

Course Specification (Bachelor)

Course Title: Chemistry of Downstream Industries

Course Code: ICHEM458-2

Program: Bachelor of Science in Industrial Chemistry

Department: Department of Physical Sciences

College: College of Science

Institution: Jazan University

Version: TP-153 (2024)

Last Revision Date:

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification

	1.	Credit hours: (3 hrs.
--	----	-----------------	--------

2.	Cours	e ty	/pe

A.	□University	□College	□ Department	□Track	□Others
В.	☐ Required		⊠ Electi	ive	

3. Level/year at which this course is offered: (8th Level--- 4th Year.)

4. Course general Description:

Course title	Course code	Contact Hours		Credit	Year		Prerequisite	Corequisite				
		Lec	Tut	Lab	Hours	lours		Year Level		·		
Chemistry of Downstream Industries	ICHEM 458-2	2	-	-	2	4 th	8 th	ICHEM251-3				

This course will provide an overview of the chemical processes and principles involved in downstream industries, including petrochemicals, polymers, pharmaceuticals, and other related sectors. Students will learn about the chemical reactions, transformations, and materials used in these industries, as well as the environmental and safety considerations.

5. Pre-requirements for this course (if any):

ICHEM251-3

6. Co-requisites for this course (if any):

_-

7. Course Main Objective(s):

- 1. Understanding the chemical processes involved in downstream industries.
- 2. Identifying the materials and products produced in downstream industries.
- 3. Analyzing the environmental and safety considerations in downstream industries.
- 4. Evaluating the impact of downstream industries on society and the economy

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	$(2 \times 15) = 30$	100%
2	E-learning		
3	Hybrid		

No	Mode of Instruction	Contact Hours	Percentage
	Traditional classroom		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		30

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; Upon	completion of the co	urse, students are able to:	
1.1	Demonstrate a comprehensive understanding of the principles and concepts of the chemical processes involved in downstream industries. (M)	K(1)	Lecture / Open discussion in class	Objective Questions
1.2	Describe and explain correctly the materials and products produced in downstream industries. (M)	K(2)	Lecture / Open discussion in class	Objective questions, Essay questions
2.0	Skills; Upon completion of the course,	students are able to:		
2.1	Evaluate the impact of downstream industries on society and the economy. (M)	S(1)	lecture / Open discussion in class	Essay questions, Solving problems
2.2	Make effective use of communication, and online technology about the course topics in order to improve their basic knowledge in writing (report /	S(5)	project-based learning	Research presentation rubric

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	poster) with a good verbal and clear scientific language. (M)			
3.0	Values, autonomy, and responsibility	; Upon completion of	the course, students are ab	le to:
3.1	Recognize the chemist's professional and ethical responsibilities. (I)	V(2)	Research activities	Ethic Rubric check

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to Downstream Industries	5
2.	Petrochemicals and Refining Processes	5
3.	Polymers and Plastics Production	5
4.	Pharmaceuticals and Drug Manufacturing	5
5.	Industrial Catalysts and Chemical Reactions	5
6.	Environmental and Safety Regulations in Downstream Industries	5
	Total	$2 \times 15w = 30$

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Periodic Exams	During Semester	30%
2.	Assignments & Classroom Activities	During Semester	20%
6.	Final Exam	16-17	50%
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Chemical Process Technology, Jacob A Moulijn, Michiel Makkee, Annelies E Van Diepen, Wiley; 2nd Revised, 2013.
Supportive References	 Industrial Chemical Cresols and Downstream Derivatives, Asim Kumar Mukhopadhyay, 2004, CRC Press. "Introduction to Polymer Science and Technology" by Nicholas Peppas
A.A.X.X	

Electronic Materials
Other Learning Materials

Some course contents and materials are posted on Black board sites

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (projector, smart board, software)	Data show
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of Students' assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council	
REFERENCE NO.	Meeting (3)	
DATE	12/03/2024 -02/09/1445	

