Course Title	Course	Number of Study Hours				Vear	Level	
	Code	Theo.	Lab.	Credit	ECTS	rear	Lovet	Prerequisites
Nuclear Structure and Spectroscopy	PHYS650	3	-	3	9	1st/ 2nd	2nd/ 3rd	-

Student's workload								
In-class activities	Contact Hours		Self-learning/study	Hours				
Lectures	45		Preparation for classes	90				
Laboratory	-		Case studies	-				
Exams and quizzes	5		Working on lab experiment	-				
Lab demo	-		HW/Assignments	32				
		•	Study for exam	70				
Total	50		Total	192				
Total Learning Hours = 242			Equivalent ECTS points = Total LH/28 = 9					

BRIEF COURSE DESCRIPTION

• This course is designed to provide knowledge and understanding of the properties of nuclei and current experimental techniques at a level appropriate to postgraduate research.

COURSE OBJECTIVES

The main objectives of this course are focused on the following:

- 1. Outline the single-particle aspects of the properties of nuclei.
- 2. Describe the experimental techniques used to measure the properties of nuclei.
- 3. Discuss the collective properties of nuclei
- 4. Explain the nuclear structure under the different nuclear models and especially the shell model.
- 5. Evaluate the importance of laser spectroscopy, γ -ray spectroscopy and the experimental techniques.

COURSE CONTENTS

- Review of the properties of nuclei: Describe some introductory terminology,
 Use a nuclear symbol to express the composition of an atomic nucleus,
 Review nuclear properties.
- Nuclear models: Liquid drop model, Fermi gas, deviance of the nuclear structure, Shell model (in more details). Single-particle aspects. The nuclear potential and single-particle levels.
- The filling of shells: ground state spins and parities; pairing.
- Nuclear magnetic moments and nuclear quadrupole moments: single-particle model and experiment, Nuclear quadrupole moments of single-particle states and experimentally observed deviations, Multi-particle configurations and residual interactions.
- Collective states.
- Spectroscopy and analysis techniques: Vibrations of spherical nuclei. Residual interactions correlations- deformation. Rotations and vibrations of deformed even-even nuclei. Nilsson model. Rapidly rotating nuclei: moments of inertia, pairing, alignment, super deformation. Laser spectroscopy, γ-ray spectroscopy. Gedetectors; γ-ray arrays; coincidence techniques. The measurement of excited state life times. Internal conversion.

ASSESSMENT CRITERIA

- Mid-Term exam and Quizzes: 30 %
- Assignments and classroom activities: 20 %
- Final Exam: 50%

COURSE TEACHING STRATEGIES

• Lectures, Discussion and group activity.

TEXT BOOK

- K. S. Krane, Introductory Nuclear Physics, 3rd Edition, ISBN: 978-0-471-80553-3, November1987, ©1987
- R. F. Casten, Nuclear Structure From A Simple Perspective, ISBN 0-19-504599-8Published by Oxford University Press, Inc., 1990
- G. F. Knoll, Radiation detection and measurement, 4th Edition, ISBN: 978-0-470-13148-0, Publisher: John Wiley & Sons, Inc., 2010

REFERENCE BOOKS

- J. Lilley, Nuclear Physics: Principles and Applications, 3rd Edition, ISBN: 978-0-471-97935-7, April 2001
- D.J. Bennet, J. R. Thomson, The elements of Nuclear Power, ISBN 13:9780582022249, Publisher: Longman, 1989.