

Course Specification

- (Postgraduate Programs)

Course Title: Computational Physics

Course Code: PHYS610

Program: Master of Science in Physics

Department: Physical Sciences

College: Science

Institution: Jazan University

Version:

Last Revision Date: 20/4/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	6
D. Students Assessment Activities:	7
E. Learning Resources and Facilities:	7
F. Assessment of Course Quality:	8
G. Specification Approval Data:	8

A. General information about the course:

4				 	•
1	Course	או ב	anı	COL	ınn:
4.	Course	5 IU		 Lat	IVII.

1. 00	urse identificati	OII.				
1. C	redit hours: (3)					
2. C	ourse type					
A.	□University	□College	☑ Department	□Track		
В.	☐ Required		⊠ Electi	ve		
3. L	evel/year at wh	ich this course	is offered: (Level	2 or 3/ year 1 or 7	2)	
4. C	ourse general D	escription:				
as we and I and I energ	The course is designed to use the computer as a powerful tool to solve and understand some physical problems as well as in other related fields using both numerical methods. Numerical methods such as Fortran language and MATLAB software will be applied. Also, the simulation and modeling programs (as free <u>NWChem</u> package and free Hyper Chem modeler) are used to model, and predict the properties of real materials at different energy levels: Density-functional theory, Hartree-Fock, Monte Carlo sampling and molecular dynamics simulations.					
5. P	re-requirement	s for this cours	e (if any): Non			
6. C	o-requirements	for this course	e (if any): Non			
7. C	ourse Main Obj	ective(s):				

7. Course Main Objective(s)

The main objectives of this course are focused on the following:

- Investigate some physical phenomena using numerical program language such as Fortran language.
- Investigate some physical phenomena using numerical program software such as MATLAB software.
- Apply modeling program to solve some physical problems.
- Apply simulation program to solve some physical problems.
- Obtain and Predict properties of some real materials

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	30	66%
2	Laboratory/Studio	30	34%
3	E-learning		
4	HybridTraditional classroomE-learning		
5	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning	Code of CLOs aligned	Teaching	Assessment
Code	Outcomes	with program	Strategies	Methods
1.0	Knowledge and under	rstanding: Upon completi	ng the course student	ts will be able to
1.1	Discuss the numerical method as Fortran language, Interpolation and extrapolation,	PLO1.2	Lectures, discussion	Direct (formative and summative): In class interactive questioning,

	Course Learning	Code of CLOs aligned	Teaching	Assessment
Code	Outcomes	with program	Strategies	Methods
	numerical integration and differentiation, Random numbers,			quizzes, written exams
	Ordinary differential equations and available modelling program.			Indirect: student survey
2.0	Skills: Upon completing	g the course students wil	ll be able to	
2.1	Use Fortran language to write a short Fortran program for certain physical problems	PLO2.1	Lectures, discussion, Tutorial	Direct (formative and summative): In class interactive questioning, quizzes, written exams
				Indirect: student survey
2.2	Apply the Fortran program to solve non-linear equation and eigenvalues problems.	PLO2.2	Lectures, discussion, Tutorial	Direct (formative and summative): In class interactive questioning, quizzes, written exams
				Indirect: student survey
2.3	Calculate some physical properties as energy gap, density of states using available modeling programs.	PLO2.3	Lectures, discussion, Tutorial	Direct (formative and summative): In class interactive questioning, quizzes, report, written exams Indirect: student
				survey
2.4	Analyze the data and draw proper conclusions using computer software	PLO2.3	Lectures, discussion, Tutorial	Direct (formative and summative): In class interactive questioning,

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
				quizzes, report, written exams Indirect: student survey
3.0	Values, autonomy, an able to	d responsibility: Upon co	mpleting the course	students will be

C. Course Content:

1. Theory Part:

No	List of Topics	Contact Hours
1.	Review on basic numerical methods; Interpolation and extrapolation, numerical integration and differentiation, Random numbers, Ordinary differential equations	10.5
2.	Introduction to numerical methods (as Fortran language) and write a simple Fortran program.	9
3	Introduction to modelling and simulation programs (available package).	10.5
	Total	30

2. Experimental Part

No	List of Topics	Contact Hours
1	Apply numerical methods (as Fortran language) to solve some physical problems as non-linear equation, eigenvalues problems and ordinary differential equation.	12
2	Apply modeling and simulation programs (available package) at different levels of theories (as Density-functional theory and Hartree- Fock) to obtain some physical properties as energy gap, density of states and spectra.	18
	Total	30

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	mid-term exam and quizzes	6	20
2.	Activities (home-works, tests, class activities)	Over the semester	10
3.	Lab work /exam	15	20
4.	Final Exam	16	50

Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	Benjamin A. Stickler and Ewald Schachinger, Basic Concepts in Computational Physics, 2 nd edition, (Springer 2016).
Supportive References	 J.M. Thijssen, Computational Physics, 2ndedition,(Cambridge University Press, 2007). William H. Press et al, Numerical Recipes,The Art of Scientific Computing, 3rdedition, (Cambridge University Press, 2007) H. Gould, J. Tobocnik, and W. Christian, Introduction to Computer Simulation Methods, (Addison Wesley 2007).
Electronic Materials	
Other Learning Materials	

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Class room
Technology equipment (Projector, smart board, software)	Data show- smart boar
Other equipment (Depending on the nature of the specialty)	None

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Peer and program leader	Indirect (CES)- Indirect peer evaluation
Effectiveness of students assessment	Students, Program assessment committee	Direct/ Indirect
Quality of learning resources	Students, Faculty members	Indirect
The extent to which CLOs have been achieved	Instructor	Direct/ Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Department Council
REFERENCE NO.	Psci2415
DATE	1/10/2024

