

Course Specification

— (Bachelor)

Course Title: CO-ORDINATION CHEMISTRY

Course Code: 323CHEM-3

Program: Bachelor of Science in Chemistry

Department: PHYSICAL SCIENCES

College: SCIENCE

Institution: Jazan University (JU)

Version: TP-153 2024

Last Revision Date: 5/5/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

1. Course Identification

1. C	1. Credit flours: (5fl)					
2. C	2. Course type					
A.	□University	□College	⊠ Depa	rtment	□Track	□Others
В.	⊠ Required			□Electi	ive	
3. L	3. Level/year at which this course is offered: (6 L / 3 Y)					

4. Course general Description:

This course aims to study the coordination and organometallic compounds, their methods of preparation and their uses.

Course Title	Course	Contact Hours		Credit			
	Number	(CII)		unit	Vanu	Laurel	Pre- requisite
	Number	Lec.	Prac.	(CU)	Year	Level	
Coordination Chemistry	CHEM 323	2	1	3	3	6	322CHEM4

Course Objectives; They are to identify the following

- **1-** Recognizing the stereochemistry of complexes and molecular symmetry.
- **2-** Recognizing the concept of donating and accepting atom.
- **3-** Recognizing the nomenclature rules of the complexes.
- **4-** Recognizing the types of ligands and the coordination number.
- **5-** Recognizing the polar and non-polar molecules.
- **6-** Recognizing the methods of preparation of organometallic compounds.
- **7-** Recognizing the uses of organometallic compounds.

Syllabus: A-Theoretical contents

- a. <u>Coordination Chemistry</u>: Concept of donating and accepting atoms Types of ligands Coordination number Stereochemistry of complexes and molecular symmetry Central atom groups Nomenclature rules of the complexes Crystal field theory Molecular orbital theory.
- b. <u>Organometallic Chemistry</u>: General rules Different methods of preparation Uses of organometallic compounds in the organic preparations (organic compounds of lithium, magnesium, boron, aluminum and silicon) Organometallic compounds of transition elements, reactions of these compounds and their uses in organic preparations.

Syllabus: A-Practical contents

Selected experiments Selected experiments related to preparation and reactions of the complexes.

5. Pre-requirements for this course (if any):

322 CHEM

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

This course aims to study the coordination and organometallic compounds, their methods of preparation and their uses.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100
2	E-learning		
	Hybrid		
3	Traditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Upon complete	on of the course	student will be al	ole to)
1.1	Demonstrate abroad knowledge and understanding about the fundamentals and properties of main groups of transition elements in periodic table, coordination parameters, organometallic complexes etc.(P)	K (1.1)	Lecture /discussion Seminars /presentation	Objective Q

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.2	Describe the postulates of Werner theory, organometallic rules and coordination parameters. (P)	K (1.2)	lecture / discussion / Seminars /Individual presentation	Objective Q Essay Q
2.0	Skills; (Upon completion of the course, studer	nt will be able to)	
2.1	Demonstrate the knowledge and skills to calculate the coordination number, CFSE, oxidation state of metal and magnetic moments (P)	S (2.1)	lecture / discussion / Seminars /Individual presentation	Essay Q Solving Problems
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments as well as accurately record and analyze the results of such experiments. (P)	S (2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Examine his material and lab safety background to follow proper procedures and regulations for safe handling and use of chemicals. (I)	S (2.3)	lab demonstrations /hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsibility: (Upon comp	letion of the cour	se, student will be	able to)
3.1	Working as a group leader in cooperator with other colleagues. (P)	V (3.1)	Lab demonstrations /whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours	
	Definitions, series theory and Werner's theory and types of complexes	2	
	Calculations of oxidation state of central atom and charge on the coordination sphere, factors affecting of the complex formation		
3.	Effective atomic number rules, Nomenclature, magnetic susceptibility, coordination numbers and the stereochemistry and types of chelates	6	

