

# T-104 2022 Course Specification

Course Title: Applied Physics

Course Code: 191PHYS

Program: MMET, EPET, CHET

Department: **EPET** 

College: College of Applied Industrial Technology

Institution: Jazan University

Version: T-104-2022

Last Revision Date: 2023



# **Table of Contents:**

| Content                                                                                                         | Page |
|-----------------------------------------------------------------------------------------------------------------|------|
| A. General Information about the course                                                                         | 3    |
| <ol> <li>Teaching mode (mark all that apply)</li> <li>Contact Hours (based on the academic semester)</li> </ol> | 3    |
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods                                  | 4    |
|                                                                                                                 | 5    |
| C. Course Content                                                                                               |      |
| D. Student Assessment Activities                                                                                | 5    |
| E. Learning Resources and Facilities                                                                            | 5    |
| 1. References and Learning Resources                                                                            | 5    |
|                                                                                                                 | 6    |
| 2. Required Facilities and Equipment                                                                            |      |
| F. Assessment of Course Qualit                                                                                  | 6    |
| G. Specification Approval Data                                                                                  | 6    |





#### A. General information about the course:

| Со                                    | Course Identification         |           |             |        |         |
|---------------------------------------|-------------------------------|-----------|-------------|--------|---------|
| 1.                                    | Credit hours:                 | 2         |             |        |         |
| 2. Course type                        |                               |           |             |        |         |
| a.                                    | University □                  | College ⊠ | Department□ | Track□ | Others□ |
| b.                                    | Required ⊠                    | Elective□ |             |        |         |
| 3. Level/year at which this course is |                               |           |             |        |         |
| offered: One/First                    |                               |           |             |        |         |
| 4. (                                  | 4. Course general Description |           |             |        |         |

This course is designed to enable students to acquire sufficient knowledge in Physics relevant to applied technology of variety of paths. The course provides physics concepts and their applications in motion and forces, work and energy, electrostatic forces, electromagnetic, components of DC and AC circuits, as well as light and sound nature. Techniques, skills and modern computerized apparatus necessary to make laboratory measurements possible are adopted. Experiments in mechanics, electricity and magnetism are made to support the theory and to meet the needs of engineering technology programs as well as to familiarize students with team work.

- 5. Pre-requirements for this course (if any): None
- 6. Co- requirements for this course (if any): None

#### 7. Course Main Objective(s)

Students who study technical physics are prepared to work on forefront ideas in engineering technology. The course might focus on basic research in rigid body physics, matter physics, applied technology in areas such as materials science, energy, and electrostatic. The course also enhances the ability of technical students to be problem solvers by posting their analytical skills.

#### 1. Teaching mode (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1. | Traditional classroom                                                     | 3             | 100        |
| 2. | E-learning                                                                |               |            |
| 3. | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4. | Distance learning                                                         |               |            |

#### 2. Contact Hours (based on the academic semester)

| No | Activity | Contact Hours |
|----|----------|---------------|
| 1. | Lectures | 12            |



| 3. | Total             | 36 |
|----|-------------------|----|
| 5  | Others (specify)  |    |
| 4. | Tutorial          |    |
| 3. | Field             |    |
| 2. | Laboratory/Studio | 24 |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                               | Code of CLOs<br>aligned with<br>program | Teaching<br>Strategies                   | Assessment<br>Methods             |
|------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------|
| 1.0  | Knowledge and understanding                                                                                                            |                                         |                                          |                                   |
| 1.1  | Describe basic concepts of physics topics related manipulate units and their conversions with proper use of engineering notations      | K1                                      | Lecture,<br>tutorial, active<br>learning | Quizzes,<br>Assignments,<br>exams |
|      |                                                                                                                                        |                                         |                                          |                                   |
| 2.0  | Skills                                                                                                                                 |                                         |                                          |                                   |
| 2.1  | Solve physics problems related<br>to electrical, mechanical and<br>chemical engineering<br>technology using mathematical<br>algorithms | S1,S2                                   | Lecture,<br>tutorial, active<br>learning | Quizzes,<br>Assignments,<br>exams |
| 2.2  | Apply measuring, recording, and interpreting experimental data in a laboratory setting in order to verify physical principles          | S4                                      | Lab assignments                          | Lab exam                          |
| 3.0  | Values, autonomy, and respons                                                                                                          | ibility                                 |                                          |                                   |
| 3.1  | Demonstrate the ability to work independently and meet deadlines.                                                                      | V1                                      | Assignments                              | Participation in classroom        |
| 3.2  |                                                                                                                                        |                                         |                                          |                                   |
|      |                                                                                                                                        |                                         |                                          |                                   |



## C. Course Content

| No | List of Topics            | Contact Hours |
|----|---------------------------|---------------|
| 1. | Measurement               | 05            |
| 2. | Kinematics                | 05            |
| 3. | Motion and force          | 04            |
| 4. | Work, energy, and power   | 05            |
| 5. | Electrostatic             | 05            |
| 6. | Electromagnetic Induction | 07            |
| 7. | Materials                 | 05            |
|    | Total                     | 36            |

#### **D. Students Assessment Activities**

| No | Assessment Activities *                                | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|--------------------------------------------------------|--------------------------------------|-----------------------------------------|
| 1. | Class work activity/Class Interaction and presentation | All weeks                            | 10 %                                    |
| 2. | Homework                                               | 3th Week & 9 <sup>th</sup> week      | 10 %                                    |
| 3. | Mid-term Exam                                          | 6th Week to 7 <sup>th</sup> week     | 20 %                                    |
| 4. | Final Practical Exam                                   | 11 <sup>th</sup> week                | 20 %                                    |
| 5. | Final Term Exam                                        | As per scheduled                     | 40%                                     |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

#### **E.** Learning Resources and Facilities

#### 1. References and Learning Resources

| Essential References     | • Physics for Scientists& Engineers with Modern Physics; 7th edition, Serway, Saunders Gold Series, 2007. |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Supportive Deformance    | • University Physics; Young and Freedman, pearson, Addison Wesley, 11th edition, 2004.                    |  |
| Supportive References    | • Fundamentals of Physics; Halliday, Resnik and Walker, John Wiley and Sons Inc., 2007.                   |  |
| Electronic Materials     | Not utilized                                                                                              |  |
| Other Learning Materials | Not utilized                                                                                              |  |





### 2. Required Facilities and equipment

| Items                                                                           | Resources                                                                            |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | Classrooms should be furnished for 25 students with  White board  Appropriate Chairs |  |
| Technology equipment (projector, smart board, software)                         |                                                                                      |  |
| Other equipment (depending on the nature of the specialty)                      |                                                                                      |  |

# F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor           | Assessment Methods   |
|---------------------------------------------|--------------------|----------------------|
| Effectiveness of teaching                   |                    |                      |
| Effectiveness of students assessment        | Institution        | Online Direct Survey |
| Quality of learning resources               |                    |                      |
| The extent to which CLOs have been achieved | Course Coordinator | Direct Survey        |
| Other                                       |                    |                      |

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

# **G. Specification Approval Data**

| COUNCIL<br>/COMMITTEE | College of Applied Industrial Technology(CAIT) |
|-----------------------|------------------------------------------------|
| REFERENCE NO.         |                                                |
| DATE                  |                                                |

