

Course Specification

— (Bachelor)

Course Title: Analytical Chemistry Lab

Course Code: CHEM214-2

Program: Bachelor of Science in Chemistry

Department: Department of Physical Sciences

College: College of Science

Institution: Jazan University

Version: TP-153 (2024)

Last Revision Date: 31 January 2024

E. Learning Resources and Facilities6

F. Assessment of Course Quality......7

G. Specification Approval7

				100	4.1	
Δ.	General	intorm:	ation	about	the	course:

1. Course Identification

1. Credit hours	: (2hrs)
-----------------	-----------

2.	 			-	_
/ -	101	445	- 1	A 0 1	e

A.	□University	□College	☑ Department	□Track	□Others
В.	☑ Required		□Elec	tive	

3. Level/year at which this course is offered: (4th Level/ 2nd Year.)

4. Course general Description:

Course title	Course	Contact Hours		Credit	Year	Level	Prerequisite	Corequisite	
	code	Lec	Tut	Lab	Hours				
Analytical Chemistry lab	CHEM214-2	-	-	4	2	2 nd	4 th		CHEM213-3

This course aims to study and carry out the practical experiments used in quantitative chemical analysis (volumetric and gravimetric).

5. Pre-requirements for this course (if any):

6. Co-requisites for this course (if any):

CHEM213-3

7. Course Main Objective(s):

- 1- Recognize the different lab equipment and devices and how they can be used.
- 2- Acquiring the skills necessary to prepare solutions using different methods and units.
- 3- Practical training on conducting the required chemical analyses.
- 4- Ability to analyze and interpret the obtained results

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional lab room	$(4 \times 15) = 60$	100%
2	E-learning		
3	HybridTraditional classroom		

No	Mode of Instruction	Contact Hours	Percentage
	 E-learning 		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	
2.	Laboratory/Studio	60
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; Upon comple	tion of the cou	rse, students are a	able to:
1.1	Demonstrate the principles, concepts, classification, and terminology of different practical experiments related to quantitative chemical analysis (volumetric and gravimetric)	К1	Lab / discussion /Presentation	oral and written examinations
1.2	Describe and explain correctly chemical phenomena, chemical principles, essential facts, and theories related to practical experiments in the field of quantitative chemical analysis (volumetric and gravimetric)	K2	Lab / discussion /Presentation	oral and written examinations
2.0	Skills; Upon completion of the co	ourse, students	are able to:	
2.1	Demonstrate ability in critical thinking, numeracy, statistical, analytical reasoning, and use of graphs and charts to solve problems related to volumetric and gravimetric methods. (I)	S1	lecture / discussion / Seminars /Individual presentation	oral and written examinations
2.2	Acquire the practical skills to Apply their experimental basics and skills to use laboratory equipment, and classical techniques for carrying out different experiments related to quantitative chemical analysis (volumetric and gravimetric) and to write a report representing the scientific data (I)	S2	Lab work, group work	Lab final exam / lab report rubric/ Objective questions

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.3	Use the analytical tools and equipments to analyze different samples.	S3	Lab work, group work	Lab report/ Lab notebook.
2.4	Apply the proper procedures and regulations for the safe handling, use, and disposal of chemicals during carrying out experiments related to quantitative chemical analysis (volumetric and gravimetric) (I)	S4	Lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsibility; Upon complet	ion of the cour	se, students are a	ble to:
3.1	Work in groups and teams in cooperation with other colleagues.	V1	ab demonstrations / whole group and small group discussion	practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Laboratory safety	2
2.	Solution preparation	4
3.	Determination of normality and strength of unknown sodium hydroxide solution by oxalic acid	4
4.	Determination of normality and strength of unknown hydrochloric acid by solution known Sodium hydroxide	4
5.	Revision	4
6.	Determination of normality and strength of unknown sodium carbonate solution by standardized Hydrochloric acid solution	4
7.	Determination of normality and strength of unknown potassium permanganate solution by standard oxalic acid solution	4
8.	Determination of normality and strength of unknown ammonium ferrous sulphate solution by standard potassium dichromate solution	4
9.	Determination normality and strength of sodium thiosulfate using standard solution of potassium dichromate (iodomeyric titration)	4
10.	Determination normality and strength of magnisum sulphate using standard solution of EDTA (complexmetryl)	4

17.	Revision	$2 4 \times 15W = 60h.$
16.	Gravimetric determination of lead as lead chromate	4
15.	Gravimetric determination of nickel as nickel dimethylglyoxim	4
14.	Gravimetric determination of calcium as calcium Oxide	4
13.	Gravimetric analysis of sulphate as BaSO4	4
12.	Determination of the number of water of crystallization in barium chloride dihydrate	2
11.	Basic concepts, terminology and gravimetric calculations	2

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Learning Activities	During semester	25%
2.	Lab work	During semester	35%
6.	Final Exam	16	40%
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	M. Alam, M. Akhtar, H. Asif. Textbook of Practical Analytical Chemistry, (2010).
Supportive References	Quantitative Chemical Analysis & Solutions manual by Daniel C. Harris, 2006.
Electronic Materials	Some course contents and materials are posted on Blackboard sites
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources	
facilities	4.4.1. ()(
(Classrooms, laboratories, exhibition rooms,	1. 1 Lab room(s) for groups of 25 students	
simulation rooms, etc.)		
Technology equipment	Smart board, Data show, Black board, internet	
(projector, smart board, software)		

Items	Resources
Other equipment (depending on the nature of the speciality)	Laboratory glassware and equipment such as erlenmeyer flasks watch glass, graduated cylinder, volumetric flask, graduated pipette, volumetric buret and beakers, water bath, magnetic stirrer, Electronic balance and hot plateetc.

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of Students' assessment	Instructor & Course Coordinator	Classroom evaluation (direct & indirect
Quality of learning resources	Program Coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council	
REFERENCE NO.	Meeting (3)	
DATE	12/03/2024 -02/09/1445	