	Isomerisms of coordination compounds.	3
4.	Bonding theories (VBT, CFT, LFT, CFSE, Jhan- Teller and MOT)	4
5.	Reaction mechanisms of coordination compounds (substitutions and	3
6.	elimination reactions)- Inert and Labile reactions	5
7.	Principles, Nomenclature, Preparation, properties, reactions of	4
/.	organometallic compound.	
8.	16 AND 18 Rules of organometallic compounds and some exercises.	4
o. 9.	Applications of coordination and organometallic compounds.	2
9.	Selected experiments related to the course topic	30
	Total	60

D. Students Assessment Activities

No	Asses	sment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assign	ment	3-8	2%
2.	Lecture Quizzes		4-7	3%
3.	Mid-term exam		6-8	15%
4.		LAB Sheet	15	5%
5.	Practical Work	Safety Exam	14-15	4%
6.		Final Practical Exam	15	7%
7.		LAB Report	2-15	10%
8.		Group Work Evaluation	2-15	4%
9.	Final Exam		16-17	50%
	Total			100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 COORDINATION CHEMISTRY, Ajal Kumar, 4th Ed., AARYUSH EDUCATION, 2020. Advanced Inorganic Chemistry, Author: Cotton Wilkinson Murillo Bochmann, 6th Edition, Wiley India Pvt Ltd., 2012.
Supportive References	 Concise Inorganic Chemistry, J. D. Lee, 5TH ED, Wiley India Pvt. Limited, 2008. Introduction to Coordination Chemistry, G. A. Lawrance, A John Wiley and Sons, Ltd., 2010

	Direct Synthesis of Coordination and Organometallic Compounds, A.D. Garnovskii and B.I. Kharisov, Elsevier Science, 1999.
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Modules_a nd_Websites_(Inorganic_Chemistry)/Coordination_Chemistry www.wikipedia.org/http://www.wpi.edu/Academics/Depts/Chemistry/Courses/General/

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment	none
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods	
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect	
Effectiveness of Students assessment	Instructor & amp; Course coordinator	Classroom evaluation (direct & Direct)	
Quality of learning resources	Program coordinator	Indirect	
The extent to which CLOs have been achieved	Assessment committee	Indirect	
Other			

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council				
REFERENCE NO.	Psci2415				
DATE	28/03/1446 Corresponding to 1 / 10 /2024				

