

Course Title: **GENERAL CHEMISTRY**

Course Code: 101CHEM-4

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 25 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessmen	
C. Course Content	
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	6
G. Specification Approval Data	7
H. Attachments	7
1- Practical Work	7

A. General information about the course:

Course Identificati	on						
1. Credit hours:	4h	4h					
2. Course type							
a. University □	College □	D	epartme	ent⊠	Tra	ck□	Others□
b. Required ⊠	Elective□	Elective□					
3. Level/year at which this course is Level 1							
offered:			Year	1			
4. Course general	Description						
Course Title	Course	Contra	h 11aa	Cuadit		Π	
Course Title	Course	Contac	LHours	Credit unit			Pre-
	Number	(CH)		(CU) Year	Year	r Level	requisite
		Lec.	Prac.				requisite
General Chemistry	101CHEM4	3	2	4	1	1	none

The course of General chemistry aims to give the students some variety information about the different topics. It is meant to introduce the students to study the special chemistry courses in the next stages.

Course objectives: They are to identify the following.

- * Recognize the students some information about the different gas laws and their applications
- **Recognize the students some properties of the liquids.**
- **Recognize the students, the structure of the atoms and the different atomic theories.**
- **Recognize the students the chemical bonding and its properties.**
- Recognize the students the chemical elements and their properties from the periodic table.

Syllabus: A-Theoretical contents

The scientific content of the theoretical part:

❖ The atomic structure- Periodic table- Chemical bonds- Gases- Chemical equilibrium – Ionic equilibrium- Liquids- Introduction to organic chemistry.

Syllabus: A-Practical contents

Identification of anions and cations of simple unknown organic salt.

- 5. Pre-requirements for this course (if any): None
- 6. Co-requirements for this course (if any): None
- 7. Course Main Objective(s)

The course of General chemistry aims to give the students some variety information about the different branches of chemistry that needed in the next stages.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	33	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	33
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	55

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Up able to)	oon completion o	f the course, st	udent will be
1.1	Demonstrate a broad, knowledge and understanding in fundamentals of general chemistry (I)	K(1.1)	Lectures, Class Discussion	Objective Q
1.2	Describe the phenomenon of liquid state, boiling point, vapor pressure, surface tension, chemical equilibrium, ionic equilibrium, type of bonds and introduction to organic compounds. (1)	K(1.2)	Lectures, Class Discussion	Objective Q Essay Q
2.0	Skills: (Upon completion of the cou	rse, student will l	be able to)	
2.1	Demonstrate the gained knowledge and skills to solve problems associated with different topics in the course as, gas law, pH, chemical equilibrium, etc. (I)	S(2.1)	Lectures, Class Discussion	Solve problem

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.2	Design and carry out qualitative experiments to identify different anion and cations of selected compounds (I)	S(2.2)	Lab work, group work	Lab Report.
2.3	Know and follow proper procedures and regulations for safe handling, use, and disposal of chemicals. (I)	S(2.3)	Lab Discussion	Safety Exam.

C. Course Content

No	List of Topics	Contact Hours
1.	Matter and measurements	4
2.	Atoms-molecules and periodic tabled	4
3.	The electronic structure of the atoms.	4
4.	chemical bonds	4
5.	Gases	3
6.	Liquids	4
7.	Chemical equilibrium	3
8.	ionic equilibrium	3
9.	introduction to organic chemistry	4
10.	Selected experiments related to salt identification	22
	Total	55

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	2-10	4 %
2.	Lecture Quizzes	3-10	1 %
3.	Mid-term exam	<i>6-8</i>	15 %
4.	LAB Sheet	11	2 %
5.	Quiz in Safety	10-11	3%
6.	Final practical exam	11	15 %
7.	Lab report	2-10	10 %
8.	Final Exam	12 -13	<i>50 %</i>
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Principles of general chemistry, Remond Chang., Obeikan Library, August, 2014.
Supportive References	 Principles and Applications of general chemistry, Remond Chang.chemistry.com.pk/books/chemistry (10th Edition), 2017. Introduction to organic chemistry, (7th Edition) written by Mark Weller, Tina Overton, Jonathan Rourke and Fraser Armstrong, Published by chemistry.com.pk. November 17, 2020 Introduction to physical chemistry, David Ronis, published by McGill University, 2015.
Electronic Materials	Simplify of general chemistry, Saeed Abdullah Balubaid, (1st Edition), King Saud University, 2006.
Other Learning Materials	https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query=general+chemistry&type=wiki https://chemistry.com.pk/books/inorganic-chemistry-6e-by-shriver-weller-overton-rourke-armstrong/ https://chemistry.com.pk/books/chemistry-10e-by-zumdahl-and-decoste/

2. Required Facilities and equipment

Items	Resources				
Facilities (Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lecture room for groups of 50 students. 1 Laboratory for group of 25 students				
Technology equipment (AV, data show, Smart Board, software, etc.)	Data show, smart Board, ChemDraw, power point and ActivInspire				
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Chemical reagents, test tubes, pipette and dis. Water.				

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods	
Effectiveness of Teaching and Assessment	Student	Liker-type Survey (CES) Indirect	
Extent of achievement of course learning outcomes	Instructor & Course coordinator	Class room evaluation (direct & indirect)	
Quality of learning resources	Program coordinator	Indirect	
Exam Quality assessment	Assessment committee	Indirect	

Assessment Areas/Issues		Assessor	Assessment Method		hods		
Effectiveness	of	Teaching	and	Student	Liker-type	Survey	(CES)
Assessment					Indirect		

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Grenistry Department Council CHEMS2301

CHEMS230104

11/1/2023G - 18/06/1444H

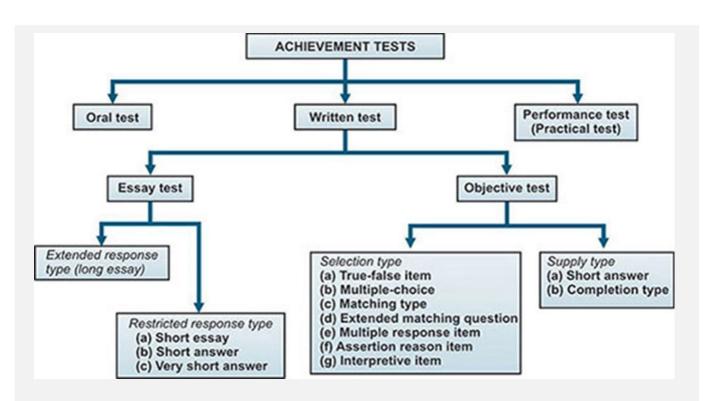
H. Attachments

1- Practical Work

Week	EXPERMENTAL TITLE	Chemicals and Apparatus used	Remarks
1	Safety and regulations	Tubes, pipet, beakers, bottles,etc	
2	Experiment no. 1 Group 1 acidic radical	Dil HCl, CO ₃ , HCO ₃ -, S ₂ O ₃ , BaCl ₂ , MgSO ₄	

3	Experiment no. 2 Group 2 acidic radical	Conc. H ₂ SO ₄ , Cl ⁻ , Br ⁻ , l ⁻ , NO ₃ ⁻ , AgNO ₃ , Pb(CH ₃ COO) ₂	
4	Experiment no. 3 Group 3 acidic radical	BaCl ₂ , AgNO ₃ , SO ₄ , B ₄ O ₇ , PO ₄	
5	Experiment no. 4 Group 1 basic radical	Pb ⁺² , dil HCl, Kl, K ₂ CrO ₄	
6	Experiment no. 5 Group 2 basic radical	Cu ⁺² , Cd ^{+2,} Bi ⁺³ , dil HCl, H ₂ S,NaOH, NH ₄ OH	
7	Experiment no. 6 Group 3 basic radical	Al ⁺³ , Fe ⁺³ , Fe ⁺² , Cr ⁺³ , NaOH, NH ₄ OH, NH ₄ Cl.	
8	Experiment no. 7 Group 4 basic radical	Zn^{+2} , Mn^{+2} , Co^{+2} , Ni^{+2} , $NaOH$, NH_4OH , NH_4CI , H_2S , $K_3[Fe(CN)_6]$	
9	Experiment no. 8 Group 5 basic radical	Ca ⁺² , Sr ⁺² , Ba ⁺² , NaOH, NH ₄ OH, NH ₄ Cl,(NH ₄) ₂ CO ₃ , K ₂ CrO ₄ , K ₂ Cr ₂ O ₇	
10	Experiment no. 9 Group 6 basic radical Group 6 basic radical	Na ⁺ , K ⁺ , Mg ⁺² , NH ₄ ⁺ , NaOH, NH ₄ OH, NH ₄ Cl, (NH ₄) ₂ CO ₃ ,	
11		Final practical exam	

2- Blue Print


Course Name	General Chemistry
Course Code	101 CHEM-4

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	40	20	10	27	3			

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1 (40M)	Homework 1	Objective Q & Essay Q	10	2	2
			Mid term	Objective Q & Essay Q	18	9	9
Knowledge &			Final Exam	Objective Q & Essay Q	29	29	29
understanding	K2	1.2 (20M)	Homework 2	Objective Q & Essay Q	10	2	2
			Mid term	Objective Q & Essay Q	8	4	4
			Final Exam	Objective Q & Essay Q	14	14	14
	S1	2.1 (10M)	Quiz 1	Solving Problems	5	1	1
			Mid term	Solving Problems	4	2	2
Skills			Final Exam	Solving Problems	7	7	7
Skiiis	S2	2.2	Practical Sheet	Objective Q	5	2	2
		(27M)	Lab Report	Rubric	10	10	10
			Final Lab Exam	Rubric	2	15	15
	S3	2.3 (3M)	Safety Quiz	Objective Q	6	3	3
TOTAL		100	_				100

Course Title: General and Physical Chemistry

Course Code: 201CHEM4

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 31 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessm	
C. Course Content	
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	6
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8
	_

	mation ab	out in	e coc	1136.			
Course Identification	on						
1. Credit hours:	4h						
2. Course type							
a. University □	College □	De	epartm	ent⊠	Tra	ck□	Others□
b. Required ⊠	Elective□						
Level/year at wh offered:	ich this cou	rse is	Level Year				
4. Course general D	Description						
Course Title	Course	Contact	Hours	Credit			
Course Title	Number	Lec.	Prac.	unit (CU)	Year	Level	Pre-
General and Physical Chemistry	Number		Prac.		Year 1	Level 3	Pre- requisite 101CHEM4

5 - Identification of chemical contaminants and methods of monitoring, and disposal

Syllabus: A-Theoretical contents

Study Thermochemistry and thermodynamics, Solutions, Chemical kinetics, Redox reactions and Electrochemistry, Acids and bases, Atomic and Molecular Structure, Chemistry and Ecology.

