

Course Specification (Bachelor)

Course Title: Practical Inorganic Chemistry

Course Code: CHEM327-2

Program: Bachelor of Science in Chemistry

Department: Department of Physical Sciences

College: College of Science

Institution: Jazan University

Version: TP-153 (2024)

Last Revision Date: 31/1/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

Δ	General	linf	formation	about the	COURSE
А.	dellela		OHIIIALIOH	about the	: course.

1. Course Identification

1. C	1. Credit hours: (3 hrs.)					
2. C	ourse type					
A.	□University	□College	⊠ Depa	rtment	□Track	□Others
В.	⊠ Required			☐ Elect	ive	
3. Level/year at which this course is offered: (5 th Level 3 rd Year.)						
4 (4 Course general Description:					

	Course title	Course code	Contact Hours		Contact Hours		Contact Hours		Credit Hours	Year	Level	Prerequisite	Corequisite
			Lec	Tut	Lab								
С	Inorganic hemistry Lab	CHEM327-2	0	0	4	2	3 rd	5 th	-	CHEM326- 3			

This course aims to train the students and acquire them the necessary skills to prepare the compounds and complexes of transition elements and how to identify them and their properties using traditional and physico-chemical analytical methods.

5. Pre-requirements for this course (if any):

None

6. Co-requisites for this course (if any):

CHEM326-3

7. Course Main Objective(s):

- 1. To deal with chemicals in a correct and safe way.
- 2. Preparing a number of transition metals compounds and complexes.
- 3. To Learn how to prepare the samples of different instruments.
- 4. Using different devices and traditional methods to identify the composition and properties of the prepared compounds.
- 5. Ability to analyze and interpret the obtained results.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	$(4 \times 15) = 60$	100%
2	E-learning		
	Hybrid		
3	Traditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	
2.	Laboratory/Studio	60
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; Upon complete	ion of the course,	students are able to:	
1.1	Demonstrate abroad knowledge about the methods used to prepare transition metal compounds and complexes and connect between the theoretical knowledge and experiments (I)	K(1)	Laboratory discussion	Objective Questions/ lab report rubric
1.2	Describe investigation and analysis of the prepared compounds by traditional and instrumental methods. (I)	K(2)	Laboratory discussion	Objective questions, Essay questions/ lab report rubric
2.0	Skills; Upon completion of the course, students of	are able to:		
2.1	Solve and interpret problems related to the properties and measurements of transition elements compounds (I)	S(1)	lecture / Open discussion in Lab	Essay questions, Solving problems

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments to prepare and analyze of transition elements' compounds and to write a report representing the scientific data. (1)	S(2)	Lab work, group work	Objective question, Essay question, Practical Exam, lab report rubric
2.3	Use a variety of instruments to efficiently analyze transition elements compounds. (I)	S(3)	Lab work, group work	Objective question, Essay question, Practical Exam, lab report rubric
2.4	Examine his material and lab safety background to follow proper procedures and regulations for safe handling and use of chemicals. (I)	S(4)	lecture / Open discussion in Lab	Safety exam
3.0	Values, autonomy, and responsibility; Upon co	ompletion of the c	ourse, students are able	e to:
3.1	Work in groups and teams in cooperation with other colleagues. (I)	V(1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Safety and regulations	4
2.	Preparation of nickel ammonium sulphate and Preparation of copper ammonium sulphate double salts	4
3.	Analysis of nickel ammonium sulphate 1- Determination of nickel as the dimethylglyoximate	4
4.	Analysis of nickel ammonium sulphate 2- Determination of sulphate as barium sulphate	4
5.	Analysis of copper ammonium sulphate 1- Determination of copper iodometrically	4
6.	Analysis of copper ammonium sulphate 2- Determination of sulphate as barium sulphate	4
7.	Preparation and characterization of potassium trisoxalatochromate (III) trihydrate	8

	Total	$4 \times 15w = 60$
11.	Final Exam	4
10.	Preparing and characterization of hexamminecobalt (II) chloride	8
9.	Preparation and characterization tetraamminecopper (II) sulfate monohydrate	8
8.	Preparation and characterization of hexaminenickel (II) chloride	8

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Periodic Exams	During Semester	25%
2.	Lab work	During Semester	35%
6.	Final Exam	16-17	<i>40</i> %
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Synthesis and characterization of Inorganic Compounds, W.L. Jolly, Edition 1, Waveland Press, 1991.
Supportive References	 العناصر الانتقالية الأساسية وكيمياء التناسق، د. حسين محمد عبد الفتاح و د. سمير أبو القاسم عبد اللطيف – 2012 Synthesis And Technique in Inorganic Chemistry A Laboratory Manual, G. S. Girolami, T.B. Rauchfuss, R. J. Angelici, 3rd ed., 1999, University Science Books.
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	http://www.chemguide.co.uk/inorganic/transition/features.html http://www.chem.iitb.ac.in/~rmv/ch102/ic3.pdf

2. Required Facilities and equipment

Items	Resources
facilities	
(Classrooms, laboratories, exhibition rooms,	lab
simulation rooms, etc.)	

Items	Resources
Technology equipment (projector, smart board, software)	Data show, projector
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of Students' assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council	
REFERENCE NO.	Meeting (3)	
DATE	12/03/2024 -02/09/1445	

