

Course Specification (Bachelor)

Course Title: Principles of Analytical Chemistry

Course Code: CHEM213-3

Program: Bachelor of Science in Chemistry

Department: Department of Physical Sciences

College: College of Science

Institution: Jazan University

Version: TP-153 (2024)

Last Revision Date: 31 January 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	6

Δ	. General	inform	nation	about t	ha	COURSA:
н.	. Generai	11110111	Iauvii	about	ше	course.

1. Course Identification

1	1. Credit hours: (3 hrs)												
2	2. Course type												
1	۹.	□Universi	ty 🗆	College	9	× I	Departm	ent	□Tı	rack	□Others		
E	3.	⊠ Required	ł					□ Elec	ctive				
3	3. Lev	el/year at w	hich this co	urse i	s offe	red: (4	th Level	/ 2 nd Y	ear.)				
4	4. Course general Description:												
		ourse title	Course	Course Contact Hours		Credit	aar lawal	Duonoguisito	Covernisite				
	Co	ourse title	code	Lec	Tut	Lab	Hours	Hours Year		Year Level	Level	Prerequisite	Corequisite
_													
	A	inciples of nalytical hemistry	CHEM213- 3	3	-	-	3	2 nd	4 th	CHEM205-3	CHEM214-2		

This course aims to give students the theoretical principles of quantitative chemical analysis (volumetric and gravimetric).

5. Pre-requirements for this course (if any):

CHEM205-3

6. Co-requisites for this course (if any):

CHEM214-2

7. Course Main Objective(s):

- 1. Recognize the fundamentals, concepts, and terminology of quantitative chemical analysis (volumetric and gravimetric).
- 2. Recognize the advantages and disadvantages of quantitative chemical analysis methods (volumetric and gravimetric).
- 3. Acquiring the skills necessary for calculating solution concentrations in different units.
- 4. Acquiring the mathematical skills used in quantitative chemical analysis (volumetric and gravimetric).

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	$(3 \times 15)45$	100%
2	E-learning		
	Hybrid		
3	Traditional classroom		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures 3x15=45	45
2.	Laboratory/Studio	-
3.	Field	-
4.	Tutorial	-
5.	Others (specify)	-
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; Upon completion of the course, students a	re able to:		
1.1	Demonstrate a broad understanding and critical view of the principal theories, concepts, and terminology related to Principles of Analytical Chemistry topics (I)	K1	lecture/discus sion/Seminars /presentation	oral and written examinatio ns
1.2	Describe and explain correctly chemical phenomena, chemical principles, essential facts and theories related to both of Volumetric and gravimetric methods of analysis (I)	К2	lecture/discus sion/Seminars /presentation	oral and written examinatio ns
2.0	Skills; Upon completion of the course, students are able to:			
2.1	Demonstrate ability in critical thinking, numeracy, statistical, analytical reasoning, and use of graphs and charts to solve problems related to volumetric and gravimetric methods. (I)	S1	lecture / discussion / Seminars /Individual presentation	oral and written examinatio ns

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to quantitative chemical analysis	1
2.	Unites for expressing concentration; normality, molarity and molality	4
3.	Unit percent: w/w, w/v and v/v% in addition units of part per million, part per billion.	3
4.	Conversion between some concentration units	2
5.	Dilution of solutions, solution preparation, titrations based on acid- base reactions	4
6.	Simple titration curves (strong, weak acids versus strong, weak bases) ,complicated titration curves and calculation of pH during titrations	4
7.	Theory of acid-base indicators and titrations based on oxidation reduction reactions	4
8.	Titration curves of oxidation reduction reactions and applications.	4
9.	Titrations based on complexation reactions, applications and titrations based on precipitation reaction.	4
11	Gravimetric methods of analysis- precipitation gravimetry - gravimetric calculations	4
12	Types of precipitates – properties of the ideal precipitates	3
13	Steps to improve precipitates properties - mechanism of precipitation process	4
14	precipitates contamination- organic and inorganic precipitating agents.	4
	Total	$3 \times 15w = 45$

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Periodic Exams	During Semester	30%
2.	Assignments & Classroom Activities	During Semester	20%
6.	Final Exam	16-17	50%
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Skoog, Douglas, Donald West, F. L. Holler, and Stanley Crouch. Fundamentals of analytical chemistry. Cengage Learning, 10th Edition 2021		
Supportive References	R. M. Verma, Analytical Chemistry, Theory and Practice, 3rd edition, 2020		
Electronic Materials	Some course contents and materials are posted on Blackboard sites		
Other Learning Materials	None		

2. Required Facilities and equipment

Items	Resources
facilities	
(Classrooms, laboratories, exhibition rooms,	1 Lecture room(s) for groups of 50 students
simulation rooms, etc.)	
Technology equipment	Conset beautiful Data about Disable beautiful intermet
(projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment	No
(depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of Students' assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program Coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council
REFERENCE NO.	Meeting (3)
DATE	12/03/2024 -02/09/1445