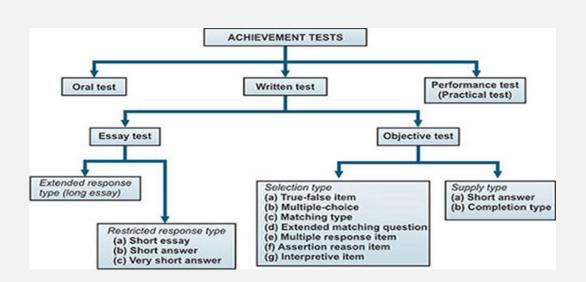
H. Attachments

1- Practical Work

No.	EXPERMENTS	Equipment, Chemicals and Tools.	No of weeks for	
exp.				
1		General rules of safety		
2	Introduction about coordination chemistry and the safety in the laboratory.	Periodic table	One week	
3	<u>Direct Titration</u> Determination of Magnesium (II)	**0.01M of EDTA **Buffer (PH=10) **Soiochrome Black T (E.B.T) Indicator **Mg ⁺² solution	One week	
4	<u>Direct Titration</u> Determination of Zinc (II)	**0.01M of EDTA **Buffer (PH=10) **Soiochrome Black T (E.B.T) Indicator **Zn ⁺² solution	One week	
5	<u>Direct Titration</u> Determination of cadmium (II)	**0.01M of EDTA **Buffer (PH=10) **Soiochrome Black T (E.B.T) Indicator **Cd ⁺² solution	One week	
6	<u>Direct Titration</u> Determination of Copper (II)	**0.01M of EDTA **Buffer (PH=10) **Murexide (Indicator) **Cu ⁺² solution	One week	
7	<u>Direct Titration</u> Determination of Manganese (II)	**0.01M of EDTA **Buffer (PH=10) **Soiochrome Black T (E.B.T) Indicator **Mn+2 solution	One week	
8	Direct Titration Exps. Determination of Lead (II)	**0.01M of EDTA **Buffer (PH=10) **Soiochrome Black T (E.B.T) Indicator Pb ⁺² solution	One week	
9	Indirect and Back Titration Exps. Determination of Aluminum (III)	**0.01M of EDTA ** 0.01 M Zinc Sulphates **Buffer (PH=10) **Soiochrome Black T (E.B.T) Indicator **Al*3 solution	One week	
10	. Indirect and Back Titration Exps. Determination of Nickel (II)	**0.01M of EDTA ** 0.01 M Zinc Sulphates **Buffer (PH=10) ** Murexide (Indicator) ** Ni*2 solution	One week	
11	<u>Substitution Titration Exp</u> . Determination of Calcium	**0.01M of EDTA **Ca+2 solution **Buffer (PH=10) **Magnesium Complex of EDTA (Mg-EDTA)	One weeks	

12	InDirect Titration Exps.	**0.01M of MgSO ₄	One week
	Determination of Lead (II)	**0.01M of EDTA	
		**Buffer (PH=10)	
		**Soiochrome Black T (E.B.T) Indicator	
		Pb ⁺² solution	
13	Preparation and analysis of	** Glassware.	One week
	monooxalato iron(II) complex	** Ferrous sulfate	
		** Ferrous ammonium sulphate.	
		**oxalic acid dihydrate.	
		** Acetone.	
		** Ni ⁺² solution	
14	Preparation and characterization of	** Glassware.	One weeks
	potassium trisoxalatochromate(III)	**chromium sulfate	
	trihydrate	** Potassium dichromate	
	$K_3[Fe(C_2O_4)].3H_2O$	** Potassium oxalate monohydrate	
		** Oxalic acid dihydrate	
		** Sulphuric acid	
		** Potassium permanganate	
		** Ammonoium persulphate	
		** H ₂ O ₂	
		** Ethanol	
15	Preparation of potassium cis and trans-	** Glassware.	One week
	diaqua dioxalato chromate (III).	** chromium sulfate	
	Cis &Trans K[Cr(C ₂ O ₄) ₂ (H ₂ O) ₂]	** Potassium dichromate	
		** Potassium oxalate monohydrate	
		** Oxalic acid dihydrate	
		** Ethanol	

2- Blue Print


Course Nam	e Coordi	Coordination and Organometallic Chemistry							
Course Code	e 323 CH	323 CHEM							
PLOs	K1	K1 K2 S1 S2 S3 S4 V1 V2							
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2	
Marks	15	5 21 34 22 4 4							

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1 (15M)	Quiz	Objective Q *	2	2	1
			Mid term	Objective Q	6	3	3
			Final Exam	Objective	22	11	11
Knowledge & understanding	K2	1.2 (21M)	Quiz	Objective Q	1	1	1
			Mid term	Objective Q Essay Q**	3	5	5
			Final Exam	Objective Q Essay Q	10 4	5 10	15
	S1	2.1 (34M)	H.W	Essay Q Solving Problems	4	2	2
			Quiz	Objective Q Essay Q	1	1	1
			Mid term	Essay Q Solving Problems	3	7	7
			Final Exam	Essay Q Solving Problems	7	24	24
Skills	S2	2.2 (22M)	Practical	Objective Q	6	3	3
			Sheet	Objective Q Essay Q	2	2	2
			Lab Report	10 EXP.	10	10	10
			Final Lab Exam	Practical Exam	1	7	7
	S3	2.3 (4M)	Safety Exam	Objective Q	8	4	4
Value	V1	3.1 (4)	Continuous assessment	Practical group work Rubric	-	4	4
	TOTAL	100					100

^{*}True – false item, MCQ, Matching type, Assertion reason item and completion type.

^{**}Short essay, short answer Q

