

Course Specification

— (Bachelor)

Course Title: Thermodynamics

Course Code: 241CHEM3

Program: Bachelor of Science in Chemistry

Department: Physical Sciences

College: College of Science

Institution: Jazan University (JU)

Version: TP 153 2024

Last Revision Date: 5/5/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7
H. Attachments	8
1- Practical Work	8
2- Blue Print	10

A. General information about the course:

1. Course Identification

1. C	redit hours:	(3h)						
2. C	ourse type							
A.	□University	□College	e	□ Departm	ient □Tr	ack		Others
В.	⊠ Required				lElective			
3. L	3. Level/year at which this course is offered: (Level 4 - Year 2)							
4. 0	Course genera	al Descriptio	n:					
Col	urse Title	Course	Contact	Hours (CH)	Credit unit			
	Number (CU) Year Level Pre-					Pre-		
			Lecture	Practical				requisite
T	hermodynamics	2 41 CHEM3	2	1	3	2	4	201CHEM-4

The course is designed to give the students basic information about the thermodynamic chemistry, laws, thermochemistry, and phase rule Course objectives: They are to identify the following.

- 1. Identify the types of thermodynamic systems and processes
- 2. Recognize the different thermodynamic laws and thermochemistry
- 3. Calculate the required thermodynamic parameters via solving problems
- 4. Identify the applications of thermodynamic phenomena
- 5. Understand the phase rule and related phase transitions
- 6. Investigate one, two and three component system and calculate degree of freedom.

Syllabus: A-Theoretical contents

Heat and work, Heat capacity, specific heat, thermodynamic process, thermodynamic laws: thermochemistry, Carnot cycle, Joule-Tomson effect Gibbs- Helmholtz free energy, phase rule, system with different component.

Syllabus: A-Practical contents

Experimental work illustrating selected parts of the theoretical content.

5. Pre-requirements for this course (if any):

344CHEM-3

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

The course is designed to give the students basic information about the thermodynamic chemistry, laws, thermochemistry, and phase rule

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100
2	E-learning		
	Hybrid		
3	 Traditional classroom 		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Upo	n completion of th	ne course, student wi	ill be able to)
1.1	Demonstrate a broad understanding and critical view on the principle of thermodynamic chemistry, Concepts, and terminology of thermodynamic topics, including Heat, Work, different types of systems, and laws of thermodynamic	K(1.1)	lecture / discussi on Seminars	Objective question
1.2	Describe correctly the different phenomena associated with	K(1.2)	lecture / discussi on / Seminars	Essay question

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	thermodynamic laws, phase rule, and phase transitions		/Individual presentation	
2.0	Skills; (Upon completion of the course,	student will be al	ole to)	
2.1	Demonstrate critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and solve problems related to work, Enthalpy, internal energy, Entropy, Gibbs free energy, Helmholtz free energy, degree of freedom, and systems with different components.	S(2.1)	lecture / discussi on / Seminars /Individual presentation	Solving Problems & chart analysis
2.2	Perform experiments in Thermodynamic chemistry, record, analyze, interpret the scientific data, and write reports. (M)	S(2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the correct techniques and rules for secure handling when using chemicals. (P)	S(2.3)	lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsibility to)	r; (Upon completi	on of the course, stu	dent will be able
3.1	Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Basics of thermodynamic chemistry	3
2.	The 0th. Law of thermodynamics and Gases	3
3.	Work and Heat, Internal Energy and the 1st. Law of Thermodynamics	3
4.	Entropy, the 2nd. Law of Thermodynamics and More on Entropy	3
5.	The 3rd. Law of Thermodynamics	3
6.	Thermochemistry	3

7.	Solutions and Condensed Phases Equilibrium and Chemical Equilibrium, Changes in Equilibrium Constants	4
8.	A Single -Component System and Phase Transition	4
9.	The Gibbs Phase Rule and Two Components: Liquid/Liquid Systems	4
10.	Selected topics related to course content	30
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	<i>3-8</i>	1%
2.	Lecture Quizzes	4-6	4%
3.	Mid-term exam	<i>6-8</i>	15 %
4.	LAB Sheet	15	5 %
5.	Quiz in Safety	14-15	3%
6.	Final practical exam	15	10 %
7.	Lab report	2-15	10 %
8.	Group work evaluation	2-15	2%
9.	Final Exam	16-17	50 %
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Physical Chemistry (Second Edition) by David W. Ball, Cleveland State University, 2014.
Supportive References	Essentials Of Physical Chemistry. Bahl A., et al. S. Chand. 2010, English. 4ed. 1166\1166. 1122910 Translated Arabic version of peter Atkins (KSU)
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	www.wikipedia.org/ https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query=ther modynamic&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities	1 Lecture room(s) for groups of 50 students
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	
Technology equipment	Smart board, Data show, Black board, internet
(projector, smart board, software)	
Other equipment	none
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of Students assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

