

Course Specification (Bachelor)

Course Title: General Chemistry II

Course Code: CHEM205-3

Program: Bachelor of Science in Chemistry

Department: Department of Physical Sciences

College: College of Science

Institution: Jazan University

Version: TP-153 (2024)

Last Revision Date: 31 January 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1. C	1. Credit nours: (3hrs)						
2. C	2. Course type						
A.	□University	□College	□ Department	□Track	□Others		
В.	⊠ Required		☐ Elect	ive			
3. Level/year at which this course is offered: (3 rd Level 2 nd Year.)							
4. C	ourse general D	escription:					

Course title	Course	Contact Hours		Credit	Year L	Year	Level	Prerequisite	Corequisite
	code	Lec	Tut	Lab	Hours				
General Chemistry II	CHEM205-3	3	0	0	3	2 nd	3 rd	CHEM102-3	CHEM207-1

In this course, the student completes the general chemistry course (CHEM 102) and continues to learn about the principles of general chemistry, especially the principles of physical chemistry.

5. Pre-requirements for this course (if any):

CHEM102-3

6. Co-requisites for this course (if any):

CHEM207-1

7. Course Main Objective(s):

- 1- Studying gases and their properties, understand their laws, and perform mathematical calculations related to them.
- 2- Identifying liquids and solids and differentiating between their properties.
- 3- Studying solutions, their types, and methods of preparing them to understand their physical properties and how to measure them.
- 4- Identifying chemical and ionic equilibrium and the factors affecting them.
- 5- Familiarity with the principles and foundations of electrochemistry and understanding redox reactions.
- 6- Understanding the basics of thermochemistry to distinguish between thermal energy reactions accompanying chemical reactions.
- 7- Understanding the principles of kinetic chemistry and using them to predict the speed of a chemical reaction.
- 8- Studying the principles of surface chemistry and catalysis and their role in increasing or decreasing the speed of a chemical reaction.
- 9- Identifying the principles of nuclear and radiation chemistry.
- 10- Studying the principles of polymer chemistry and understand its different types.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	$(3 \times 15)45$	100%
2	E-learning		
	Hybrid		
3	Traditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and understanding; \(\eta \)	Upon completion	of the course, students are able to:		
1.1	Demonstrate an introductory knowledge in solution, chemical kinetics, thermodynamics, oxidation -reduction,etc (I)	K(1)	lecture / discussion Seminars /presentation	Objective question	
1.2	Describe the essential facts, principles and theories related to thermodynamics, kinetics, solution chemistry,etc. (I)	K(2)	lecture / discussion / Seminars /Individual presentation	Essay question	
2.0	Skills; Upon completion of the course, students are able to:				

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.1	Demonstrate the knowledge and skills required to solve problems in the kinetic, colligative properties, thermodynamics, thermochemistry,etc (I) (P)	S(1)	lecture / discussion / Seminars /Individual presentation	Solving Problems & chart analysis

C. Course Content

No	List of Topics	Contact Hours
1.	Atomic and Molecular structure	6
2.	Acids and Bases	6
3.	Chemical kinetics	6
4.	Redox reactions and Electrochemistry	6
5.	Solutions	6
6.	Chemistry and Ecology	6
7.	Thermochemistry and Thermodynamics	6
8.	Revision	3
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Periodic Exams	During Semester	30%
2.	Assignments & Classroom Activities	During Semester	20%
6.	Final Exam (sheet + practical)	16-17	50%
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References

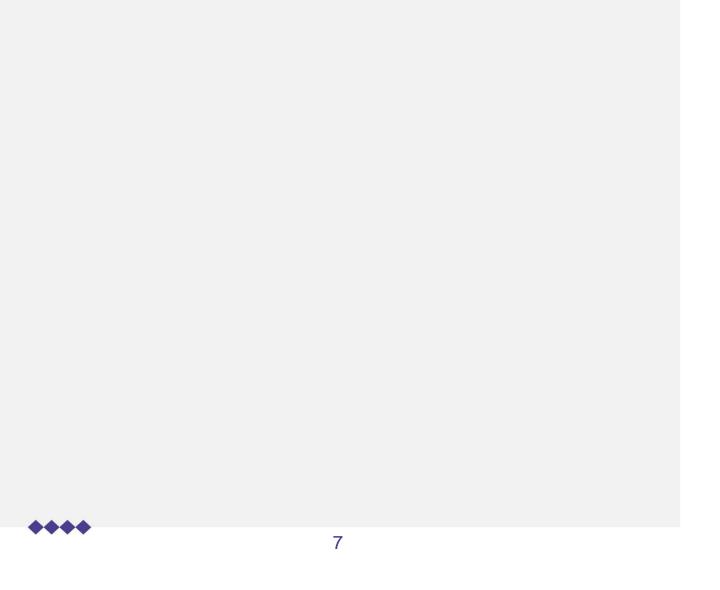
-الكيمياء العامة المفاهيم الاساسية و ريموند تشانغ , العبيكان للنشر 2006,

	Raymond Chang, General Chemistry: The Essential Concepts 5th Edition 2018, ISBN-13: 978-0073311852
Supportive References	 -Physical Chemistry ,Peter Atkins, Julio de Paula, Julio DePaula W. H. Freeman, - 2005. - Physical Chemistry, 4th Edition Robert J. Silbey. Robert A. Alberty. Moungi G. Bawendi v. TM. Cambridge, Massachusetts. January 2004
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	 https://learn.saylor.org/course/CHEM101 https://chem.libretexts.org/Bookshelves/General_Chemistry https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query=physical+chemistry&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms,
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality


Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of Students' assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physical Sciences Department Council
REFERENCE NO.	Meeting (3)
DATE	12/03/2024 -02/09/1445

