

TT404

Course Specification

Course Title: Introduction to Engineering Material

Course Code: 113MMET

Program: Mechanical Maintenance Engineering Technology

Department: Mechanical Engineering Technology

College: College of Applied Industrial Technology

Institution: Jazan University

Version: V2022

Last Revision Date: 24/01/2023

Table of Contents:

Content	Page
A. General Information about the course	3
Teaching mode Contact Hours	4
B. Course Learning Outcomes, Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Student Assessment Activities	6
E. Learning Resources and Facilities	7
1. References and Learning Resources	7
2. Required Facilities and Equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	8

A. General information about the course:

Cou	ırse Identificatior	1				
1. C	Credit hours:	3				
2. C	ourse type					
a.	University □	College □	Depa	artment⊠	Track□	Others□
b.	Required ⊠	Elective□				
	Level/year at which ered: 3 rd Level/ 1 ^s					
	Course general De s subject deals	escription with the mater	ials c	ommonly use	ed in various	s engineering
app	olications and	manufacturing	proce	esses, differe	nces in con	nmonly used
me	tals, non-metal	ls, polymers, ce	erami	cs, and alloys	s. This is an	introductory
course which provides the basic theoretical and practical skills on materials						
science. The course contents may include definition of basic terms used in						
materials science, types of materials and structures, materials properties,						
phy	sics and chen	nistry principle:	s rela	ated to mat	erials struct	cure to their
pro	perties, the c	rystalline struc	ture,	characterist	ics of cryst	tal planes &
dire	ections crystal	defects and th	neir e	ffects on pr	operties, an	id the phase
	grams for solid			•	,	•
5. F	Pre-requirements	for this course (i	f any):	091PHY Physic	S	
6. 0	Co- requirements	for this course (i	f any):	None		

7. Course Main Objective(s)

The **primary objective** is to present the basic fundamentals on a level appropriate for college students who have completed their freshmen physics, chemistry and mathematics. To achieve this goal it has endeavored that is familiar to the students who is encountering the discipline of Engineering material for the first time and also to explain other unfamiliar terms.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	44	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	-
4.	Tutorial	-
5.	Others (specify)	-
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and unde	rstanding		
1.1	Describe the Concept of Materials Science, Materials Engineering, physical properties of the material and Elements atomic structure.	K12	Lecture, active learning, discussion	Quizzes, Assignments, & exams
1.2				
2.0	Skills			

Codo	Course Learning	Code of CLOs aligned	Teaching	Assessment
Code	Outcomes	with program	Strategies	Methods
2.1	Utilize the structure- process-properties relationship to enhance properties of a material .	S12	Lecture, active learning, discussion	Quizzes, Assignments, & exams
2.2	Calculate packing factor & density of crystal structure & Relative Amounts of Ferrite, Cementite, and Pearlite Micro constituents	S21	Lecture, active learning, discussion	Quizzes, Assignments, & exams
2.3	Apply various processes of materials system in order to produce desired structure and properties of the material.	\$23	Lecture, active learning, discussion	Quizzes, Assignments, & exams
2.4	Conduct various Experiments to evaluate properties of Material	S41	Lecture, active learning, discussion	Assessing Experiment data
3.0	Values, autonomy, ar	nd responsibility		
3.1	Participate in Team work, Timely completion of Lab reports	V1.3	Class room activities	Class room activities
3.2	Recognize that materials engineering is diverse and continuously evolving and that finding solutions may involve exploring new knowledge using multiple sources.	V2.1	Self Study	Report Presentation

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction: Material Science & Engineering Material. Why studying Material Science and Engineering? Classifications of materials with properties that determine their applicability. Four components that are involved in the design, production, and utilization of materials, and their interrelationships. Three criteria that are important in the materials selection process.	3
2.	Atomic Structure & Bonding: Introduction, Fundamental Concept, Atomic Structure, Atomic Bonding	1
3	Metallic Crystal Structure: Introduction, Fundamental Concept, Unit Cell, Crystal Structure, Metallic Crystal Structure, Density Computation, Polycrystalline Material, Non Crystalline or Amorphous Solids	4
4	Impurities & Diffusion: Introduction, Impurities in Solids, Solid Solution, Diffusion, Impurities & Diffusion, Mechanism of Strengthening, Recovery, Recrystallization and Grain Growth.	2
5	<u>Phase Diagram:</u> Introduction, Unary Phase Diagram, Binary Phase Diagram, Iron-Iron Carbide Phase Diagram	4
6	Metals Alloy & Forming Process: Introduction, Ferrous Alloys, Non Ferrous Alloys, Forming Process	3
7	Thermal Process : Introduction, Types of Heat Treatment	3
8	Quiz and Test	2
	Total	22

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Assignments	4 th , 6 th & 9 th week	13%
2.	Lab Experiments	4 th – 9 th week	15%
3.	Self Study Report & Viva Voce	10 th Week	7%

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
4	Formative Assessment Exam	7 th Week	15%
5	Final Exam	As per schedule	50%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Material Science and Engineering an Introduction, Willium D.
Esserillal References	Callister, Jr.; David G. Rethwisch- John Wiley & Sons Inc.
Supportive References	Class Notes
Electronic Materials	Audio/ Video
Other Learning Materials	Not utilized

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Laboratory with hardness tester, microscopic structure observation, furnaces & other equipment related to Engineering material - Under graduate level.
Technology equipment (projector, smart board, software)	Available
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Class Teacher	Quiz, Test, Exam
Effectiveness of students assessment	Class Teacher	Servey
Quality of learning resources	Institution	Online Direct Survey
The extent to which CLOs have been achieved	Course Coordinator	Direct Survey
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	MET
REFERENCE NO.	CAITMET20232
DATE	25/01/2023

