



# Course Specification (Bachelor)

**Course Title: Organic Chemistry II** 

Course Code: CHEM234-3

**Program: Bachelor of Science in Chemistry** 

**Department: Department of Physical Sciences** 

**College: College of Science** 

**Institution: Jazan University** 

Version: TP-153 (2024)

Last Revision Date: 31 January 2024



# **Table of Contents**

| A. General information about the course:                                       | 3 |
|--------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 |
| C. Course Content                                                              | 4 |
| D. Students Assessment Activities                                              | 5 |
| E. Learning Resources and Facilities                                           | 5 |
| F. Assessment of Course Quality                                                | 6 |
| G. Specification Approval                                                      | 6 |





| -      |          |      |            |           |          |
|--------|----------|------|------------|-----------|----------|
| Λ      | (-anarai | into | armation   | about the | COLLECO. |
| $\neg$ | uciiciai | 1111 | Jilliauvii | about the | course.  |

#### 1. Course Identification

□ Required

1. Credit hours: (3 hrs)

|      | •           |          |              |        |         |
|------|-------------|----------|--------------|--------|---------|
|      |             |          |              |        |         |
| 2. C | ourse type  |          |              |        |         |
| A.   | □University | □College | □ Department | □Track | □Others |

☐ Elective

# 3. Level/year at which this course is offered: (4th Level/ 2rd Year.)

#### 4. Course general Description:

| Course title            | Course           | Contact Hours |   | Credit | Year | Level           | Prerequisite    | Corequisite    |                |
|-------------------------|------------------|---------------|---|--------|------|-----------------|-----------------|----------------|----------------|
|                         | code Lec Tut Lab | Hours         |   |        | -    | -               |                 |                |                |
| Organic<br>Chemistry II | CHEM<br>234-3    | 3             | 0 | 0      | 3    | 2 <sup>nd</sup> | 4 <sup>th</sup> | CHEM 233-<br>3 | CHEM 235-<br>2 |

The course aims to give comprehensive knowledge to students about organic compounds and their nomenclatures, methods of preparation, and physical and chemical properties.

#### **5.** Pre-requirements for this course (if any):

CHEM233-3

#### 6. Co-requisites for this course (if any):

CHEM235-2

#### 7. Course Main Objective(s):

- 1- Identifying the physical properties of organic compounds.
- 2. Identifying the different systems of nomenclature of organic compounds.
- 3. Classifying the different methods of preparation and reactions of organic compounds.
- 4. Recognizing the importance of organic compounds and their applications in different fields.

#### 2. Teaching mode (mark all that apply)

| No | Mode of Instruction                                        | Contact Hours | Percentage |
|----|------------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                      | 45            | 100%       |
| 2  | E-learning                                                 |               |            |
|    | Hybrid                                                     |               |            |
| 3  | <ul><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4  | Distance learning                                          |               |            |





# **3. Contact Hours** (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 45            |
| 2.    | Laboratory/Studio |               |
| 3.    | Field             |               |
| 4.    | Tutorial          |               |
| 5.    | Others (specify)  |               |
| Total |                   | 45            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                                                                                                                                                      | Code of CLOs<br>aligned with<br>program | Teaching<br>Strategies | Assessment Methods                                                                                              |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.0  | Knowledge and understanding; Upon complete                                                                                                                                                                                                                    | ion of the course, s                    | students are a         | ble to:                                                                                                         |  |  |  |
| 1.1  | Demonstrate a thorough understanding of<br>the nomenclature of alcohols, aldehydes,<br>ketons, carboxylic acids and their derivatives,<br>amines, and nitro compounds as well as the<br>study of their physical properties,<br>preparations and reactions.(P) | К1                                      | Lecture                | <ul> <li>Periodic Exams</li> <li>Assignments &amp; Classroom activities</li> <li>Final Exam</li> </ul>          |  |  |  |
| 1.2  | Describe and explain the concept of elimination reactions (E1 and E2) and nucleophilic substitution reactions (SN1 and SN2) reactions.(P)                                                                                                                     | К2                                      | Lecture                | <ul> <li>Periodic Exams</li> <li>Assignments &amp;<br/>Classroom activities</li> <li>Final Exam</li> </ul>      |  |  |  |
| 2.0  | Skills; Upon completion of the course, students are able to:                                                                                                                                                                                                  |                                         |                        |                                                                                                                 |  |  |  |
| 2.1  | Identify and design the reaction mechanisms<br>for performing the organic reactions used in<br>the synthesis and reactions of alcohols,<br>aldehydes, ketons, carboxylic acids and their<br>derivatives and amines.(P)                                        | <b>S1</b>                               | Lecture                | <ul> <li>Periodic Exams</li> <li>Assignments &amp;</li> <li>Classroom activities</li> <li>Final Exam</li> </ul> |  |  |  |