Syllabus: B-Practical contents

Selected experiments in Identification the basic radicals of inorganic salts mixtures. *See attachment

- 5. Pre-requirements for this course (if any): 101CHEM
- 6. Co- requirements for this course (if any): None
- 7. Course Main Objective(s)

The course is designed to give the students some information about the different chemical items; Thermochemistry, Solutions, Chemical kinetics, Thermodynamics, Redox reactions and Electrochemistry, Atomic and molecular structure, Chemistry and Ecology.

forms.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	55	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	33
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	55

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; able to)	(Upon completion of th	ie course, stud	lent will be
1.1	Demonstrate an introductory knowledge in solution, chemical kinetics, thermodynamics, oxidation -reduction,etc . (I)	K(1.1)	lecture / discussion Seminars /presentati on	Objective question
1.2	Describe the essential facts, principles and theories related to thermodynamics, kinetics, solution chemistry,etc (I)	K(1.2)	lecture / discussion / Seminars /Individual presentatio n	Essay question
2.0	Skills: (Upon completion of the c	course, student will be	able to)	
2.1	Demonstrate the knowledge and skills required to solve problems in the kinetic, colligative properties, thermodynamics, thermochemistry ,etc (I) (P)	S(2.1)	lecture / discussion / Seminars /Individual presentatio n	Solving Problems & chart analysis

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.2	Design and carry out scientific experiments as well as accurately record and analyze the results of such experiments. (I)	S(2.2)	Lab work,	Objective question, Essay question, lab report rubric
2.3	Examine his material and lab safety background to Follow proper procedures and regulations for safe handling and use of chemicals. (I)	S(2.3)	lab demonstrat ions / hands-on student learning activities	Safety exam

C. Course Content

No	List of Topics	Contact Hours
1.	Atomic and Molecular structure	6
2.	Acids and Bases	3
3.	Chemical kinetics	3
4.	Redox reactions and Electrochemistry	3
5.	Solutions	6
6.	Chemistry and Ecology	3
7.	Thermochemistry and Thermodynamics	6
8.	Revision	3
9.	Lab.	22
	Total	55

D. Students Assessment Activities

No	Assessment A	Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quiz		4	5 %
2.	Mid term		8	15 %
3.	Safety EXAM		13	3 %
4.		LAB Sheet	10-12	10 %
5.	Laboratory	Quiz in Safety	9	10 %
6.		Final practical exam	10-12	7 %
7.	Final Exam	1	12-14	50%
	Total			100 %

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	الكيمياء العامة: المفاهيم الأساسية ، ريموند تشانغ ،العبيكان للنشر Raymond, Chang ,General Chemistry: The Essential Concepts 5th, Edition 2018, ISBN-13: 978-0073311852
Supportive References	Physical Chemistry ,Peter Atkins, Julio de Paula, Julio DePaula W. H. Freeman, - 2005 Physical Chemistry, 4th Edition Robert J. Silbey. Robert A. Alberty. Moungi G. Bawendi v. TM. Cambridge, Massachusetts. January 2004
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	https://learn.saylor.org/course/CHEM101 https://chem.libretexts.org/Bookshelves/General_Chemistry https://chem.libretexts.org/Special:Search?qid=&fpid=230&fp th=&query=physical+chemistry&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms, laboratories,
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (Depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect		
Effectiveness of students' assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect		
Quality of learning resources	Program coordinator	Indirect		
The extent to which CLOs have been achieved	Assessment committee	Indirect		
Other				

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Chemistry Department Council CHEMS2301

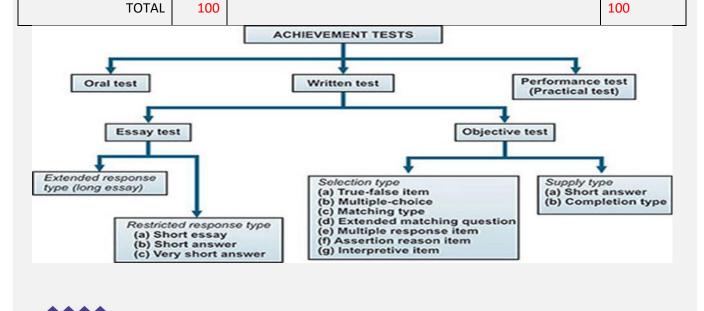
CHEMS230104

11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work

Week No.	Experiment Title	Required Chemicals	Required Glass Wear& equipment	Notes
	Group separation of	1st basic radical	Conical flask , beakers , tubes ,	
1st	1st basic radical	group salts,	filter papers, holders, heater	
	group	reagents.	,vacuum gas chamber	
	Group separation of	2nd basic radical	Conical flask , beakers , tubes ,	
2nd	2nd basic radical	group salts,	filter papers, holders, heater	
	group	reagents.	,vacuum gas chamber	
	Group separation of	3rd basic radical	Conical flask , beakers , tubes ,	
3rd	3rd basic radical	group salts,	filter papers, holders, heater	
	group	reagents.	,vacuum gas chamber	
	Group separation of	4th basic radical	Conical flask , beakers , tubes ,	
4th	4th basic radical	group salts,	filter papers, holders, heater	
	group	reagents.	,vacuum gas chamber	
	Group separation of	5th basic radical	Conical flask , beakers , tubes ,	
5th	5th basic radical	group salts,	filter papers, holders, heater	
	group	reagents.	,vacuum gas chamber	
	Group separation of	6th basic radical	Conical flask , beakers , tubes ,	
6th	6th basic radical	group salts,	filter papers, holders, heater	
	group	reagents.	,vacuum gas chamber	
7 th to	Identification Of	All basic radical	Conical flask , beakers , tubes ,	
11 th	Inorganic Mixtures	group salts,	filter papers, holders, heater	
	morganic wintures	reagents.	,vacuum gas chamber	


3

6

3

2- Blue Print

Course Name	е	Genera	and Phys	sical (Chemistry							
Course Code		201CHE	M4									
PLOs		K1 K2			S1	S2	S3	S	4	V1		V2
CLOs		1.1	1.2		2.1	2.2	2.3	2	.4	3.1		3.2
Marks		25	25		20	27	3		-	-		-
Learning Domain		PLOs	CLOs	Ass Typ	essment be	Assessment	Tool	No of Question	s th	larks of ne ssessment	th	eight of e ssessment
		K1	1.1	Qui	iz	Objective que	estion	4		2		2
		-		Mid	d term	Objective que	estion	5		5		5
Knowledge	ى 2،			Fina	al Exam	Objective question		8		18		18
understanding		1/2 1/2		Qui	iz	Objective question		2		2		2
		(23141)	(23101)	Mid	d term	Objective question		5		5		5
				Fina	al Exam	Objective question		4		18		18
		S1 2.1 (20 M)		Qui	Quiz Solving Problems & chart analysis			2		2		1
				Mid	d term	Solving Prob & chart ana		2		4		5
Skills				Fina	al Exam	Solving Prob & chart ana		6		14		14
		S2	2.2 (27 M)	Pra She	ctical eet	Objective que	•	10		10		10
			,	-	Report	10 EXP.		10		7		7
				Fina	al Lab	Task		1		10		10

Objective question

Exam

Safety

EXAM

S3

2.3

(3 M)

Course Title: Volumetric Analytical Chemistry

Course Code: 211CHEM -3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 29 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessm	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	8
H. Attachments	9
1- Practical Work	9

A. General information about the course:

Со	Course Identification								
1.	Credit hours:								
2. (2. Course type								
a.	University □	College □	Dep	partment⊠	Track□	Others□			
b.	Required ⊠	Elective□							
3.	3. Level/year at which this course is Level 5								
off	ered:			Year 2 nd					
4 4									

4. Course general Description

Course Title	Course	Contact Hours		Credit				
	Number			unit (CU) Year		Level	Pre-	
		Lec.	Prac.	(00)			requisite	
Volumetric Analytical Chemistry	211CHEM3	2	2	3	2	5	101CHEM4	

The aim of this course is to study the theoretical and practical principles of the different methods of volumetric analysis

Course objectives: They are to identify the following:

- Basic principles of volumetric analysis
- Different unites to express concentrations
- Different types of titrations and its applications
- Preparation of solutions with different concentrations

Syllabus: A-Theoretical contents

Basic principles and concepts of volumetric analysis. Different units of concentrations. Different types of titrations as neutralization, oxidation reduction, complexometric and precipitation titrations.

