

Course Specification (Bachelor)

Course Title: ELECTROCHEMISTRY

Course Code: 344 CHEM -3

Program: Bachelor of Science in Chemistry

Department: Physical Sciences

College: College of Science

Institution: Jazan University

Version: TP-153 2024

Last Revision Date: 5/5/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7
H. Attachments	8
1- Practical Work	8
2- Blue Print	9

A. General information about the course:

1. Course Identification

1.	Credit hours: (3hrs

	C 1.	
	L OHICE T	vno
∠ •	Course t	ADC

A.	□University	□College	□ Department	□Track	□Others
В.	⊠ Required		□Electi	ve	

3. Level/year at which this course is offered: (level5 /Year3)

4. Course general Description:

Course Title	Course	Contact Hours (CH)		Credit unit			Dura
	Number	Lec.	Prac.	(CU)	Year	Level	Pre-
Electrochemistry	344CHEM-3	2	1	3	3	5	241CHEM-3

Course Objectives; They are to identify the following

- 1. Types of conductors
- 2. Classification of electrolytic cells
- 3. Measuring EMF
- 4. Applications of electrochemistry

Syllabus: A-Theoretical contents

Electrolytic conductors, General electrochemistry concepts, Introduction to electrochemistry: electrode potentials, galvanic and electrolytic cells, Nernst equation, Corrosion and corrosion protection, Overview of applications of electrochemistry

Syllabus: A-Practical contents

Experimental work illustrating selected parts of the theoretical content

5. Pre-requirements for this course (if any):

241CHEM-3

6. Co-requisites for this course (if any):

none

7. Course Main Objective(s):

This course aims to give students the basic principles of electrochemistry and its applications

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning		
3	HybridTraditional classroomE-learning		

No	Mode of Instruction	Contact Hours	Percentage
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Upon completion of t	the course, s	student will be ab	le to)
1.1	Demonstrate a broad understanding and critical view on principal of electrochemistry, Concepts and terminology of electrochemistry topics including; electrolyte solution theories, electrochemical (Galvanic) cell, origin of electrode potential theories, Faraday's law of electrolysis,etc (P)	K(1.1)	lecture / discussion Seminars /presentation	Objective questions
1.2	Describe correctly the different phenomena associated with electrochemistry i.e.; type of electrodes, cell presentation (notation), cell reactions, electromotive force (P)	K(1.2)	lecture / discussion / Seminars /Individual presentation	Objective questions + Essay Questions
2.0	Skills; (Upon completion of the course, student will be a	able to)		
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and to solving problems related to faraday's law and Nernst equation. (P)	S(2.1)	lecture / discussion / Seminars /Individual presentation	Essay Questions + solve Problems

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.2	Perform experiments in electrochemistry, record, analyze, interpret the scientific data, and write reports. (P)	S(2.2)	Lab work, group work	Objective questions + Essay Questions
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	S(2.3)	lab demonstration s / hands-on student learning activities	Objective questions + Essay Questions
3.0	Values, autonomy, and responsibility; (Upon complet	tion of the co	ourse, student wil	ll be able to)
3.1	Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstration s / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Electrolytic and Non-electrolytic conductors	4
2.	Oxidation States & Redox Reactions	3
3.	Galvanic (electrochemical) Cells	3
4.	Cell Potential under Standard Conditions	3
5.	Gibbs Energy and Redox Reactions	3
6.	Cell Potential under Nonstandard Conditions and Nernst equation	3
7.	Batteries & fuel cell	3
8.	Corrosion	4
9.	Electrolytic cell	4
10.	Selected experiments related to the course topic	30
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	3-8	2 %
2.	Lecture Quizzes	5-10	3 %
3.	Mid-term exam	9-11	15 %
4.	LAB Sheet	15	5 %
5.	Safety Exam	12-15	4%
6.	Final practical exam	15	7 %
7.	Lab report	2-15	10 %
8.	Group work evaluation	2-15	4%
9.	Final Exam	16-17	50 %
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Handbook of Electrochemistry, 2007, Cynthia G. Zoski, Elsevier						
Supportive References	 Electrochemistry, 2nd Edition, P.H. Rieger, Springer, 1993 ISBN: 0412043912,9780412043918 Electrochemistry and Corrosion Science, Nestor Perez, 2016, Springer International Publishing, ISBN: 978-3-319-24845-5,978-3-319-24847-9 						
Electronic Materials	Some course contents and materials are posted on Black board sites						
Other Learning Materials	 https://chem.libretexts.org/Bookshelves/Analytical Chemistry/Supple mental_Modules_(Analytical_Chemistry)/Electrochemistry https://courses.lumenlearning.com/chemistryformajors/chapter/introd_uction-to-electrochemistry/ https://pages.uoregon.edu/tgreenbo/electrolysis10.html https://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html 						

2. Required Facilities and equipment

Items	Resources			
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for group of 25student			
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, Internet			

Items	Resources
Other equipment (depending on the nature of the specialty)	Conductivity meter, metal electrodes (i.e. Fe, Cu, Al, Sn, Zn, Mg, Pb), Voltameter, Power source, Balance, potentiostate, galvanostate

