

Course Specification (Bachelor)

Course Title: Nuclear and Radiation Chemistry

Course Code: CHEM429-2

Program: Bachelor of Science in Chemistry

Department: Department of Physical Sciences

College: College of Science

Institution: Jazan University

Version: TP-153 (2024)

Last Revision Date: 30/1/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

-					
Δ	(Jonoral	Int	nrmation	about the	COLLEGO.
\neg	uciiciai		UllialiUll	about the	Course.

1. Course Identification

		/ - 1
	it hours:	
 CICU	it ilouis.	(61113

$\overline{}$	~		A	
	$-\alpha$	ırse		\mathbf{a}
∠.	CUL	11375		1010
	-			

A. □University □College ☑ Department □Track □	□Others
---	---------

B. ⊠ Required □ Elective

3. Level/year at which this course is offered: (8th Level--- 4th Year.)

4. Course general Description:

Course title	Course code	Course code Contact Hours Credit Year Level		Level	Level Prerequisite Corec				
course true	Course code	Lec	Tut	Lab	Hours	· cai	20701	. rerequisite	00.040.0.00
Nuclear and radiation chemistry	CHEM429-2	2	0	0	2	4 th	8 th	CHEM326-2	•

This course aims to give provide students with basic knowledge of nuclear and radiation chemistry.

5. Pre-requirements for this course (if any):

CHEM326-3

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

- 1. Recognizing the structure of the atom, the types of isotopes and the types of radiation decay.
- 2. Identifying the types of nuclear reactions and how to write nuclear equations.
- 3. Describing the interaction of radiation with the material and the types of radiation measuring devices and how to prevent radiation.
- 4. Identifying the useful uses of radioisotopes.
- 5. Identifying the doses, units of measurement and the effect of radiation on gases and organic compounds.
- 6. Discussing the various applications of radiation chemistry.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	$(2 \times 15) = 30$	100%
2	E-learning		
3	HybridTraditional classroom		

No	Mode of Instruction	Contact Hours	Percentage
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		30

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; t	Jpon completion	of the course, students are able to:	
1.1	Demonstrate a broad, knowledge in Useful uses of isotopes - Production of radionuclides, principles of nuclear power- Radiation sources - Radiation protection. (M)	K(1)	Lecture group work discussion	MCQ
1.2	Describe the essential facts, principles and theories in radiation doses, effect of radiation on organic compounds and gases (M)	K(2)	Lecture group work discussion	Q & A
2.0	Skills; Upon completion of the cou	rse, students are	able to:	
2.1	Demonstrate the knowledge and skills in Radiation decay - Nuclear reactions and nuclear equations - Nuclear Fission and Nuclear Fusion, Production of radionuclides, radiation	S(1)	lecture group work discussion	oral Solving Problems & chart analysis

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	detectors and measurement. (M)			
2.2	Make effective use of communication, and online technology about chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language. (M)	S(5)	project-based learning	Research presentation rubric
3.0	Values, autonomy, and responsib	oility; Upon com	pletion of the course, students are ab	le to:
3.1	Recognize the chemist's professional and ethical responsibilities. (M)	V(2)	Research activities	Ethic Rubric check

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to nuclear chemistry	3
2.	Radiation decay	3
3.	Nuclear reactions and nuclear equations - Nuclear Fission and Nuclear Fusion	5
4.	Interaction of radiation with matter	3
5.	radiation detectors and measurement - Useful uses of isotopes	3
6.	Production of radionuclides- Principles of nuclear power- Radiation sources	3
7.	Radiation protection, Radiation doses	3
8.	Introduction to radiochemical chemistry	3
9.	Effect of radiation on organic compounds Effect of radiation on gases - Applications of radiation chemistry.	4
	Total	$2 \times 15w = 30$

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Periodic Exams	During Semester	30%
2.	Assignments & Classroom Activities	During Semester	20%
6.	Final Exam	16-17	50%
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	1. Handbook of Radiation Chemistry, by Yoneho Tabata; Yasuo Ito; Seiichi Tagawa , 1991 by CRC press, Inc. USA. 2. مقدمة في الكيمياء النووية و الإشعاعية , تأليف ا . د . عبد العليم سليمان أبو المجد د . أميرة سالم العطاس الطبعة الأولى 1426 – 2005 م .	
Supportive References	 أسس الكيمياء النووية و ظاهرة النشاط الإشعاعي , تأليف ا.د. علي عبد الحسين سعيد ؛ سهاه عبد الجسام , الطبعة الأولى 2001 – 1422 مبادئ الكيمياء النووية , تأليف ا . د . عبد الحكيم طه قنديل , الطبعة الأولى , 1422 م 2001 م 	
Electronic Materials Some course contents and materials are posted on Black bo		
Other Learning Materials	Annual Radiation Dose (sydney.edu.au)	

2. Required Facilities and equipment

Items	Resources	
facilities	1. Lasting agains of 50 at idents	
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students	
Technology equipment	Smart board, Data show, Black board, internet	
(projector, smart board, software)	Shart board, Data show, Black board, internet	
Other equipment	none	
(depending on the nature of the specialty)		

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods	s
Effectiveness of teaching	Student	Likert-type Survey CE Indirect	ES)

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of Students' assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council	
REFERENCE NO.	Meeting (3)	
DATE	12/03/2024 -02/09/1445	