Syllabus: B-Practical contents

Selected experiments related to volumetric analysis

- 5. Pre-requirements for this course (if any): 101CHEM4
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

The aim of this course is to study the theoretical and practical principles of the different methods of volumetric analysis

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and unde able to)	rstanding; (Upon comple	etion of the course, s	tudent will be
1.1	Demonstrate a broad understanding and critical view of the principles, classification and application of volumetric analysis.	K(1.1)	lecture / discussion Seminars /presentation	Objective questions
1.2	Describe the essential facts, principles and theories dealing with neutralization, complexities, precipitation and oxidation reduction reactions. (I)	K(1.2)	lecture / discussion / Seminars /Individual presentation	Objective questions

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.0	Skills; (Upon comple	tion of the course, stude	nt will be able to)	
2.1	Demonstrate ability in critical thinking, numeracy, analytical reasoning, use graphs, charts for solving problems related to volumetric analysis topics. (I)	S(2.1)	lecture / discussion / Seminars /Individual presentation	Solving Problems & chart analysis & Essay questions
2.2	Apply their experimental basics and skills to use laboratory equipment, and classical techniques for carrying out titration experiments and to write a report representing the scientific data (I)	S(2.2)	Lab work, group work	Lab final exam / lab report rubric/ Objective questions
2.3	Examine lab safety background to follow proper procedures and regulations for safe handling and use of chemicals. (I)	S(2.3)	lab demonstrations / hands-on student learning activities	Safety exam

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to analytical chemistry, types of chemical analysis, some definitions for titrimetric methods and calculation of number of moles and equivalent weight.	3
2.	Unites for expressing concentration; normality, molarity, molality, percent, w/w, w/v, v/v%, part per million, part per billion and conversion between some concentration unites.	3
3.	Dilution of solutions, solution preparation, titrations based on acid-base reactions	3

4.	Simple titration curves (strong, weak acids versus strong , weak bases) ,complicated titration curves and calculation of pH during titrations	3
5.	Theory of acid-base indicators and titrations based on oxidation reduction reactions	3
6.	Titration curves of oxidation reduction reactions and applications.	3
7.	Titrations based on complexation reactions, applications and titrations based on precipitation reaction.	3
8.	Revision	1
9.	Selected Experiments related to course topics.	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	3-8	2 %
2.	Lecture Quizzes	4-6	3 %
3.	Mid-term exam	6-8	15 %
4.	LAB Sheet	11	7%
5.	Quiz in Safety	9-11	3%
6.	Final practical exam	11	10 %
7.	Lab report	Through semester	10 %
8.	Final Exam	12-14	50 %
9.	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Quantitative Chemical Analysis, Daniel C. Harris, Charles A. Lucy Kate Parker publisher, 9th edition 2015.
Supportive References	Fundamentals of Analytical Chemistry" - by Douglas A. Skoog, Donald M. West, F. James Holler, and Stanley R. Crouch, Mary Finch publisher 9th edition 2013.
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	• https://book4you.org/book/3338575/951c19

- <a href="https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Quantifying_Nature/Volumetric_Chemical_Analysis_(Shiundu)/14.2%3A_Learning_Activity
- https://chem.libretexts.org/Under_Construction/Purgatory/Book%3A_Analytical_Chemistry_2.0_(Harvey)/09_Titrimetric_Methods/9.4%3A_Redox_Titrations
- <a href="https://chem.libretexts.org/Bookshelves/Analytical Chemistry/Supplemental Modules (Analytical Chemistry)/Quantifying_Nature/Volumetric_Chemical_Analysis_(Shiundu)/14.4%3A_Complex_ion_Equilibria_and_Complexometric_Titrations
- https://chem.libretexts.org/Special:Search?qid=&fpid=23
 0&fpth=&query=volumertric+analysis&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room(s) for groups of 25 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	Laboratory glassware and equipment such as erlenmeyer flasks watch glass, graduated cylinder, volumetric flask, graduated pipette, volumetric buret and beakers, water bath, magnetic stirrer, Electronic balance and hot plate

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect
Effectiveness of students assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect)
Quality of learning resources	Program coordinator	<u>Indirect</u>
The extent to which CLOs have been achieved	Assessment committee	<u>Indirect</u>
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Chemistry Department Council CHEMS2301

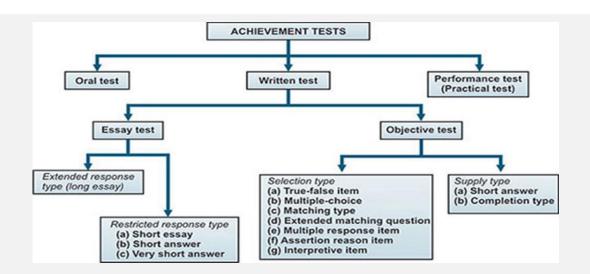
CHEMS230104

11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work

No	Title of Experiment	Tools, Chemicals, and equipment Needed in Experiments	Week
1.	Laboratory safety	None	1
2.	Solution preparation	Sodium carbonate, sodium chloride, Sulphuric Acid and hydrochloric acid	2
3.	Determination of normality and strength of unknown sodium hydroxide solution by oxalic acid	Sodium hydroxide, oxalic acid and phenolphthalein	3
4.	Determination of normality and strength of unknown hydrochloric acid by solution known Sodium hydroxide	Sodium hydroxide, hydrochloric acid, phenolphthalein and methyl orange	4
5.	Revision	Depending upon the selected experiment	5
6.	Determination of normality and strength of unknown sodium carbonate solution by standardized Hydrochloric acid solution	sodium carbonate, Hydrochloric acid, phenolphthalein and methyl orange	6
7.	Determination of normality and strength of unknown potassium permanganate solution by standard oxalic acid solution	potassium permanganate, oxalic acid, Sulphuric Acid	7
8.	Determination of normality and strength of unknown ammonium ferrous sulphate solution by standard potassium dichromate solution	potassium dichromate solution, ammonium ferrous sulphate, sulphuric acid, phosphoric acid and diphenyl amine	8
9.	Determination normality and strength of sodium thiosulfate using standard solution of potassium dichromate (iodomeyric titration)	Sodium thiosulphate, potassium dichromate	9
10.	Determination normality and strength of magnisum sulphate using standard solution of EDTA (complexmetryl)	EDTA and magnesium sulphate	10
11.	FINA	AL EXAM	11


2- Blue Print

Course Name	Volumetric Analytical Chemistry
Course Code	211CHEM -3

PLOs	K1	K2	S 1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	-	-	-
Marks	30	25	15	27	3	_	-	_

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1 (30M)	Quiz	Objective Questions	2	2	1
			Mid term	Objective Questions	3	7	7
Knowledge &			Final Exam	Objective Questions	5	22	22
understanding	K2	1.2 (25M)	Quiz	Objective & Essay Questions	2	2	1
			Mid term	Objective& Essay Questions	3	6	6
			Final Exam	Objective& Essay Questions	6	18	18
	S1	2.1 (15M)	H.W	Solving Problems & chart analysis & Essay questions	4	2	2
			Quiz	Solving Problems & chart analysis & Essay questions	2	2	1
			Mid term	Solving Problems & chart analysis & Essay questions	2	2	2
Skills			Final Exam	Solving Problems & chart analysis & Essay questions	4	10	10
	S2	2.2	Practical	Objective	2	14	7
		(27M)	Sheet	Questions	-	10	10
			Lab Report	Lab Report Rubric	5 1	10 10	10 10
			Final Lab Exam	I Task experiment	1	10	10
	S3	2.3 (3M)	Safety Quiz	Objective questions	1	6	3
	TOTAL	100					100

Course Title: Chemistry of Gravimetric Analysis

Course Code: 212 CHEM-3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 5 January 2023

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessme	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	8
H. Attachments	9
1- Practical Work	9
	4.0

A. General information about the course:

Course Identification							
1.	Credit hours:	3h					
2. (Course type						
a.	University □	College □	Departme	ent⊠	Track□	Others□	
b.	Required ⊠	Elective□					
3.	3. Level/year at which this course is Level 6						
offered:				2			
1 (4 Course general Description						

Course Title	Course Number	Contact (CH)	t Hours	Credit unit	Year	Level	
		Lec.	Prac.	(<i>CU</i>)			requisite
Chemistry of Gravimetric Analysis	212СНЕМ-3	2	2	3	2	6 th	211CHEM-3

Course objectives: They are to identify the following: -

- Basic principles, definitions, and classifications of gravimetric methods
- Theories, mechanisms, steps, and applications of precipitation gravimetry
- Gravimetric, solubility and solubility products calculations
- Types of impurities in precipitates and their minimization.
- Determination of different cations and anions using precipitation gravimetry.

Syllabus: A-Theoretical contents.

Basic principles, definitions, and classifications of gravimetric methods. Theories, mechanisms, steps, advantages, disadvantages, and applications of precipitation gravimetry. Different calculations such as gravimetric calculations, solubility, solubility products, amount of precipitating agent and pH at which precipitation start and complete. Impurities in precipitates and their minimization. Precipitation from homogeneous solutions. Evaluating Precipitation Gravimetry, Scale of operation, Accuracy, Sensitivity, and specificity of gravimetric analysis.