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods			
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect			
Effectiveness of Students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect)			
Quality of learning resources	Program coordinator	<u>Indirect</u>			
The extent to which CLOs have been achieved	Assessment committee	<u>Indirect</u>			
Other					

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council					
REFERENCE NO.	Psci2415					
DATE	28/03/1446 Corresponding to 1 / 10 /2024					

H. Attachments

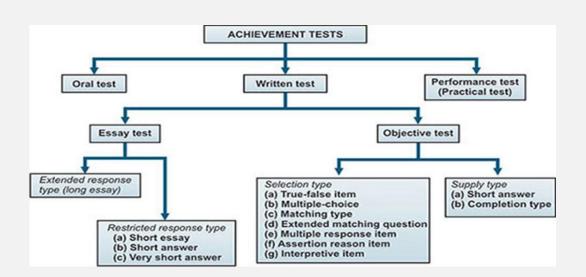
1- Practical Work

1- LAB EXPERIMENTS

Week	EXPERIMENTAL TITLE	Chemicals and Apparatus used	Remarks	
1	Safety and regulations			
1	Determination of cell constant	0.1N KCl, conductivity cell		
2	Determination of equivalent	0.1N KCl, MgSO4, monochloride acid,	None	
	conductance	conductivity cell		
3	Activity Series	0.1 M Cu(NO ₃) ₂ , 0.1 M Mg(NO ₃) ₂ , 0.1 M HCl, 0.1 M Zn(NO ₃) ₂ , 0.1 M AgNO ₃ , Mg, Cu, Zn	None	
4	Electrochemical Cells	0.5M Cu(NO ₃) ₂ , 0.5M Zn(NO ₃) ₂ , 0.5M Pb(NO ₃) ₂ , 0.5M KNO ₃ rods, DC voltmeter or digital multimeter, copper, zinc, lead.	None	
5	Galvanic cells created from the environment	Citric acid, Oxalic acid., sheet of copper, sheet of zinc, distilled water, DC voltmeter or digital multimeter, Lemon, Kiwi,	None	
6	Simple galvanic cell using a pottery vase or any membrane partition	Zn, Pb, Cu, strips , 0.1M CuSO ₄ , 0.1 M Zn(NO ₃) ₂ , 0.1 M Pb(NO ₃) ₂ , 0.1 M FeSO ₄ and 0.1 M KNO ₃ , DC voltmeter or digital multimeter, porous vase	None	
7	Investigation of the temperature coefficient Of Galvanic Cell	Copper Sulfate (CuSO ₄),Zinc Sulfate (ZnSO ₄), sheet of copper ,sheet of zinc, voltmeter or digital multimeter, thermometer	None	
8	Corrosion	Zn Sheets, NaOH, balance	None	
9	Corrosion	Cu Sheets, H2SO4, balance	None	
10	An Electrolytic Cell: Electrolysis of CuCl2	0.2 M CuCl ₂ . Power supply or 9V batteries	None	
11	An Electrolytic Cell: Electrolysis of H2O	H2O. Power supply or 9V batteries	None	
12-13	An Electrolytic Cell: Electroplating	1.0 M CuSO ₄ , a copper strip, iron nail, battery or power source,	None	
14-15		Final exam		
_				

For unavailable equipment, we use some stimulated experiments through links as:

https://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html



http://introchem.chem.okstate.edu/DCICLA/voltaicCell20.html

2- Blue Print

Course Name	ELECT.	ROCHEM	CHEMISTRY								
Course Code											
PLOs	K1	K2	S1	S2	S	S3 S4		V1		V2	
CLOs	1.1	1.2	2.1	2.2	2.	3 2.	4	4 3.1		3.2	
Marks	15	21	34	22	4			4			
Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool		No of Questions	the	ks of essment	the	eight of sessment	
	K1	1.1 (15M)	Quiz Objective Q		2		1	1			
			Mid term	3		6		3		3	
Knowledge &			Final Exam	Objective Q		11		11		11	
understanding	K2	1.2	Quiz	Essay q		2		1		1	
		(21M)	Mid term	Essay q		5		5		5	
			Final Exam	Essay q		5		15		15	
	S1	2.1 (34M)	H.W	Solving 4 Problems & chart analysis		4	2			2	
			Quiz	Solving Problems & Essay Questions + solve Problems		1	1			1	
Skills			Mid term	Solving Problems & Essay Questions + solve Problems		2	7			7	
Skiiis			Final Exam	Solving Problems & Essay Questions + solve Problems		6 6			24		
	S2	2.2	Practical	Objective Q	Objective Q			6		3	
		(22M)	Sheet	Essay q		2		2		2	
			Lab Report	Lab report i	ubric	10	10			10	
			Final Lab Exam	1Task experiment			1			7	
	S3	2.3 (4M)	Safety Exam	Objective Q + Essay q		8	8			4	
Value	V1	3.1 (4)	Continuous assessment	Group evaluation r	ubric	-		4	4		
	TOTAL	100							100)	

