Course Title	Course Code	Number of Study Hours				Vear	Level	
		Theo.	Lab.	Credit	ECTS	rear	Lovet	Prerequisites
Statistical Mechanics	PHYS604	3	-	3	8	1st	2nd	-

Student's workload								
In-class activities	Contact Hours		Self-learning/study	Hours				
Lectures	45		Preparation for classes	106				
Laboratory	-		Case studies	-				
Exams and quizzes	5		Working on lab experiment	-				
Lab demo	-		HW/Assignments	25				
			Study for exam	48				
Total	50		Total	179				
Total Learning Hours = 229			Equivalent ECTS points = Total LH/28 = 8					

BRIEF COURSE DESCRIPTION

• This course covers topics such as Review of classical physics: basic idea of statistics and thermodynamics; Kinetic theory of gas: phase space representation, Liouville's theorem, statistical ensembles, relation with thermodynamics, partition function, application of partition function, equipartition theorem; Quantum statistical mechanics: density matrix, expectation value, statistical ensembles, quantum statistical formulations, Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics, idea gas (ideal Bose and ideal Fermi), relation with statistics.

COURSE OBJECTIVES

1. The main objectives of this course are focused on the following:

- 2. Apply the basic relation of statistical and thermodynamic concepts in both classical and quantum regimes.
- 3. Distinguish between the interpretations in terms of classical and quantum statistical mechanics.
- 4. Perform relevant parameters using the methods of statistical mechanics.
- 5. Describe the theoretical and mathematical background of statistical mechanics.
- 6. Apply methods of statistical mechanics to study physical systems.

COURSE CONTENTS

- Short review of statistical physics: Review of preliminary concepts and description of systems in statistical mechanics, correlations, central limit theorem.
- Kinetic theory of gas: Kinetic theory, phase space, Liouville's theorem, the Boltzmann equation, transport phenomena; Classical statistical mechanics, phase space dynamics and entropy, the micro-canonical ensemble, canonical and grand-canonical ensembles, equi-partition theorem, Maxwell-Boltzmann distribution.
- Quantum statistical physics: Quantum statistical Mechanics, quantization effects, Bose-Einstein and Fermi-Dirac statistics, density matrix formulation, quantum gases, Fermi liquids, Bose condensation.

ASSESSMENT CRITERIA

• Mid-Term exams: 30 %

Assignments, classroom activities: 20 %

Final Exam: 50%

COURSE TEACHING STRATEGIES

 Lectures, Discussion, Tutorial, Expository and Discovery, and Interactive Discussions.

TEXT BOOK

 R. K. Pathria and P. D. Beale, Statistical Mechanics, (Butterworth-Heinemann, 2011).

REFERENCE BOOKS

- M. Kardar, Statistical Physics of Particles (Cambridge University Press, 2007).
- D. A. McQuarrie, Statistical Thermodynamics (University Science Book 2000).
- K. Huang, Statistical Mechanics, 2nd edition (John Wiley and Sons, 1987).