Syllabus: B-Practical contents.

Selected experiments related to gravimetric analysis.

- 5. Pre-requirements for this course (if any): 211CHEM-3
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

The course is designed to study the basic principles and experimental applications of some gravimetric especially precipitation gravimetry.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understar able to)	nding ; (Upon c	ompletion of the course	, student will be
1.1	Demonstrate a broad understanding and critical view of the principles, classificationand application of precipitation gravimetry. (I)	K(1.1)	Lecture/ discussion	Written examinations and quizzes (Objective Questions)
1.2	Describecorrectlythe essential facts, principles	K(1.2)	Lecture/ discussion	Written examinations and

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	and theories dealing with precipitation gravimetry			quizzes (Objective Questions
2.0	Skills; (Upon completion of	of the course, s	tudent will be able to)	
2.1	Demonstrate ability in critical thinking, numeracy, analytical reasoning, use graphs, charts for solving problems related to precipitation gravimetry(I)	S(2.1)	Lecture/ discussion	Written examinations, HWand quizzes (Problem-solving exercises& Essay question)
2.2	Apply their experimental basics and skills to use laboratory equipment, and classical techniques for carrying out experiments in various fields of precipitation gravimetry and to write a report representing the scientific data.(I)	S(2.2)	Lab Work/ group Work	Practical Sheet (Objective Questions, essay Question) lab report rubric& Final Lab Exam
2.3	Examine lab safety background to follow proper procedures and regulations for safe handling and use of chemicals(I)	S(2.3)	lab demonstrations / hands- on student learning activities	Safety exam (Objective Questions)

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction, Types of gravimetric methods, Precipitation gravimetry, Theory and Practice Steps of precipitation, gravimetry, Calculations in precipitation gravimetry, solubility and solubility products constant.	4
2.	Saturation and Super saturation, Controlling Particle Size, Relative Supper Saturation (Von Weimarn's Ratio) Mechanism of precipitants formation, Homogeneous Nucleation, , Heterogeneous Nucleation	3
3.	Precipitation methods from Homogeneous solutions, precipitates improvement factors affecting solubility of precipitates.	3
4.	Types of precipitants, Colloidal state, Colloidal Suspension Mechanism, Controlling Colloidal state, Precipitants	3

5.	Organic Precipitants, Advantages and disadvantages of Organic Precipitants, Inorganic Precipitants	1
6.	Evaluating Precipitation Gravimetry, Scale of operation, Accuracy, Sensitivity and specificity of gravimetric analysis	2
7.	Volatilization Gravimetry, principal of Volatilization Gravimetry, Thermogravimetry, Particulate gravimetry, Separation methods, Filtration, Extraction, direct method and indirect method	4
8.	Revision	2
9.	Selected Experiments related to course topics	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework	3-8	2%
2.	Quiz	4-6	3%
3.	Midterm Exam	6-8	15%
4.	Lab Sheet	11	7%
5.	Lab Report	3-8	10%
6.	Final Practical Exam	11	10%
7.	Safety Exam	9-10	3%
8.	Final Exam	12-14	50%
9.	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Analytical chemistry, Christian, Gary D., Purnendu K. (Sandy), Kevin A. Schug, 7th edition (2014)
Supportive References	Quantitative Chemical Analysis & Solutions manual by Daniel C. Harris, 2006.
Electronic Materials	 https://chem.libretexts.org/Under_Construction/Purgatory/Book%3A_Analytical_Chemistry_2.0 (Harvey)/08%3A_Gravimetric_Methods https://chem.libretexts.org/Under_Construction/Purgatory/Book%3A_Analytical_Chemistry_2.0 (Harvey)/08%3A_Gravimetric_Methods/8.2%3A_Precipitation_Gravimetry

	• https://chem.libretexts.org/Under_Construction/Purgatory/Book%3A Analytical Chemistry 2.0 (Harvey)/08%3A Gravimetric Methods/8.3%3A Volatilization Gravimetry
	• https://chem.libretexts.org/Under_Construction/Purgatory/Book%3A_Analytical_Chemistry_2.0_(Harvey)/08%3A_Gravimetric_Methods/8.4%3A_Particulate_Gravimetry
Other Learning Materials	Tutorial videos and pictures. Some course contents and materials are posted on Black board sites

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room(s) for groups of 25 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	Laboratory glassware and equipment such as Erlenmeyer flasks watch glass, graduated cylinder, volumetric flask, graduated pipette, volumetric burette and beakers, water bath, magnetic stirrer, Electronic balance and hot plate

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect		
Effectiveness of students assessment	Instructor&Course coordinator	Class room evaluation (direct & indirect)		
Quality of learning resources	Program coordinator	Indirect		
The extent to which CLOs have been achieved	Assessment committee	Indirect		
Other				

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL Chemistry Department Council CHEMS2301

CHEMS230104

DATE

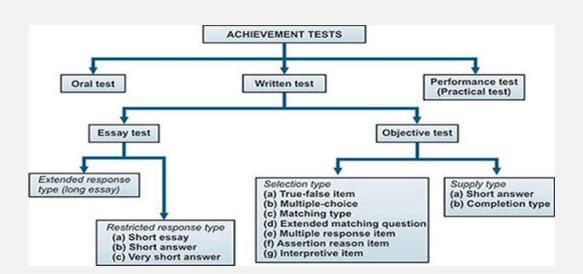
CHEMS230104

CHEMS230104

H. Attachments

1- Practical Work

No	Title of Experiment	Tools, Chemicals, and equipment Needed in Experiments	# of Weeks
1	Laboratory safety, glassware and tools used in gravimetric analysis.	Drying oven, Muffle Furnaces, crucible burette, graduated cylinders, Volumetric flasks, pipettes and conical flasks, water bath,Hot plates, Crucibles,Balances, Water distillation, water deionizer equipments and pH meters	1
2	Basic concepts, terminology and gravimetric calculations.	-	1
3	Determination of the number of water of crystallization in barium chloride dihydrate	Glassware, Oven, Crucibles, Barium chloride dihydrateand Analytical balance.	1
4	Gravimetric analysis of sulphate as BaSO ₄	Glassware, Oven, filtration system, sodium sulphate,hydrochloric acid, barium chloride	1
5	Gravimetric determination of calcium as calcium Oxide.	Glassware,Furnace, filtration system, hydrochloric acid, calcium salt, ammonia solution, ammonium oxalate.	1
6	Gravimetric determination of nickel as nickel dimethylglyoxime	Glassware, Oven, filtration system, hydrochloric acid, nickel chloride, dimethylglyoxime and ammonia solution	1
7	Gravimetric determination of lead as lead chromate	Glassware, Oven, filtration system, hydrochloric acid, lead nitrate, potassium chromate, acetic acid,and sodium acetate	1
8	Gravimetric determination of iron as ferric oxide	Glassware, Furnace, filtration system, hydrochloric acid, ferrous sulphate, nitric acid, ammonium hydroxide and ammonium nitrate	1
9	Revision		1
10	FINAL EXAM		1


2- Blue Print

Course Name	Chemistry of Gravimetric Analysis
Course Code	212CHEM-3

PLOs	K1	K2	S1	S2	S 3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	30	24	16	27	3		-	

Learning	PLOs	CLOs	Assessment	Assessment		o of	Marks of	Weight of
Domain			Type	Tool	Q	uestions	the	the
							Assessment	Assessment
	K1	1.1	Quiz	Objective		2	1	1
		(30M)		test				
			Mid term	Objective		14	7	7
Knowledge &	Q _r			test				
understandir			Final Exam	Objective		22	22	22
understandn				test				
	K2	1.2	Quiz	Essay Test		1	1	1
		(24M)	Mid term	Essay Test		2	5	5
			Final Exam	Essay Test		3	18	18
	S1	2.1	H.W	Solving		4	2	2
		(16M)		Problems				
			Quiz	Solving		1	1	1
				Problems				
			Mid term	Solving		2	3	3
				Problems &	;			
				Essay				
				question				
			Final Exam	Solving		4	10	10
				Problems &	;			
~				Essay				
Skills				question				
	S2	2.2	Practical Shee			8	4	4
		(27M)		test				
				Essay		3	3	3
				question				
			Lab Report	Lab report		10	10	10
			•	rubrics				
			Final Lab	I Task		1	10	10
			Exam	experiment				
	S3	2.3	Safety EXAM	Objective		6	3	3
		(3M)	, ,	test				-
	TOTAL	100						100

Course Title: Chemistry of main groups

Course Code: 221CHEM-4

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (J U)

Version: **T104 2022**

Last Revision Date: 29 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessmen	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

101CHEM4

A. General information about the course:

Co	Course Identification										
1.	Credit hours:	4h									
2. (Course type										
a.	University □	College ☐ Dep		epartment⊠		Track□		Others□			
b.	Required ⊠	Elective□									
3.	Level/year at wh	ich this cours	se is	Leve	5						
off	ered:			Year	2						
1.	Course Description	on									
	Course Title	Course	Contac	t Hours	Credit unit			Duo			
		Number (CH)			(CU)	Year I	Level	Pre- requisite			
			Lec.	Prac.				requisite			

3

Course Objectives; They are to identify the following

221CHEM-4

- 1- Recognizing the elements and their chemical and physical properties.
- 2- Recognizing the periodic table of the elements.
- 3- Recognizing the properties of elements by knowing the group that belongs to.

