

TT404

Course Specification

Course Title: Hydraulics and Pneumatics

Course Code: 233MMET

Program: Mechanical Maintenance Engineering Technology

Department: Mechanical Engineering Technology

College: College of Applied Industrial Technology

Institution: Jazan University

Version: V2022

Last Revision Date: 03-03-2024

Table of Contents:

Content	Page
A. General Information about the course	3
 Teaching mode (mark all that apply) Contact Hours (based on the academic semester) 	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Student Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and Equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7

A. General information about the course:

Co	urse Identificati	on			
1.	Credit hours:	2CR hours			
2.	Course type				
a.	University □	College □	Departn	nent √ Track□	Others□
b.	Required $\sqrt{}$	Elective□			
	Level/year at wl ered: Fifth level	hich this course / 2 nd Year	is		
4. (Course general	Description			
This course is directed to study the principles of operation, and calculation of fluid power systems					
(hydraulics and pneumatics). In addition, special attention will be paid to cover the construction,					
	troubleshooting and maintenance of fluid power systems and their industrial applications. Also, the course will cover a good theoretical base of fluid power systems which enables the further analysis				
	of the static and dynamic performance of different elements of fluid power systems. Together with				
the theoretical study, the course includes the different case studies of typical industrial circuits.					
Laboratory sessions involving the use of computers for simulation and analysis of different systems					
	and individual elements performance are used. The course is introduced through two classes				
weekly. They are: 1 class (1 hour) for the theoretical part and 2 hours class for laboratory for which					
	students apply and implement the concepts of the lectures.				
5.	Pre-requiremen	ts for this cours	e (if any)	241MMET Applied	l Thermodynamics

6. Co- requirements for this course (if any): Nil

7. Course Main Objective(s)

Fluid power is the technology that deals with the generation, control and transmission of forces and movement of mechanical element or system with the use of pressurized fluids in a confined system. Both liquids and gases are considered fluids. Fluid hydraulic employs pressurized liquid/oils, and pneumatic employs compressed air that is released to the atmosphere after performing the work.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	33	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	11
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	33

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Explain the basic principles and applications of fluid power systems with definition of the their basic components (air compressors, reciprocating compressor, horizontal, radial split case centrifugal pump, gear pump, diaphragm pump, piping, fittings, and different types of valves).	K1.2	Lecture, active learning, discussion	Quizzes, Assignments, tutorials & exams
	01:11			
2.0	Skills			
2.1	Generalize and interpret piping and instrumentation (P&ID) diagram and standards	S11	Lecture, active learning, discussion	Quizzes, Assignments, tutorials & exams
2.2	Decide test, and maintain various components of hydraulic and pneumatic systems (air compressors, reciprocating compressor, horizontal, radial split case centrifugal pump, gear pump, diaphragm pump, piping, fittings, and different types of valves).	S4.1	Lecture, active learning, discussion	Quizzes, Assignments, tutorials & exams

Code	Course Learning Outcomes	Code of CLOs aligned with	Teaching Strategies	Assessment Methods
2.3	Evaluate the well defined technical problems to calculate the extension force of a cylinder, and changes in pressure and volume using Pascal's law and Boyles law	program S1.1	Lecture, active learning, discussion	Quizzes, Assignments, tutorials & exams
2.4	Combine the rules and principles and prepare well organized document for 'Safety and Health Guidelines' when using hydraulic/pneumatic circuits and design the variety of pneumatic circuits including regenerative circuits, speed control circuits, fail-safe circuit and flow control circuit.	S2.2, S3.3	Lecture, active learning, discussion	Quizzes, Assignments, tutorials & exams
3.0	Values, autonomy, and respons	ibility		
3.1	Summarize the issues of various electrical control devices for fluid power systems like push button switches, limit switches, pressure switches, temperature switches, solenoids, ladder diagram, relays and timers related to engineering technology	V2.1	Lecture, active learning, discussion	Quizzes, Assignments, tutorials & exams
3.2	Soft skills: Formulate the interpersonal skills and manage team work	V1.2	Lecture, active learning, discussion	Quizzes, Assignments, tutorials & exams

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to basic fluid power principles and theory. Occupational Safety and Health when using hydraulic and pneumatic circuits.	6

2	Introduction to pumps and air compressors, reciprocating compressor, air treatment and pressure regulation and state of their uses and principle of operation	6
3	Understand and interpreting piping and instrumentation (P & ID) diagram	6
4	Identifying valves and control valves and actuators with uses and symbols	6
5	Hydraulic and pneumatic accessories (piping and fittings)	6
6	Testing, fault finding and maintenance for several types of valves. Sequence applications	Self Study
7	Revision of course material	3
	Total	33

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes	As schduled	10%
2.	Midterm	7 th week	15%
3.	Self study report	3 rd week	10%
4	Assignments, Tutorials	All weeks	10%
5	Lab work, Lab Exam and Viva-Voce Exam	All Weeks	15%
6	Final Exam	As scheduled	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Introduction to Fluid Mechanics", R. Fox & A. McDonald, John Wiley, New York, 1985. "Fluid Power Control", J.R. Blackburn, G. Reethof, and J.L. Shearer, The MIT Press, Cambridge, MA, 1960.
Supportive References	 Classroom policy "Hydraulics and Pneumatics: A Technician's and Engineer's Guide", Andrew Parr, 3rd edition, Butterworth-Heinemann, 2011. "Control of Fluid Power", D. McCloy& H.R. Martin, 2ndEdition, John Wiley, New York, 1980 "Hydraulics and Pneumatics", Dr.V.Jayakumar, Lakshmi Publications, India, 2016 (2006).

Electronic Materials

- https://www.youtube.com/watch?v=5KCzOHQdKPI
- https://www.youtube.com/watch?v=6Zvm-lpMuQ8

Other Learning Materials

2. Required Facilities and equipment

Items	Resources	
	Classrooms should be furnished with	
	 White board and appropriate Chairs 	
facilities (Classrooms, laboratories, exhibition rooms,	 Laboratory equipped with, but not limited to: 	
simulation rooms, etc.)	 Hydraulic and pneumatic training packages. Pascals' Law experimental set. 	
	3. Gauges for flow rate and pressure.	
	4. Piping and Instrumentation diagram	
Technology equipment (projector, smart board, software)	Digital board, Computer with data show	
Other equipment (depending on the nature of the specialty)	Not utilized	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Confidential student Course Evaluation Survey	Institution	Online Direct Survey
End of semester CLO	Course Coordinator	Direct Survey
Confidential student Course Evaluation Survey	Institution	Online Direct Survey
The extent to which CLOs have been achieved	Students	CLO survey, exams
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	MET
REFERENCE NO.	CAITMET20243
DATE	03-03-2024