#### **C.** Course Content

| No | List of Topics                                                                                                              | Contact Hours |
|----|-----------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. | Introduction to aromaticity: Huckel rule, electrophilic aromatic substitution reactions and orientation in aromatic system. | 3             |



| 2. | Halo compounds (aliphatic and aromatic).              | 3  |
|----|-------------------------------------------------------|----|
| 3. | Alcohols and ether (aliphatic and aromatic).          | 6  |
| 4. | Phenols.                                              | 3  |
| 5. | Aldehydes and Ketones (aliphatic and aromatic).       | 6  |
| 6. | Carboxylic Acids (aliphatic and aromatic).            | 6  |
| 7. | Carboxylic Acid derivatives (aliphatic and aromatic). | 6  |
| 8. | Amino Compounds                                       | 6  |
| 9. | Diazonium Salts                                       | 3  |
| 10 | Aromatic Nitro-Compounds                              | 3  |
|    | Total                                                 | 45 |

## **D. Students Assessment Activities**

| No | Assessment Activities *            | Assessment<br>timing<br>(in week no) | Percentage of Total Assessment Score |
|----|------------------------------------|--------------------------------------|--------------------------------------|
| 1. | Periodic Exams                     | During Semester                      | 30%                                  |
| 2. | Assignments & Classroom Activities | During Semester                      | 20%                                  |
| 6. | Final Exam                         | 16-17                                | 50%                                  |
|    | Total                              |                                      | 100%                                 |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

# **E.** Learning Resources and Facilities

## 1. References and Learning Resources

| Essential References     | Organic Chemistry. L.G. Wade, JR. 10 <sup>th</sup> Edition. Prentice Hall/F Education Inc. New Jersey, 2023.                                                                                                                                                                                                                                                      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | <ol> <li>Organic chemistry, by Graham Solomons TW, Craig B Fryhle, 12 2016.</li> <li>Organic Chemistry. J. McMurry, 9<sup>th</sup> Edition, Books-Cole, 2023.</li> </ol>                                                                                                                                                                                          |
| Electronic Materials     | <ul> <li>https://chem.libretexts.org/Bookshelves/Organic_Chemistry/M ap%3A_Organic_Chemistry_(McMurry).</li> <li>https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Bo ok%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_ (Soderberg).</li> <li>https://chem.libretexts.org/Courses/Nassau_Community_Coll ege/Organic_Chemistry_I_and_II.</li> </ul> |
| Other Learning Materials |                                                                                                                                                                                                                                                                                                                                                                   |



# 2. Required Facilities and equipment

| Items                                                                | Resources                                     |
|----------------------------------------------------------------------|-----------------------------------------------|
| facilities                                                           | Lecture room(s) for groups of 50 students     |
| (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) |                                               |
| Technology equipment                                                 | Smart board, Data show, Black board, internet |
| (projector, smart board, software)                                   |                                               |
| Other equipment                                                      |                                               |
| (depending on the nature of the specialty)                           |                                               |

# F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor                        | Assessment Methods                       |
|---------------------------------------------|---------------------------------|------------------------------------------|
| Effectiveness of teaching                   | Student                         | Likert-type Survey CES)<br>Indirect      |
| Effectiveness of<br>Students' assessment    | Instructor & Course coordinator | Class room evaluation (direct & indirect |
| Quality of learning resources               | Program coordinator             | Indirect                                 |
| The extent to which CLOs have been achieved | Assessment committee            | Indirect                                 |
| Other                                       |                                 |                                          |

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

# **G. Specification Approval**

| COUNCIL /COMMITTEE | Physical Sciences Department Council |  |
|--------------------|--------------------------------------|--|
| REFERENCE NO.      | Meeting (3)                          |  |
| DATE               | 12/03/2024 -02/09/1445               |  |