Syllabus: A-Theoretical contents

Chemistry of main

groups

4- Study effective nuclear charge - formal charge - draw molecular orbital diagram for the molecule - Study of the properties of the elements in the groups and periods of the periodic table - Chemistry of hydrogen - Elements of the first group (Alkali Metals) - Elements of the second group (Alkaline Earth Metals) - Elements of the third group - Elements of the fourth group - Elements of the fifth group - Elements of the sixth group - Elements of the seventh group (Halogens) - Elements of the eighth group (Noble Gases).

Syllabus: A-Practical contents

Selected experiments in qualitative and quantitative analysis.

- 5. Pre-requirements for this course (if any):101CHEM-4
- 6. Co- requirements for this course (if any): Non
- 7. Course Main Objective(s)

The course of chemistry of main groups is designed to give the students basic information about the General properties of S and b-block elements in periodic table.

1. Teaching mode (mark all that apply)

No	Mode of Instruction Contact Hours		Percentage	
1.	Traditional classroom 33		100	
2.	E-learning			
3.	HybridTraditional classroomE-learning			
4.	Distance learning		100	

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	33
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	55

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program		ŭ j		Assessment Methods
1.0	Knowledge and unde able to)	rstanding ; (Upon compl	etion of the course	e, student will be	
1.1	Demonstrate a broad, in the properties of periodic table groups (I, elements and the properties, preparation (I)	Hydrogen, II, III,etc) ir related	K(1.1)	lecture / discussion Seminars /presentation	Objective question	
1.2	Describe the types of oxides and carbides. Describes allotropy phenomenal difference in chemical approperties of the material (I)	escribe the , and the and physical	K(1.2)	lecture / discussion / Seminars /Individual presentation	Essay question	
2.0	Skills ; (Upon comple	tion of the co	ourse, stude	nt will be able to)		
2.1	Demonstrate the know skills required to calcula nuclear charge, formal draw molecular orbital	ite effective charge, and	S(2.1)	lecture discussion Seminars	/ Solving / Problems & chart analysis	

Code	Course Learning Outcomes	Code of CLOs aligned with program		Teaching Strategies	Assessment Methods
	the (I)	molecule.		/Individual presentation	
2.2	Carry out scientific experiments as well as accurately record and analyze the results of such experiments. (I)		S(2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Examine his material and background to Follo procedures and regulate safe handling and chemicals. (I)	ow proper lations for	S(2.3)	lab demonstrations / hands-on student learning activities	Safety exam

C. Course Content

No	List of Topics	Contact Hours
1.	General properties of the elements in periodic table.	4
2.	Types of bonds	5
3.	VSEPR theory and molecular orbital theory	5
4.	Hydrogen, properties, position, isotopes, preparation and uses	2
5.	Group (I): alkali metals, properties, oxides, stability and Extraction.	3
6.	Group (II): Electronic configuration, occurrence, properties and extraction.	2
7.	Group (III), Electronic configuration, occurrence, properties, extraction,	2
8.	Group (IV), Electronic configuration, occurrence, properties, extraction hydrides, halides, oxygen compounds and carbides.	2
9	Group (V), Electronic configuration, occurrence, properties, extraction hydrides, uses, (N,P,)and oxides.	2
10	Group (VI), Electronic configuration, occurrence, extraction (S, O) uses of ozone, H_2O_2 , Halides, Oxides, and uses of Sulphur.	2
11	Group (VII), Halogens, Electronic configuration, occurrence, uses of HF and Halogen oxides.	2
12	Noble gases, electronic structure, properties, occurrence and preparation	2
13	Selected Experiments related to course contents	22
	Total	55

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	<i>3-8</i>	1%
2.	Lecture Quizzes	5-7	4 %
3.	Mid-term exam	<i>6-8</i>	15 %
4	LAB Sheet	15	5 %
5	Safety Exam	11	<i>3</i> %
6	Final practical exam	11	12%
7	Lab report	2-10	10 %
8	Final Exam	12-14	50 %
	Total		100

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Inorganic Chemistry, 5th Edition by Gary L. Miessler, Paul J. Fischer, Donald A. Tarr, (2013)		
Supportive References	Concise Inorganic Chemistry, 5th Edition, J.D. Lee, Blackwell Science Ltd (1996)		
Electronic Materials	Some course contents and mater	•	
	site	es ·	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (Depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods	
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect	
Effectiveness of students' assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect	
Quality of learning resources	Program coordinator	Indirect	
The extent to which CLOs have been achieved	Assessment committee	Indirect	
Other			

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL
/COMMITTEE

REFERENCE NO.

DATE

mistry Department Council CHEMS2301

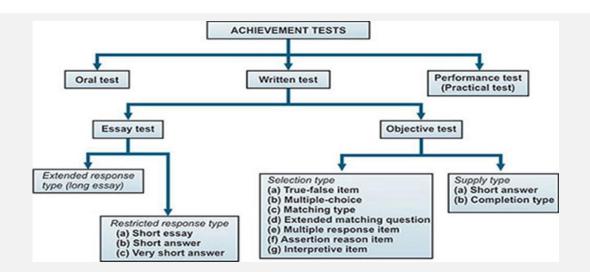
CHEMS230104

11/1/2023G – 18/06/1444H

H. Attachments

1- Practical Work

No.	Experiment Title	Required Chemicals	Required Glass Wear& equipment	week
1	Safety			1
2	Separation and determination of potassium	1- Potassium chloride salt. 2- Tartaric acid (17% solution).	Conical flask , beakers , tubes , filter papers, holders, heater ,vacuum gas chamber	2
3	Separation and determination of calcium	1- Calcium Chloride salt. 2- Sodium carbonate Na ₂ CO ₃ (10% solution).	Conical flask , beakers , tubes , filter papers, holders, heater ,vacuum gas chamber	3
4	Separation and determination of aluminum	 Aluminum Chloride salt. Sodium sulpide Na₂S (23% solution). 	Conical flask , beakers , tubes , filter papers, holders, heater ,vacuum gas chamber	4
5	Separation and determination of tin	1-Tin Chloride salt.2- Sodium sulphide Na₂S (15% solution).	Conical flask , beakers , tubes , filter papers, holders, heater ,vacuum gas chamber	5
6	Separation and determination of lead	1- Lead acetate salt. 2- Potassium dichromate K ₂ CrO ₄ (10% solution).	Conical flask , beakers , tubes , filter papers, holders, heater ,vacuum gas chamber	6
7	Separation and determination of bismuth	1- Bismuth nitrate salt.2- Potassium iodide KI (45% solution).	Conical flask , beakers , tubes , filter papers, holders, heater ,vacuum gas chamber	7
8	Separation and determination of barium	1- Diluted sulphoric acid.2- Barium chloride BaCl₂.3- Hydrochloric acid HCl	Conical flask , beakers , tubes , filter papers, holders, heater ,vacuum gas chamber	8
9	Separation and determination of iodine	1- Sodium iodide salt. 2- Lead acetate (CH ₃ COO) ₂ Pb (33% solution).	Conical flask , beakers , tubes , filter papers, holders, heater ,vacuum gas chamber	9
10	determination of total hardness of tape water	1-EDTA 2-EBT 3- buffer solution	Conical flask, burette beakers, tubes, filter papers, holders, heater ,vacuum gas chamber	10
13	Final practical exam			11


2- Blue Print

Course Name	Chemistry of main groups
Course Code	221CHEM-4

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3			
Marks	29	25	16	27	3			

Learning	PLOs	CLOs	Assessment Type	Assessment	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1 (29M)	Quiz	Objective question	2	3	3
			Mid term	Objective question	1	5	5
Knowledge & understanding			Final Exam	Objective question	2	21	21
	K2	1.2	Quiz	Essay question	2	2	1
		(25M)	Mid term	Essay question	1	5	6
			Final Exam	Essay question	2	18	18
	S1	2.1 (16M)	H.W	Solving Problems & chart analysis	4	1	1
			Mid term	Solving Problems & chart analysis	2	4	4
Skills			Final Exam	Solving Problems & chart analysis	6	11	11
	S2	2.2 (27M)	Practical Sheet	Objective question	5	5	5
			Lab Report	10 EXP.	10	10	10
			Final Lab Exam	Task	1	12	12
	S3	2.3 (3M)	Safety EXAM	Objective question	8	3	3
	TOTAL	100					100

Course Title: Aliphatic Organic Chemistry

Course Code: 231CHEM-3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 25 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Asse	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8

A. General information about the course:

Cc	Course Identification								
1.	Credit hours:	3h							
2.	Course type								
a.	University □	College □	De	epartme	ent⊠	Trac	ck□	Others□	
b.	Required ⊠	Elective□							
	3. Level/year at which this course is 6. Level 4. See 1. Year 2.								
4.	4. Course general Description								
C	Course Title	Course	Contac	t Hours	Credit				
Number		Lec.	Prac.	unit (CU)	Year	Level	Pre-		
	Aliphatic Organic	231CHEM3	2	2	3	2	4	requisite 101CHEM4	

Course objectives: They are to identify the following.

- Identifying and analyzing the structure of organic compounds by recognizing main functional groups, naming the compounds using the I.U.P.A.C. system, and predicting their properties using the type of bonding, hybridization state, intermolecular forces, and stereochemistry.
- Describing the reactions: nucleophilic substitution, elimination, and electrophilic addition, and apply this knowledge to predict the major product in organic reactions, such as those involving hydrocarbons,
- analyzing the nature of a reagent: as a nucleophile, or electrophile and use this knowledge to propose the synthesis of organic compounds, such as a hydrocarbon, alkyl halides, alcohols, or alkenes.
- demonstrate proficiency in organic laboratory skills as they pertain to: chemical information, safe handling, use, and disposal of organic compounds; identify different unknown organic compounds and use of instrumentation, and writing laboratory reports following current scientific journal styles.

