

Course Specification (Bachelor)

Course Title: Chemistry of Petroleum and Petrochemicals

Course Code: CHEM 492-3

Program: Bachelor of Science in Chemistry

Department: Department of Physical Sciences

College: College of Science

Institution: Jazan University

Version: TP-153 (2024)

Last Revision Date: 1 March 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	7
G. Specification Approval	8

Α.	General	linf	formation	about t	the course:
_	UCITCI GI		OHIGGIOH	unout i	THE COULTE.

1. Course Identification

1.	Credit	hours: ((3h)	

3	C		
۷. ۱	Cour:	se ti	/pe

A.	□University	□College	□ Departm □	nent	□Track	□Others
В.	□ Required]Electiv	<i>r</i> e	

3. Level/year at which this course is offered: ((8th Level/ 4th year)

4. Course general Description:

Course title	Course	Con	tact H	ours	Credit	Year	Level	Prerequisite	Corequisite
	code	Lec	Tut	Lab	Hours				
Chemistry of Petroleum and Petrochemicals	CHEM 492-3	2	0	2	3	4 th	8 th	CHEM234-3	

This course covers the basic knowledge about the petroleum and different methods of manufacturing of petrochemicals from natural gas, ethylene, propylene, benzene, and industrial gas.

5. Pre-requirements for this course (if any):

CHEM234-3

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

This course has been designed to give students the following concepts:

- 1- Identify the origin of petroleum, theories of its formation, properties, and refining processes.
- 2- Study of thermal cracking, octane number, and methods of preparing petroleum.
- 3- Study and classification of petrochemicals.
- 4- Understand and assimilate the many organic and inorganic petrochemicals that can be obtained from natural gas and reformed naphtha.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	30	100%
2	E-learning		
3	HybridTraditional classroomE-learning		

No	Mode of Instruction	Contact Hours	Percentage
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	$2 \times 15 = 30$
2.	Laboratory/Studio	$2 \times 15 = 30$
3.	Field	
4.	Tutorial	
5.	Others (specify) Field trip to Aramco	0
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding	;; Upon completion	of the course, students are	e able to:
1.1	Demonstrate knowledge and an understanding of Petroleum and petrochemicals sources, components, properties, and refining processes. (P)	K1	lecture/ discussion Seminars/presenta tion	Objective question
1.2	Explain the Distillation, thermal cracking, alkylation processes, isomerism, and polymerization and the petrochemicals classification. (P)	К2	lecture / Interactive discussion / Seminars /Individual presentation	Essay question
2.0	Skills; Upon completion of the cours	e, students are able	to:	
2.1	Solve problems in petroleum and differentiate between different petrochemical products from organic and inorganic sources. (P)	S1	lecture / Interactive discussion / Seminars /Individual presentation	Solving Problems & Essay question
2.2	Design, carry out, and record the results of petroleum and petrochemical experiments using classical techniques and modern instruments, then	S2	Lab work, group work	Objective question, Essay question,

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	analyze those results to draw reasonable, correct conclusions and write reports. (P)			lab report rubric
2.3	Use a variety of instruments to efficiently analyze different materials.	S3	lab demonstrations / hands-on student learning activities	lab report
2.4	Knows the proper procedures for safe handling and use of chemicals. (P)	S4	lab demonstrations / hands-on student learning activities	Safety exam
2.5	Communicate scientific information and research findings effectively in writing research papers, or orally, using clear and concise scientific language. (M)	S5	Research /Seminars /Individual presentation	Interactive Discussions/R ubric
3.0	Values, autonomy, and respon	isibility; Upon com	pletion of the course, stud	lents are able to:
3.1	Working as a group leader in cooperation with other colleagues. (P)	V1	lab demonstrations / whole group and small group discussion	Practical group work Rubric
3.2	Recognize a chemist's ethical and scientific responsibilities.	V2	Research project or presentation	group work Rubric

C. Course Content

1- Theoretical Part

No	List of Topics	Contact Hours
1.	Introduction to Petroleum	1
2.	Theories of formation, components and properties of petroleum	3
3.	refining processes	2
4.	Distillation, and thermal cracking of petroleum	2
5.	Alkylation processes, isomerism, and polymerization of petroleum	2
6.	Octane number, and preparation of petroleum	2
7.	Introduction to petrochemicals and classification	2
8.	petrochemicals from methane	2
9.	petrochemicals from synthetic gas	2
10.	Petrochemicals from propylene	2

11.	Petrochemicals from benzene	2
12.	Petrochemicals from xylene	2
13.	Inorganic petrochemicals	2
14.	Renewable energy sources as an alternative to fossil fuel	2
15.	Review	2
	Total $2 \times 15 = 3$	

2- Lab work

No	List of Topics	Contact Hours	
1.	Introduction and Safety	2	
2.	Standard method for determining the specific density of crude petroleum	2	
3.	Standard method for determining aniline point. 2		
4.	Diesel coefficient and cetane number 2		
5.	Standard method for determining spill point 2		
6.	Standard method for fractional distillation of crude petroleum under normal atmospheric pressure	2	
7.	Determination of pH number	4	
8.	Synthesis of Biodiesel	2	
9.	Aniline point & mixed aniline point	2	
10.	Cloud & pour point	2	
11.	Flash & fire point	2	
12.	Standard method for fractional distillation of crude petroleum under normal atmospheric pressure	2	
13.	Synthesis of polyethylene	2	
14.	Synthesis of styrene	2	
	Total	$2 \times 15 = 30$	

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Periodic Exams	During Semester	15%
2.	Assignments & Classroom Activities	During Semester	5%
3.	Lab Work	During Semester	30%
4.	Final Exam	16-17	50%
Total			100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Handbook of Petrochemicals and Processes, Wells, G. Margaret, Routledge; CRC, 2018. Industrial petroleum and Petrochemicals, Salim El-Zeab. 1997, King Saud University.
Supportive References	
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	 https://en.wikipedia.org/wiki/Chemical_industry http://www.rsc.org/learn-chemistry https://www.khanacademy.org/science/organic-chemistry https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/intro1.htm https://chem.libretexts.org/

2. Required Facilities and equipment

Items	Resources
facilities	Lecture room(s) for groups of 50 students
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	
Technology equipment	Smart board, Data show, Black board, internet
(projector, smart board, software)	
Other equipment	
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of Students' assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council
REFERENCE NO.	Meeting (3)
DATE	12/03/2024 -02/09/1445

