Course Title	Course Code	Number of Study Hours				. Year	Level	
		Theo.	Lab.	Credit	ECTS	roui	Lovet	Prerequisites
Quantum Optics	PHYS621	3	-	3	9	1st/ 2nd	2nd/ 3rd	-

Student's workload								
In-class activities	Contact Hours		Self-learning/study	Hours				
Lectures	45		Preparation for classes	120				
Laboratory	-		Case studies	-				
Exams and quizzes	5		Working on lab experiment	-				
Lab demo	-		HW/Assignments	40				
			Study for exam	36				
Total	50		Total	196				
Total Learning Hours = 246			Equivalent ECTS points = Total LH/28 = 9					

BRIEF COURSE DESCRIPTION

This course is designed to provide the semiclassical description of EM field as well
as its quantum mechanical quantization. It treats the optical cavity, optical
coherence, interferometry and photo detection using quantum mechanical
operators. It also considers atom-field interaction, Jaynes-Cummings model,
analyses of open quantum mechanical systems as well as discrete system.

COURSE OBJECTIVES

The main objectives of this course are focused on the following:

- 1. Analyze some semiclassical descriptions as well as quantization of EM.
- 2. Discuss the basics of mixed and pure optical quantum states and their calculation.
- 3. Formulate mathematical derivation of quantum states and their representations as well as their measurements.
- 4. Analyze the atom-light interaction using semi-classical and quantum mechanical approaches.
- 5. Describe various quantum systems, optical processes and quantum electrodynamics.
- 6. Solve problems related to quantum state and quantum electrodynamics.

COURSE CONTENTS

- Field quantization
- Coherent states
- Atom-field interactions
- Quantum coherence functions
- Beam splitters and interferometers
- Nonclassical light
- Dissipative interactions and decoherence.
- · Optical test of quantum mechanics
- Experiments with trapped ions and atoms

ASSESSMENT CRITERIA

• Mid-Term exam and Quizzes: 30 %

- Assignments and classroom activities: 20 %
- Final Exam: 50%

COURSE TEACHING STRATEGIES

 Lectures, Problem Based Teaching, Interactive Discussions, tutorials, Expository and Discovery, and Interactive Discussions.

TEXT BOOK

 C. C. Gerry and P.L. Knight, Introductory Quantum Optics, 2nd ed. Cambridge University Press; 2023

REFERENCE BOOKS

- M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge University Press, 1997).
- R. Loudon, The Quantum Theory of Light, 3rd edition, (Oxford Science Publications,2000).
- G. Grynberg, A. Aspect, C. Fabre, Introduction to Quantum Optics, (Cambridge Univ. Press, 2010).
- Z. Ficek and S. Swain, Quantum Interference and Coherence, Theory and Experiments, (Springer, New York, 2005)
- P. Rice, an introduction to Quantum Optics, IOP Publishing Ltd, 2020.