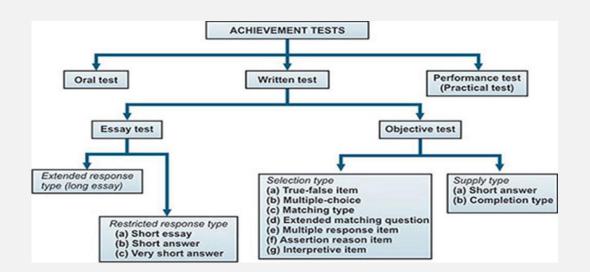
COUNCIL /COMMITTEE	Physical Sciences Department Council				
REFERENCE NO.	Psci2415				
DATE	28/03/1446 Corresponding to 1 / 10 /2024				

H. Attachments

1- Practical Work

Week	EXPERMENTAL TITLE	Chemicals and Apparatus used	Remarks
1	Safety and regulations		
2	The Heat Capacity of the Calorimeter.	 Styrofoam cups Ice 100 mL graduated cylinder Cardboard lid w/ hole DI water Ruman on hot plate 	None
3	Heat of Fusion of ICE.	 Burner or hot plate Thermometer (-10 to 110 °C) 150 mL Beaker Watch or Clock Thermometer clamp 250 mL Beaker Centigram balance 	None
4	Specific Heat Capacity of an Unknown Metal.	•Styrofoam cups • Ice • 100 mL graduated cylinder • Cardboard lid w/ hole • DI water • Burner or hot plate • Thermometer (-10 to 110 °C) • 150 mL Beaker • Watch or Clock • Thermometer clamp • 250 mL Beaker • Centigram balance • metal sample (i.e.: Iron, Copper, Zinc, Aluminum)	None
5	Heat of Solution of a Salt. (exo- and endo-) thermic dissolution.	 Styrofoam cup Balance Thermometer 100 mL graduated cylinder Anhydrous Sodium acetate, Ammonium nitrate, NH4NO3 	None
6	Heat of Neutralization.	Styrofoam cups Ice 100 mL graduated cylinder	None

		• DI water	
		Burner or hot plate	
		• Thermometer (-10 to 110 °C)	
		• 150 mL Beaker	
		Watch or Clock	
		Thermometer clamp	
		• 250 mL Beaker	
		• centigram balance	
		 NaOH, HCl and CH3COOH 	
		• Foam cup	None
7	Heat of Precipitation.	Thermometer	
,	Treat of Precipitation.	• Silver nitrate solution	
		Sodium chloride solution	
		Styrofoam cup	None
		• Balance	
		Thermometer	
		• 100 mL graduated cylinder	
8-9	Heats of Reaction – Hess's Law.	• sodium hydroxide, NaOH	
		• 1M sodium hydroxide	
		• 1M Hydrochloric acid	
		• 0.5M Hydrochloric acid	
		Distilled water	.,
	The Thermodynamics of Solubility.	●Solid KNO₃	None
		 Boiling water bath 	
		Graduated cylinders	
		• one 50 mL graduated cylinder	
		with the plastic base removed	
<i>10</i>		• one 25 mL graduated cylinder	
		• one 10 mL graduated cylinder	
		Thermometer or temperature	
		measuring probe	
		Large test tube	
	Spontaneity of Reaction.	• Solid KNO ₃	Metal sheets and
		• Foam cup	equipment are not
11		Graduated cylinders	available
		-	
		• Thermometer or temperature	
		• measuring probe	Metal sheets and
	Determination of Critical Solution Temperature (CST)	•Test tubes,	equipment are not
		 boiling tube as air jacket, thermometer (graduated to 0.1 °C), 	available
		• thermometer (graduated to 0.1°C), • stirrer,	
<i>12</i>		• surrer, • beakers,	
		beakers,phenol, water	
		• sodium chloride 1N,	
		• Hot plate.	
		• Test tubes,	Metal sheets and
		· ·	equipment are not
13	Phase diagram of 3 Component	 thermometer (graduated to 0.1 °C), stirrer, 	available
13	systems	• surrer, • beakers,	
	•	• Deakers	
	·	beakers,Ethanol / Toluene / Water	


2- Blue Print

Course Name	Thermodynamics
Course Code	241 CHEM-3

PLOs	K1	K2	S 1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	30	24	16	25	3		2	

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1 (30 M)	Quiz	Objective question	4	2	2
			Mid term	Objective question	1	6	6
Knowledge &			Final Exam	Objective question	2	22	22
understanding	K2	1.2 (24 M)	Quiz	Essay question	2	2	2
			Mid term	Essay question	1	5	5
			Final Exam	Essay question	2	17	17
	S1	2.1 (16M)	H.W	Solving Problems & chart analysis	4	1	1
			Mid term	Solving Problems & chart analysis	2	4	4
Skills			Final Exam	Solving Problems & chart analysis	6	11	11
	S2	2.2 (25 M)	Practical Sheet	MCQ	6	5	5
			Lab Report	Lab Report Rubric	10	10	10
			Final Lab Exam	I Task experiment	1	12	10
	S3	2.3 (3 M)	Safety Quiz	MCQ	8	3	3
Values	V1	3.1(<mark>2M</mark>)	Groupwork evaluation	rubric			2
r	ГОТАL	100					100

