

— (Postgraduate Programs)

Course Title: Quantum Mechanics

Course Code: PHYS603

Program: Master of Science in Physics

Department: Physical Sciences

College: Science

Institution: Jazan University

Version:

Last Revision Date: 20/4/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	5
C. Course Content:	7
D. Students Assessment Activities:	8
E. Learning Resources and Facilities:	8
F. Assessment of Course Quality:	9
G. Specification Approval Data:	9

A. General information about the course:

4					•
1	Course		IDNTII	ICST	ınn:
	Course	ıu		ICat	ivii.

1. C	1. Credit hours: (3)				
2. C	ourse type				
A.	□University	□College	☑ Department	□Track	
В.	⊠ Required		□Elect	ive	
3. L	evel/year at wh	ich this course	is offered: (Leve	l 2 /year 1)	
This of qu phys trans quar to so	4. Course general Description: This course is designed to establish the foundation of quantum mechanics starting with the axioms of quantum mechanics in finite and infinite dimensional vector spaces and their applicability to physics examples such as spin, position and momentum. The course then develops the use of unitary transformation and its essential role in deriving the commutation relations of various physical quantities. The course also addresses the quantum dynamics and provides the essential techniques to solve various physical systems. The theory of angular momentum is extensively studied in view of rotational symmetry, orbital angular momentum, Schrodinger's equation for central potentials, addition of angular momenta and tensor operators.				
5. Pre-requirements for this course (if any): Non					
6. Co-requirements for this course (if any): Non					
7. C	ourse Main Obj	ective(s):			

The main objectives of this course are focused on the following:

- 1. Design vector spaces related to the physical quantities of interest in both Dirac representation and matrix representation.
- 2. Perform essential calculations such as expectation values, commutation relations and uncertainty relations.
- 3. Discuss the role of symmetry and unitary transformation in physics in general and in quantum mechanics in particular such as in deriving the commutation relation and comparing them to their classical analogues when existed, the time evolution of a quantum system.

- 4. Solve the eigenvalue problems for various quantum mechanical systems such as a particle in a box, the harmonic oscillator and the hydrogen atom, addition of angular momenta problems.
- 5. Distinguish between Schrödinger and Heisenberg pictures while studying the dynamics of quantum systems.
- 6. Perform commutation relations for angular momenta operators including spin.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100
2	E-learning		
	Hybrid		
3	 Traditional classroom 		
	E-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understandin	g: Upon completing th	e course student	s will be able to
1.1	Write down the matrix representation of a given state or observable, the uncertainty relation for a pair of physical quantities such as spins, position, momentum, energy and time, the quantum interpretation for probability and measurements and the equation of motion for a quantum state that evolves with time.	PLO1.1	Lectures and discussion	Direct: In class interactive questioning, quizzes, written exams Indirect: student survey
1.2	Describe the necessity for complex vector spaces and Hermitian operators in quantum mechanics, the conservation of some quantum quantities under unitary transformation, the difference between the Heisenberg picture and the Schrödinger picture.	PLO1.1	Lectures and discussion	Direct: In class interactive questioning, quizzes, written exams Indirect: student survey
2.0	Skills: Upon completing the co	ourse students will be	able to	
2.1	Estimate the eigenvalues and the eigenstates for various quantum systems, the expectation values of various quantum mechanical observables including but limited to spins, angular momenta, position, momentum and energy.	PLO2.1	Lectures and discussion	Direct: In class interactive questioning, quizzes, written exams Indirect: student survey

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.2	Show that the uncertainty relations hold for various pairs of quantum observables including but not limited to spins, angular momenta, position and momentum and that a particular quantum observable or quantity is a constant of motion.	PLO2.1	Lectures and discussion	Direct: In class interactive questioning, quizzes, written exams Indirect: student survey
2.3	Prove that a given observable is unitary, Hermitian or otherwise, a particular quantity is a constant of motion and given more than one observable, there exist a set of simultaneous eigenstates and if they have same spectra.	PLO2.1	Lectures	Direct: In class interactive questioning, quizzes, written exams Indirect: student survey
2.4	Explain why some quantum quantities are constant of motion, how a quantum state evolves under some unitary transformation, weather a given state is an eigenstate of a given observables and why a set of eigenstates is discrete or continuous.	PLO2.1	Lectures	Direct: In class interactive questioning, quizzes, written exams Indirect: student survey
2.5	Demonstrate how to solve eigenvalue problems and plot the corresponding wavefunctions using programming techniques.	PLO2.3	Hands on Tutorials	Direct: In class interactive questioning, quizzes, written exams, Submitted reports. Indirect: student survey
3.0	Values, autonomy, and respo able to	nsibility: Upon comple	ting the course s	tudents will be

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.1	Demonstrate abilities in individual assigned tasks as well as in working as a team with others.	PLO3.3	Active learning, In class discussion	Group assignments, discussion, submitted reports
3.2				
•••				

C. Course Content:

No	List of Topics	Contact Hours
1.	 The Stern-Gerlach Experiment. Kets, Bras, and Operators. Base Kets and Matrix Representations. 	4.5
2.	Measurements, Observables, Uncertainty Relations.Change of Basis.	4.5
3.	Position, Momentum, and Translation.Wave Functions in Position and Momentum Space.	4.5
4.	Time Evolution and the Schrodinger Equation.	4.5
5.	The Schrodinger Versus the Heisenberg Picture.	4.5
6.	Simple Harmonic Oscillator.Schrödinger Wave Equation.	4.5
7.	Elementary Solution to the Schrodinger equation: Various Examples.	4.5
8.	 Rotations and Angular Momentum Commutation Relations. Spin 1/2 Systems in Finite Rotation. 	4.5
9.	 SO(3), SU(2) and Euler Rotations. Density Operators and Pure Versus Mixed Ensembles. 	3
10.	Eigenvalues and Eigenstates of Angular Momentum.Orbital Angular Momentum.	3
11.	 Schrodinger's Equation for Central Potentials. Addition of Angular Momenta. Tensor Operators. 	3
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework	2	4
2.	Homework	4	4
3.	Homework	6	4
4.	First Midterm Exam	6	10
5.	Submitted Report	7	5
6.	Homework	8	4
7.	Homework	10	4
8.	Submitted Report	11	5
9.	Second Midterm Exam	12	10
10	Final Exam	16	50

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	J. J. Sakurai and Jim J. Napolitano, Modern Quantum Mechanics, (3 rd edition, Cambridge University Press, 2021).		
Supportive References	 Leslie E Ballentine, Quantum Mechanics: a Modern Developmer (2nd edition, World Scientific, 2014). Ramamurti Shankar, Principles of Quantum Mechanics, (2nd editio Kluwer Academic, 1994). 		
Electronic Materials			
Other Learning Materials			

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms
Technology equipment (Projector, smart board, software)	Smart boards

Items	Resources
Other equipment (Depending on the nature of the specialty)	None

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Peer and program leader	Indirect (CES)- Indirect peer evaluation
Effectiveness of students assessment	Students, Peer and program leader	Indirect (CES)- Indirect peer evaluation
Quality of learning resources	Students, Faculty members	Indirect
The extent to which CLOs have been achieved	Instructor	Direct/ Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Department Council
REFERENCE NO.	Psci2415
DATE	1/10/2024

