

Course Specification (Postgraduate Programs)

Course Title: Nuclear Structure and Spectroscopy

Course Code: PHYS650

Program: Master of Science in Physics

Department: Physical Sciences

College: Science

Institution: Jazan University

Version:

Last Revision Date: 20/4/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	6
D. Students Assessment Activities:	7
E. Learning Resources and Facilities:	7
F. Assessment of Course Quality:	8
G. Specification Approval Data:	8

A. General information about the course:

1. Course Identification:

1. Credit hours: (3 hours)					
2. 0	ourse type				
Α.	□University	□College	□ Department	□Track	
В.	☐ Required		\boxtimes	Elective	
3. L	evel/year at wh	ich this course i	s offered: (leve	el 2 or 3/ year 1 c	or 2)
4. (Course general D	Description:			
This course is designed to provide knowledge and understanding of the properties of nuclei and current experimental techniques at a level appropriate to postgraduate research.					
and	current experime	ental techniques at	a level appropri	ate to postgraduate	e research.
	•	ental techniques at es for this course		ate to postgraduate	e research.
	•	•		ate to postgraduate	e research.
	•	•		ate to postgraduate	e research.
	•	•		ate to postgraduate	e research.
5. P	re-requirement	•	e (if any): Non	ate to postgraduate	e research.

7. Course Main Objective(s):

The main objectives of this course are focused on the following:

- 1. Outline the single-particle aspects of the properties of nuclei.
- 2. Describe the experimental techniques used to measure the properties of nuclei.
- 3. Discuss the collective properties of nuclei
- 4. Explain the nuclear structure under the different nuclear models and especially the shell model.
- 5. Evaluate the importance of laser spectroscopy, γ -ray spectroscopy and the experimental techniques.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100%

No	Mode of Instruction	Contact Hours	Percentage
2	E-learning		
3	HybridTraditional classroomE-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding able to	ng: Upon completin g	g the course stud	ents will be
1.1	Describe the nuclear structure, nuclear models, types of mechanisms of nuclear reactions, nuclear angular momentum, nuclear electric quadrupole moment, shell model and liquid drop model	PLO1.1	Lectures, discussion	Direct: In class interactive questioning, quizzes, written exams Indirect: student survey
1.2	Identify relationships relevant to ground state spins and parities , pairing, nuclear	PLO1.1		Direct: In class interactive questioning,

Code	Course Learning Outcomes	Code of CLOs aligned with	Teaching Strategies	Assessment Methods
	moments, nuclear deformation.	program	Lectures, discussion	quizzes, written exams Indirect: student survey
1.3	Discuss nuclear magnetic moments: single-particle model and nuclear quadrupole moments.	PLO1.2	Lectures, discussion	Direct: In class interactive questioning, quizzes, written exams
				survey
2.0	Skills: Upon completing the	course students will	be able to	
2.1	Apply gamma spectra analysis method: to deduce the energy configuration	PLO2.1	Lectures, discussion	Direct: In class interactive questioning, quizzes, written exams Indirect: student survey
2.2	Solve problems related to topics of Liquid drop model, spins and parities, nuclear potential and collective aspects	PLO2.1	Lectures, discussion	Direct: In class interactive questioning, quizzes, written exams Indirect: student survey
3.0	Values, autonomy, and response	onsibility: Upon com	pleting the cours	e students will
3.1	Adopt some practices of self and long-life learning in the field of nuclear structure and its important applications through some essays and case studies	PLO3.2	Group activities	Group assignments, discussion Indirect: student survey

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods

C. Course Content:

No	List of Topics	Contact Hours
1	Review of the properties of nuclei: -Describe some introductory terminology -Use a nuclear symbol to express the composition of an atomic nucleus -Review nuclear properties	9
2	Nuclear models : Liquid drop model, Fermi gas, deviance of the nuclear structure, Shell model (in more details). Single-particle aspects. The nuclear potential and single-particle levels.	9
3	The filling of shells: ground state spins and parities; pairing.	7.5
4	Nuclear magnetic moments and nuclear quadrupole moments : single-particle model and experiment, nuclear quadrupole moments of single-particle states and experimentally observed deviations, multi-particle configurations and residual interactions.	7.5
5	Collective states	6
6	Spectroscopy and analysis techniques : Vibrations of spherical nuclei. Residual interactions correlations- deformation. Rotations and vibrations of deformed even-even nuclei. Nilsson model. Rapidly rotating nuclei: moments of inertia, pairing, alignment, super deformation. Laser spectroscopy, γ-ray spectroscopy. Ge detectors; γ-ray arrays; coincidence techniques. The measurement of excited state lifetimes. Internal conversion.	6
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1	Assignments and Classroom Activities	3,7,10,13	20
2	Quizzes	4,8	10
3	Mid Term Exams	6, 12	20
4	Final Exam	16	50

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources:

Essential References	Introductory Nuclear Physics, 3rd Edition, Kenneth S. Krane, ISBN: 978-0-471-80553-3, November1987, ©1987 Nuclear Structure From A Simple Perspective, R. F. Casten, ISBN 0-19-504599-8 Published by Oxford University Press, Inc., 1990 Radiation detection and measurement, 4 th Edition, Glenn F Knoll, ISBN: 978-0-470-13148-0, Publisher: John Wiley & Sons, Inc., 2010
Supportive References	Nuclear Physics: Principles and Applications, 3rd Edition, John Lilley ISBN: 978-0-471-97935-7, April 2001 The elements of Nuclear Power, Bennet, D.J.: Thomson, J.R., ISBN 13:9780582022249, Publisher: Longman, 1989
Electronic Materials	http://hyperphysics.phy-astr.gsu.edu http://www.wikipedia.org/
Other Learning Materials	

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities	
(Classrooms, laboratories, exhibition rooms,	Lecture room(s) for groups of 10 students
simulation rooms, etc.)	
Technology equipment	Smart board each for groups of 10 students
(Projector, smart board, software)	
Other equipment	
(Depending on the nature of the specialty)	

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Peer and program leader	Indirect (CES)-Indirect peer evaluation
Effectiveness of students assessment	Students, Program assessment committee	Direct/Indirect
Quality of learning resources	Students, Faculty members	Indirect
The extent to which CLOs have been achieved	Instructor	Direct/Indirect
Strategies for Obtaining	Student Feedback	Student assessment of Teaching Quality (NCAAA form).
Processes for Improvement of Teaching	Faculty members	Revision of course contents, course specifications, and teaching strategies every 5 years

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Department Council
REFERENCE NO.	Psci2415
DATE	1/10/2024

