vaporization and Atomization	7
5.	Infrared spectroscopy, IR-Radiation, Modes of Vibration, Typical Infrared Absorption Regions, Frequencies of common structural units, Sample Application, Measurement process, Infrared Absorption, Calibration and Background Spectrum, Advantages of IR analysis, Detection and Quantitation, FT-IR Qualitative and Quantitative	4
4.	Mass spectroscopy for qualitative and quantitative analysis and nuclear magnetic resonance for identification of the organic compounds (qualitative analysis)	6
3.	Spectroscopy, UV-Vis spectroscopy, Absorption laws, Lambert-Beer Law, Instrumentation, Sample Preparation and applications	6

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework	3-8	2 %
2.	Quiz	4-6	3 %
3.	Midterm Exam	6-8	15 %
4.	LAB Sheet	10-11	5 %
5.	Quiz in Safety	10-11	4%
6.	Final practical exam	11	10 %
7.	Lab report	2-10	5%
8.	Group work evaluation	2-10	6 %
9.	Final Exam	16-17	50 %
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References

د. إبراهيم الزامل (التحليل الآلي) – دار الخريجي- الطبعة الثالثة 1998

- Douglas A. Skoog, F James Holler and Stanley R. Crouch, Principles of instrumental analysis, (2016) 7^{th} edition Thomson Brooks/Cole

Supportive References	د. سلامة أحمد خميس محمد (المطيافيات بين النظرية و التطبيق) جامعة المجمعة- الطبعة الأولى – (143)2010
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	Websites on the internet that are relevant to the topics of the course https://learnchemistry12.com/2018/02/modern-chemical-analysis-book.html https://chem.libretexts.org/Bookshelves/Analytical Chemistry/Supplemental Modules (Analytical Chemistry)/Instrumental Analysis https://chem.libretexts.org/Courses

2. Required Facilities and equipment

Items	Resources		
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for 25 students		
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet		
Other equipment (depending on the nature of the specialty)	none		

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods	
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect	
Effectiveness of students assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect)	
Quality of learning resources	Program coordinator	<u>Indirect</u>	
The extent to which CLOs have been achieved	Assessment committee	<u>Indirect</u>	
Other			

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

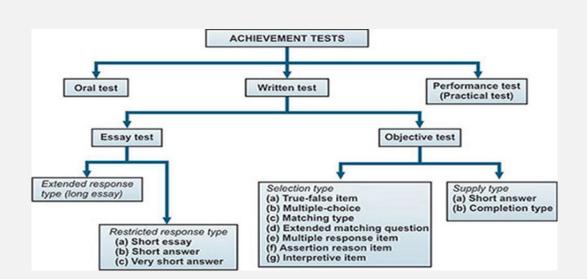
G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council				
REFERENCE NO.	Psci2415				
DATE	28/03/1446 Corresponding to 1 / 10 /2024				

H. Attachments

1- Practical Work

No	Title of Experiment	Tools, Chemicals, and equipment Needed in Experiments	Week no.
1.	Safety measures	-	1
2.	Introduction to spectroscopic analysis and related calculations	-	2
3.	Determination of potassium permanganate concentration using UV-Vis. Spectrophotometer	Conical flasks, KMnO ₄ , distilled water, UV- Vis. Spectrophotometer	3
4.	Determination of chromium chloride (colored compound) concentration using UV-Vis. Spectrophotometer	Conical flasks, chromium chloride, distilled water UV-Vis. Spectrophotometer	4
5.	Determination of potassium nitrate (colorless compound) concentration using UV-Vis. Spectrophotometer	Conical flasks, potassium nitrate, distilled water UV-Vis. Spectrophotometer	5
6.	Spectrophotometric determination of paracetamol in tablets	Conical flasks, paracetamol bulk powder, Panadol tablets, distilled water, methanol, UV-Vis. Spectrophotometer	6
7.	Spectrophotometric determination of paracetamol in tablets	Conical flasks, paracetamol bulk powder, Panadol tablets, distilled water, methanol, UV-Vis. Spectrophotometer	7
8.	Spectrofluorimetric determination of eosin yellow dye	Conical flasks, eosin yellow dye, distilled water Spectrofluorimeter	8
9.	IR- identification of benzoic acid	Benzoic acid, potassium bromide, acetone, IR- spectrometer	9
10.	Determination of Zinc in aqueous medium using atomic absorption spectrometer	Zinc standard solutions, water samples containing Zinc, nitric acid, distilled water, atomic absorption spectrometer	10
11.	Determination of Copper in tea samples using atomic absorption spectrometer (sample preparation)	Cu standard solutions, tea samples, nitric acid, distilled water, flame spectrometer	11
12.	Determination of Copper in tea samples using atomic absorption spectrometer (Analysis)	Cu standard solutions, tea samples, nitric acid, distilled water, flame spectrometer	12
13.	Determination of Calcium in tape water using atomic absorption spectrometer (Analysis)	Calcium standard solutions, water samples containing Ca, nitric acid, distilled water, atomic absorption spectrometer	13
14.	Revision	-	14
<i>15</i> .	Final exam	-	15


2- Blue Print

Course Name	Methods of instrumental analysis
Course Code	415CHEM4

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	
Marks	10	18	42	20	4		6	

Learning	PLOs	CLOs	Assessment	Assessment	No of	Marks of the	Weight of the
Domain			Type	Tool	Questions	Assessment	Assessment
	K1	1.1	Quiz	Objective	2	1	1
		(10M)		questions			
			Mid term	Objective	3	2	2
				questions	_	_	_
			Final Exam	Objective	3	7	7
Knowledge &				questions			
understanding	K2	1.2	Quiz	Objective	2	1	1
		(18M)	3.67.1	questions	4	-	_
			Mid term	Objective	4	5	5
			F: 1F	questions		10	10
			Final Exam	Objective	6	12	12
	G.1	0.1	*****	questions	4		2
	S1	2.1	H.W	Solving	4	2	2
		(42M)		Problems &			
				chart analysis &			
				Essay questions		4	
			Quiz	Solving	2	1	1
				Problems &			
				chart analysis &			
				Essay questions			
			Mid term	Solving	6	8	8
				Problems &			
				chart analysis &			
Skills				Essay questions			
			Final Exam	Solving	12	31	31
				Problems &			
				chart analysis &			
				Essay questions			
	S2	2.2	Practical Sheet	Objective	2	8	5
		(20M)		questions			
			Lab Report	Lab report	5	5	5
			Lao Report	rubric	3	3	3
			Final Lab	I Task	1	7	10
			Exam	experiment	1	,	10
	S3	2.3	Safety Quiz	Objective	1	8	4
	120	(4M)	220, 2	questions	-		·
	V1	3.1	Continuous	Group	_	6	6
Value		(6M)	assessment	evaluation		_	
	1	(/		rubric			
,	TOTAL	100		•			100
			I.				1

