

Course Specification (Bachelor)

Course Title: Industrial Catalysis

Course Code: ICHM459-2

Program: Bachelor of Science in Industrial Chemistry

Department: Department of Physical Sciences

College: College of Science

Institution: Jazan University

Version: TP-153 (2024)

Last Revision Date: *Pick Revision Date*.

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1.	Credit hours:	2hrs
	OI COIL LICOLOL	

2. C	ourse type					
A.	□University	□College	⊠ Depa	rtment	□Track	□Others
В.	B. ☐ Required ☐ Elective					
			CC	I = /oth	ath se	•

3. Level/year at which this course is offered: 7 (8th Level--- 4th Year.)

4. Course general Description:

Course title	Course	Contact Hours		Credit	Year	Level	Prerequisite	Corequisite	
	code	Lec	Tut	Lab	Hours				
Industrial Catalysis	ICHM459-2	2	0	0	2	4 th	8 TH	ICHM356-3	

This course aims to give the student the basic information and principles basics for catalytic materials uses in various industrial applications.

5. Pre-requirements for this course (if any):

ICHM356-3

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

- 1- Identify the history of industrial chemistry industrial catalysis classification according to various criteria: structure, composition, area of application, or state of aggregation.
- 2- Understanding modern techniques for forming catalytic compounds.
- 3-Identify the fluid catalytic cracking, hydro processing (hydrocracking and hydrotreating), isomerization, alkylation, and others
- 4- Familiarity with various methods for development of preparing industrial homogeneous catalysis.
- 5- Study the various process of catalyst regeneration and recycling.
- 6- Development of new preparation processes
- 8- Shape-selective catalysis with different materials

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	$(2 \times 15) = 30$	100%
2	E-learning		

No	Mode of Instruction	Contact Hours	Percentage
3	HybridTraditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		30

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; l	Jpon completion	of the course, students are able to:	
1.1	Demonstrate a comprehensive understanding and critical perspective on the key principles, concepts, and terminology of industrial catalysis. (M)	K 1	Lecture discussion	Exams Assignments
1.2	Describe and explain industrial catalysis, practical procedures, tools, and techniques related to industrial catalysis. (M)	К 2	Lecture discussion	Exams Assignments
2.0	Skills; Upon completion of the cou	rse, students are	able to:	
2.1	Identify and solve problems using appropriate principles, methodologies, tools, and modelling related to industrial catalysis. (M)	S 1	Lecture discussion	Exams Assignments
2.2	Communicate scientific information and research findings effectively in writing on	\$5	Lecture discussion web-based activity	Assignments Classroom activities

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	industrial catalysis. (M)		presentation	
3.0	Values, autonomy, and responsibility; Upon completion of the course, students are able to:			
3.1	Recognize a chemist's ethical and scientific responsibilities. (M)	V2	web-based activity presentation	presentation

C. Course Content

No	List of Topics	Contact Hours
1.	Basic concepts in industrial catalysis definition and importance.	4
3.	Different methods for preparation of industrial catalysis.	4
4.	immobilized catalysts	4
5.	The suitability of a catalyst for an industrial process	4
6.	catalytic reforming; hydrotreatment; Oil refineries; fluid catalytic cracking; and alkylation.	5
	Heterogeneous catalysis and development of organometallic catalysts	4
7.	Recent materials which uses in industrial applications	5
	Total	$2 \times 15w = 30$

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Periodic Exams	During Semester	30 %
2.	Assignments & Classroom Activities	During Semester	20%
6.	Final Exam	16-17	50%
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References

1- Mark Anthony Benvenuto, Heinz Plaumann Industrial Catalysis.2021. ISBN 978-3-11-054284-4. e-ISBN (PDF) 978-

	3-11-054286-8. e-ISBN (EPUB) 978-3-11-054294-3 2- Martin Schmal, Heterogeneous Catalysis and its Industrial Applications, ISBN 978-3-319-09249-2 . ISBN 978-3-319-09250-8 (eBook) DOI 10.1007/978-3-319-09250-8		
Supportive References	Industrial Catalysis: A Practical Approach. Jens Hagen. September 2015. e PDFISBN: 978-3-527-68465-6 oBook ISBN: 978-3-527-68462-5		
Electronic Materials			
Other Learning Materials			

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room.
Technology equipment (projector, smart board, software)	Smartboard, Data show, Blackboard, internet
Other equipment (depending on the nature of the specialty)	Saudi Digital Library

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of Students' assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council
REFERENCE NO.	Meeting (3)
DATE	12/03/2024 -02/09/1445