Syllabus: A-Theoretical contents

Principles of organic chemistry and its importance – molecular structure and properties of organic compounds – functional groups in organic compounds –principle organic reactions – studying different classes of aliphatic organic compounds including; nomenclature, chemical structure, physical properties, methods of preparation, chemical reactions and common uses of: saturated and unsaturated aliphatic compounds

Syllabus: A-Practical contents

Basic knowledge concerning general Safety Rules, Lab Equipment, Basic Laboratory Techniques, Measuring Volume and melting point, Purification of Organic Compounds, and sublimation. Finally, Identification of an unknown liquid and solid organic compounds.

- 5. Pre-requirements for this course (if any): 101CHEM4
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

This course aims to give students the basic knowledge concerning saturated and unsaturated aliphatic organic compounds, their nomenclature, methods of preparation and their most important chemical reactions.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Uponable to)	completion of th	ie course, stud	dent will be
1.1	Demonstrate a broad knowledge and understanding in the hybridization, bonding in organic compounds, the nomenclature of organic compounds, organic reactions, isomerism of organic compounds, reactions, and preparations	K(1.1)	lecture	Objective Q

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	of alkane, alkene, alkyne, and aromatics.			
1.2	Describe the reactions: nucleophilic substitution, elimination, and electrophilic addition, and apply this knowledge to predict the major product in organic reactions, such as those involving hydrocarbons, alkyl halides, alkenes, alkynes, and aromatic. (I)	K(1.2)	lecture	Objective Q Essay Q
2.0	Skills: (Upon completion of the course,	student will be	able to)	
2.1	analyze the nature of a reagent: as a nucleophile or electrophile and use this knowledge to propose the synthesis of organic compounds, and draw their structure, and differentiate between them. (I)	S(2.1)	lecture	Essay Q & Solve Problems
2.2	perform experiments for the investigation and identification of unknown solid organic compounds, and write reports about It. (I)	S(2.2)	Lab work	Lab report
2.3	Examine and follow proper procedures and regulations for safe handling, use, and disposal of chemicals (I)	S(2.3)	Lab work	Objective Q (Safety Quiz)

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to Organic Chemistry	1
2.	Structure, chemical bonding in organic compounds, and formal charges	1
3.	SP3, SP2, SP hybridization of methane, ethane and ethyne.	1
4.	Functional groups	2
5.	Isomerism, types of structural isomerism and types of stereoisomerism.	2
6.	Organic reactions and Acid-Base reactions	3
7.	Nomenclature of Alkanes, Alkenes, and Alkynes and their cyclic forms.	3
8.	Alkenes and alkynes, preparation, reactions and their application	4
9.	Aromatic compounds, aromaticity, and Nomenclature	2
10.	Electrophilic aromatic substitution for benzene, monosubstituted, disubstituted, and poly-substituted aromatics	3

11.	Identification of an unknown liquid and solid organic compounds (LAB)	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	3-5 and 6-11	<i>5</i> %
2.	Mid-term exam	6-8	15 %
4.	LAB Sheet	11	5 %
5.	Quiz in Safety	9	3%
6.	Final practical exam	11	12 %
7.	Lab report	2-10	10 %
9.	Final Exam	12 -1 4	50 %
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Organic Chemistry, 9e Written by Jr. Leroy G. Wade, Jan William Simek, et al
Supportive References	Organic Chemistry (tenth edition) Written by T. W. Graham Solomons and Craig B. Fryhle http://chemistry.com.pk/books
Electronic Materials	https://www.khanacademy.org/science/organic-chemistry https://www.organic-chemistry.org/ https://en.wikipedia.org/wiki/Organic_chemistry https://www.masterorganicchemistry.com/organic-1/
Other Learning Materials	https://www.youtube.com/watch?v=cAxJw_W05ZY https://www.chemguide.co.uk/orgmenu.html https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/intro1 .htm

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (Depending on the nature of the specialty)	Glassware, chemicals, hotplates, water bathes, flam, electrical balance, UV lamb, and IR.

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor		Assessment Methods
Effectiveness of teaching	Student		Likert-type Survey CES) Indirect
The extent of achievement of course learning outcomes	Instructor & coordinator	Course	Classroom evaluation (direct & indirect
Quality of learning resources	Program coordinator		Indirect
Exam Quality assessment			Indirect
Other			

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

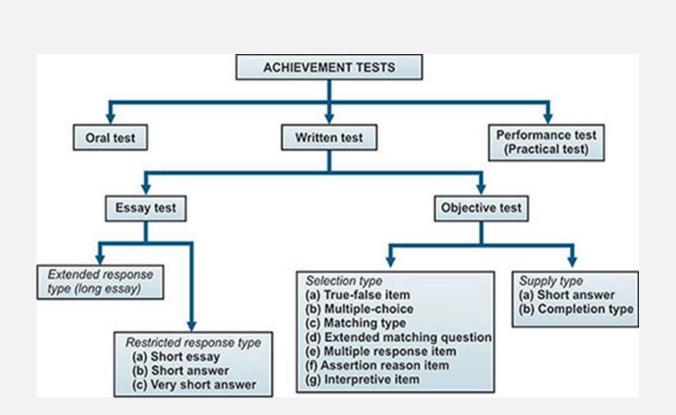
COUNCIL /COMMITTEE REFERENCE NO.
DATE

1/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work

Week	EXPERMENTAL TITLE	Remarks
1	General Safety Rules, Lab	
	Equipment, and Basic	
	Laboratory techniques.	
2	Measuring volume and	None
	melting point	
3	Purification of Organic	None
	Compounds and sublimation	
4	Simple Liquid Organic	None
	Compounds, Identification of	
	hydrocarbons and alcohols	
5	Identification of Phenols,	None
	Aldehydes, and Ketones	
6	Identification of Carboxylic	None
	acid and amines	
7	Exam of Simple Liquid Organic	None
	Compounds	
8	Simple Solid Organic	None
	Compounds and	
	identifications of	
	carbohydrates	
9	Identification of Carboxylic	None
	acid, salts of carboxylic acids,	
10	and urea	
10	Identification of Aniline salts	
11	Final Exam	



Blue Print

Course I turne			Chemistry							
	3-CHEM				1					
	K1	K2	S1	S2		3	S4		V1	V2
CLOs	1.1	1.2	2.1	2.2		.3				
Marks	30	25	15	27	3	3				
Learning Domain	PLOs	CLOs	Assessment Type	Assessr Tool			o of stions		rks of the essment	Weight of the Assessment
			Homework	Object Questi	on	1	-2		1	1%
	K1	1.1 (30 M)	Mid term	Object Questi	on	1	-2		7	7%
			Final Exam	Object Questi	on	1	-2		22	22%
Knowledge & understanding			Homework	Object Question short and question	n & iswer	1	-2		2	2%
understanding	K2 (25 M)	Midterm	Object Questio	Objective Question & short answer		1-3		5	5%	
			Final Exam	Objective Question & short answer questions		1	-3		18	18%
	S1 (15 M)	Homework	Short an question solvin Proble	ns & ng	1	-3		2	2%	
		Midterm	Short an question solvin Proble	ns & ng	1	-3		3	3%	
Skills			Final Exam	Short an question solvin Proble	ns & ng	1	-3		10	10%
	S2	2.2 (27 M)	Practical Sheet	Object Questio short an question	n & swer	-	7		7	7%
			Final Practical Exam	experin	nent				20	20%
	S3	2.3 (3 M)	Safety EXAM	Object Questi		(5		3	3
TOTAL	4	100							100	100%

Course Title: Aromatic Organic Chemistry

Course Code: 232 CHEM-3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 28 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessmen	
C. Course Content	
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

Со	Course Identification						
1.	Credit hours:	3h					
2. (Course type						
a.	University □	College □	Dep	partment⊠	Track□	Others□	
b.	Required ⊠	Elective□					
3. Level/year at which this course is offered:				Level 6 Year 2			

4. Course general Description

1. Course Description

Course Title	Course Number	Contact Hours (CH)		unit		Level	Pre-
	Number	Lect.	Practical.	(0)	rear	LCVCI	requisite
Aromatic organic chemistry	232CHEM 3	2	2	3	2	Six level	231CHEM 3

Course objectives: They are to identify the following.

- 1- Identifying the properties of aromatic organic compounds
- 2- To provide students with the basic knowledge concerning nomenclature of aromatic organic compounds.
- 3 To familiarize students with the methods of preparation of aromatic compounds and their different chemical reactions
- 4- To familiarize students with the importance of aromatic compounds and their applications Syllabus: A-Theoretical contents

Nomenclature, Physical properties, reactivity, classification, preparation, reactions and their application for aliphatic and aromatic of; Halo Compounds, Alcohols and Ethers, Phenols, Aldehydes and Ketones, Carboxylic Acids, Carboxylic Acid derivatives, Aromatic Nitro-Compounds, Amines, Aromatic Diazonium Salts and Their Related Compounds, Aromatic Sulphonic Acids.

Syllabus: B-Practical contents

Selected experiments related to the course content; Investigation of organic solid compounds Identification methods of liquid organic compounds

*See attachment

- 5. Pre-requirements for this course (if any): 231 CHEM-3
- 6. Co- requirements for this course (if any):None
- 7. Course Main Objective(s)

This course aims to provide students with the basic knowledge concerning aromatic organic compounds, their methods of preparation, properties and their most important chemical reactions

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	
3.	Field	22
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (be able to)	Upon comple	tion of the cours	se, student will
1.1	Demonstrate a broad understanding and view of the principal theories, concepts and terminology of organic chemistry area. (I)	K (1.1)	lecture / discussion Seminars /presentation	Objective question
1.2	Describe Chemical phenomena using organic chemical principles of organic chemistry and understanding the reaction mechanisms for performing of the organic reactions. (I)	K (1.2)	lecture / discussion Seminars /presentation	Objective question
2.0	Skills; (Upon completion of the c	ourse, stude	nt will be able to	<mark>)</mark>
2.1	Demonstrate an ability in critical thinking for the nomenclature and draw the structure of all classes of organic	S (2.1)	lecture / discussion	Objective question

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	compounds and differentiate between them. (I)		Seminars /presentation	
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments in various fields of chemistry and to write a report representing the scientific data. (I)	S (2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Examine his material and lab safety background to Follow proper procedures and regulations for safe handling and use of chemicals. (I)	S (2.3)	lab demonstration s / hands-on student learning activities	Safety exam

C. Course Content

No	List of Topics	Contact Hours
1.	Revision on aromaticity, electrophilic aromatic substitution reactions and orientation in aromatic system.	2
2.	Halo compounds (aliphatic and aromatic).	3
3.	Alcohols, Ether (aliphatic and aromatic).	3
4.	Phenols.	2
5.	Aldehydes and Ketones (aliphatic and aromatic).	2
6.	Carboxylic Acids (aliphatic and aromatic).	2
7.	Carboxylic Acid derivatives (aliphatic and aromatic).	2
8.	Aromatic Nitro-Compounds	2
9.	Amino Compounds, Diazonium Salts and Their Related Compounds	2
10	Aromatic Sulphonic Acids	2
11	Experimental Part	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	3-8	2%
2.	Lecture Quizzes	5-7	3%
3.	Mid-term exam	6-8	15%

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score	
4.	LAB Sheet	11	7%	
5.	Quiz in Safety	11	3%	
6.	Final practical exam	11	10%	
7.	Lab report	Through Semester	10%	
9.	Final Exam	12-14	50%	
	Total		100%	

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Organic Chemistry, 12th Edition T. W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder ISBN: 978-1-119-24370-0 November 2016Edition 2015.
Supportive References	Organic Chemistry, 12th Edition T. W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder ISBN: 978-1-119-24370-0 November 2016Edition 2015.
Electronic Materials	 https://chem.libretexts.org/Bookshelves/Organic Chemistry/M ap%3A Organic Chemistry (McMurry). https://chem.libretexts.org/Bookshelves/Organic Chemistry/Book%3A Organic Chemistry with a Biological Emphasis v2.0 (Soderberg). https://chem.libretexts.org/Courses/Nassau Community College/Organic Chemistry I and II.
Other Learning Materials	• None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room for groups of 50 students. 1 Laboratory for group of 25 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet.
Other equipment (depending on the nature of the specialty)	Chemical Models, scientific videos

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect
Effectiveness of student's assessment	Instructor & Course coordinator	Class room evaluation (direct and indirect)
Quality of learning resources	Program committee	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

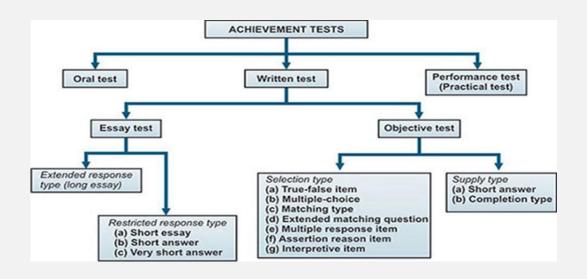
Chemistry Department Council CHEMS2301

CHEMS230104

11/1/2023G – 18/06/1444H

H. Attachments

1- Practical Work


Topics to be Covered			
List of Topics	No. of Weeks	Contact Hrs.	
1. General Safety Rules	1	2	
2. Lab. Equipment	1	2	
3. Qualitative analysis of solid organic compounds	1	2	
4. Ignition Test, Heating with soda-lime test, Treatment with 20% NaOH Test and Treatment with Conic H2SO4 Test.	1	2	
5. Nitration Test, Acidity test, Solubility and reverse precipitation Test, FeCl3 Test	1	2	
6. Combination of compounds containing (C, H, O). Identification of Carbohydrates, Carboxylic acids, Phenols, Aldehydes-Ketones, Metallic salts and Hydrocarbon.	1	2	
 Combination of compounds containing (C, H, O, N). Identification of Ammonium salts of acids, Amide, Imides and Amines. 	1	2	
8. Combination of compounds containing (C, H, O, N, S).	1	2	
Combination of compounds containing (C, H, O, N and halogens).	1	2	
10. Revision	2	2	
11. Final practical exam.	1	2	

2- Blue Print

Course Nam	e Aromatic	c Organic Che	emistry					
Course Code	e 232 CHE	232 CHEM-3						
PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3			
Marks	30	24	16	27	3			

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
& ng	K1	1.1	Homework	Objective question	2	2	2%
	KI	(30 M)	Midterm	Objective question	2	7	7%
Knowledge understandi			Final Exam	Objective question	2	21	21%
wlw	K2	1.2 (24 M)	Homework	Objective question	2	2	2%
(no nde			Midterm	Objective question	2	5	5%
X n			Final Exam	Objective question	2	17	17%
	S1	2.1 (16 M)	Homework	Objective question	2	1	1%
			Midterm	Objective question	2	3	3%
			Final Exam	Objective question	3	12	12%
Skills	S2	S2 2.2 (27 M)	Practical Sheet	Objective question	3	7	7%
01			Final Practical Exam	I Task experiment		20	20%
	S 3	2.3 (3 M)	Safety EXAM	Objective question	6	3	3%
TOTAL 100		100				100	100%

Course Title: Thermodynamics

Course Code: 241CHEM3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 25 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessm	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course

A. General information about the course:							
Course Identific	Course Identification						
1. Credit hours	: 3h						
2. Course type							
a. University	Colle	ge 🗆	Depar	tment⊠	Trac	k□	Others□
b. Required ⊠	Electiv	ve□					
3. Level/year at offered:	t which thi	s course		evel 7 ear 3			
4. Course general Description							
4. Course gene							
Course Title	Course		lours (CH)	Credit			Pro
			Hours (CH)	Credit unit (CU)	Year	Level	Pre- reauisite
	Course Number	Contact F			Year 3	Level	Pre- requisite 201CHEM-4
Course Title	Course Number 241 CHEM igned to give	Contact F Lecture 2 ve the stuty, and ph	Practical 1 Idents base rule	unit (CU) 3 ic informati	3	7	requisite 201CHEM-4

- ❖ 2. Recognize the different thermodynamic laws and thermochemistry
- ❖ 3. Calculate the required thermodynamic parameters via solving problems
- **4.** Identify the applications of thermodynamic phenomena
- **\$** 5. Understand the phase rule and related phase transitions
- 6. Investigate one, two and three component system and calculate degree of freedom.

Syllabus: A-Theoretical contents

Heat and work, Heat capacity, specific heat, thermodynamic process, thermodynamic laws: thermochemistry, Carnot cycle, Joule-Tomson effect Gibbs- Helmholtz free energy, phase rule, system with different component.

Syllabus: A-Practical contents

Experimental work illustrating selected parts of the theoretical content.

- 5. Pre-requirements for this course (if any): 344CHEM
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

The course is designed to give the students basic information about the thermodynamic chemistry, laws, thermochemistry, and phase rule

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; able to)	(Upon completion of th	ne course, stud	dent will be
1.1	Demonstrate a broad understanding and critical view on the principle of thermodynamic chemistry, Concepts, and terminology of thermodynamic topics, including Heat, Work, different types of systems, and laws of thermodynamic	K(1.1)	lecture / discussion Seminars /presentati on	Objective question

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.2	Describe correctly the different phenomena associated with thermodynamic laws, phase rule, and phase transitions	K(1.2)	lecture / discussion / Seminars /Individual presentatio n	Essay question
2.0	Skills: (Upon completion of the c	course, student will be	able to)	
2.1	Demonstrate critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and solve problems related to work, Enthalpy, internal energy, Entropy, Gibbs free energy, Helmholtz free energy, degree of freedom, and systems with different components.	S(2.1)	lecture / discussion / Seminars /Individual presentatio n	Solving Problems & chart analysis
2.2	Perform experiments in Thermodynamic chemistry, record, analyze, interpret the scientific data, and write reports. (M)	S(2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the correct techniques and rules for secure handling when using chemicals. (P)	S(2.3)	lab demonstrat ions / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsi	ibility; (Upon completic	on of the cours	e, student
3.1	will be able to) Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstrat ions / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Basics of thermodynamic chemistry	3
2.	The 0th. Law of thermodynamics and Gases	2
3.	Work and Heat, Internal Energy and the 1st. Law of Thermodynamics	3
4.	Entropy, the 2nd. Law of Thermodynamics and More on Entropy	3
5.	The 3rd. Law of Thermodynamics	2
6.	Thermochemistry	3
7.	Solutions and Condensed Phases Equilibrium and Chemical Equilibrium, Changes in Equilibrium Constants	2
8.	A Single -Component System and Phase Transition	2
9.	The Gibbs Phase Rule and Two Components: Liquid/Liquid Systems	2
10.	Selected topics related to course content	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	<i>3-8</i>	1%
2.	Lecture Quizzes	4-6	4%
3.	Mid-term exam	6-8	15 %
4.	LAB Sheet	11	5 %
5.	Quiz in Safety	10-11	3%
6.	Final practical exam	11	10 %
7.	Lab report	2-10	10 %
8.	Group work evaluation	2-10	2%
9.	Final Exam	12-14	50 %
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Physical Chemistry (Second Edition) by David W. Ball, Cleveland
L330Hilal References	State University, 2014.
	Essentials Of Physical Chemistry. Bahl A., et al. S. Chand. 2010, English. 4ed. 1166\1166.
Supportive References	1122910
	Translated Arabic version of peter Atkins (KSU)

Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	www.wikipedia.org/ https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth= &query=thermodynamic&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (Depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching		Likert-type Survey CES) Indirect
Effectiveness of students' assessment		Classroom evaluation (direct & indirect
Quality of learning resources		Indirect
The extent to which CLOs have been achieved		Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

CHEMS230104

DATE

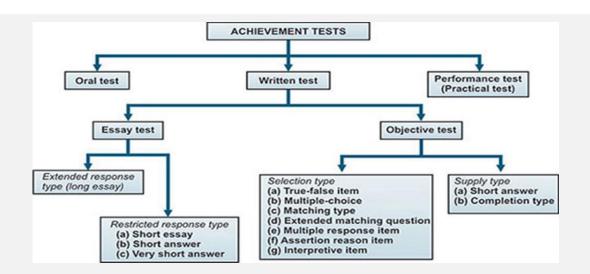
11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work

Week	EXPERMENTAL TITLE	Chemicals and Apparatus used	Remarks
1	Safety and regulations		
2	The Heat Capacity of the Calorimeter.	☐ Styrofoam cups ☐ Ice ☐ 100 mL graduated cylinder ☐ Cardboard lid w/ hole ☐ DI water ☐ Burner or hot plate	None
3-4	Heat of Fusion of ICE.	 □ Thermometer (-10 to 110 °C) □ 150 mL Beaker □ Watch or Clock □ Thermometer clamp □ 250 mL Beaker □ Centigram balance 	None
3-4	Specific Heat Capacity of an Unknown Metal.	□ Styrofoam cups □ Ice □ 100 mL graduated cylinder □ Cardboard lid w/ hole □ DI water □ Burner or hot plate □ Thermometer (-10 to 110 °C) □ 150 mL Beaker □ Watch or Clock □ Thermometer clamp □ 250 mL Beaker □ Centigram balance □ metal sample (i.e.: Iron, Copper, Zinc, Aluminum)	None
5-6	Heat of Solution of a Salt. (exo- and endo-) thermic dissolution.	 □ Styrofoam cup □ Balance □ Thermometer □ 100 mL graduated cylinder □ Anhydrous Sodium acetate, □ Ammonium nitrate, NH4NO3 	None
5-6	Heat of Neutralization.	□ Styrofoam cups □ Ice □ 100 mL graduated cylinder □ Cardboard lid w/ hole □ DI water □ Burner or hot plate □ Thermometer (-10 to 110 °C) □ 150 mL Beaker	None

Foam cup Thermometer	
7 Heat of Precipitation. ☐ Silver nitrate solution ☐ Sodium chloride solution	
7-8 Heats of Reaction – Hess's Law. Styrofoam cup Balance Thermometer 100 mL graduated cylinder sodium hydroxide, NaOH 1M sodium hydroxide 1M Hydrochloric acid 0.5M Hydrochloric acid Distilled water Distilled water	
Solid KNO ₃ Boiling water bath Graduated cylinders one 50 mL graduated cylinder with the plastic base removed one 25 mL graduated cylinder one 10 mL graduated cylinder Thermometer or temperature measuring probe Large test tube	
Solid KNO ₃ Foam cup Graduated cylinders Thermometer or temperature measuring probe Metal sheets and equipment are not available	
B-9 Determination of Critical Solution Temperature (CST) Determination of Critical Solution Temperature (CST)	
Phase diagram of 3 Component systems □ Test tubes, □ thermometer (graduated to 0.1°C), □ stirrer, □ beakers, □ Ethanol / Toluene / Water □ Metal sheets and equipment are not available	


2- Blue Print

Course Name	Thermodynamics
Course Code	241 CHEM-3

PLOs	K1	K2	S 1	S2	S3	S4	V1	V2
CLOs								3.2
Marks	30	24	16	25	3		2	

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
gu	K1		Quiz	Objective question	3	3	2
Knowledge & understanding		1.1 (30 M)	Mid term	Objective question	1	5	6
ınders			Final Exam	Objective question	2	22	22
se & u	K2		Quiz	Essay question	2	2	2
wledg		1.2 (24 M)	Mid term	Essay question	1	5	5
Knc		, ,	Final Exam	Essay question	2	17	17
	2.1 (16M)		H.W	Solving Problems & chart analysis	4	1	1
		2.1 (16M)	Mid term	Solving Problems & chart analysis	2	4	4
Skills			Final Exam	Solving Problems & chart analysis	6	11	11
	S2		Practical Sheet	MCQ	6	5	5
		2.2 (25 M)	Lab Report	Lab Report Rubric	10	10	10
		, ,	Final Lab Exam	I Task experiment	1	12	10
	S3	2.3 (3 M)	Safety Quiz	MCQ	8	3	3
Values	V1	3.1(2M)	Groupwork evaluation	rubric			2
Т	OTAL	100					100

Course Title: Chromatographic Analysis

Course Code: 313CHEM-3

Program: Bachelor in Chemistry

Department: Bachelor in Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 08 January 2023

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessmer	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

C	ourse Identification	on						
1.	Credit hours:	3 Credit Hours	3					
2.	Course type							
a.	University □	College □	Departme	nt⊠	Track		Others□	
b.	Required ⊠	Elective□						
3.	Level/year at wh	ich this cours	e is offered:	Level Year				
4.	4. Course general Description							
(Course Title	Course Number	Contact Hours (CH) Lec. Prac.	Credit unit (CU)	Year	Level	Pre- requisite	

4th

11th

212CHEM3

Course Objectives; They are to identify the following:

313 CHEM 3

[1] Develop basic understanding of chromatography principles and theories.

- [2] Describe the setup and instrumentation of the main chromatographic techniques.
- [3] Recognize the advantages and limitations of the main chromatographic techniques.
- [4] Calculate chromatographic factors and constants.
- [5] Interpret chromatographic data and results.
- [6] Develop basic experimental skills of chromatographic analysis.

Syllabus: A-Theoretical content

Chromatographic

Analysis

Definitions of chromatographic analysis terms and parameters, classifications of chromatographic techniques, advantages and disadvantages of the different techniques, main theories of chromatography, calculating and interpreting chromatographic factors and parameters, setup and instrumentation of main chromatographic techniques (PC, TLC, GC and HPLC), applications of chromatographic analysis.

Syllabus: B-Practical content

Practical experiments using different chromatographic separation techniques.

5. Pre-requirements for this course (if any):

6. Co- requirements for this course (if any):

7. Course Main Objective(s)

This course aims to give the student an introduction to the principles and theories of chromatography as a tool of separation for quantitative and qualitative analyses. The course

will also cover the setup and instrumentation of the main chromatographic techniques and their applications.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Up able to)	on compl	etion of the course, s	student will be
1.1	Demonstrate a broad understanding and critical view of the principal theories, concepts and terminology of chromatographic analysis and its applications (M)	K(1.1)	lecture / discussion /Seminars /presentation	oral and written examinations/ laboratory reports
1.2	Describe the main techniques and instrumentations used in chromatographic analysis and their advantages and limitations and applications (M)	K(1.2)	lecture / discussion /Seminars /Individual presentation	oral and written examinations/ laboratory reports
2.0	Skills; (Upon completion of the cour	se, stude	nt will be able to)	

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use of graphs and charts to solve problems in chromatographic analysis. (M)	5(2.1)	lecture / discussion /Seminars /Individual presentation	oral and written examinations/ laboratory reports
2.2	Perform experiments using various chromatographic techniques; record, analyze and interpret the chromatographic data, and write reports (M)	S(2.2)	Lab work, group work	Lab report/ Lab notebook.
2.3	Apply the proper procedures and regulations for safe handling, use and disposal of chemicals. (M)	S(2.3)	Lab demonstrations / hands-on student learning activities	Observation of practical skills / Safety exam / Practical assignments and laboratory reports
3.0	Values, autonomy, and responsibilit will be able to)	y; (Upon d	completion of the cou	urse, student
3.1	Working as a group leader in cooperation with other colleagues. (M)	V(3.1)	lab demonstrations / whole group and small group discussions	group project reports / Practical assignments and laboratory reports

C. Course Content

No	List of Topics	Contact Hours
1.	Course introduction and organization	1
2.	Introduction to separation	1
3.	Introduction to chromatography	2
4.	Basic chromatographic theories, terms and equations	5
5.	Paper chromatography (PC)	1
6.	Thin-layer chromatography (TLC)	1
7.	High Performance Liquid chromatography (HPLC)	4
8.	Gas chromatography (GC)	4
9	Analysis of real samples	1
10	Other separation techniques	1
11	Exam, quizzes and discussions	1

12	Practical experiments techniques.	on	different	chromatographic	separation	22
			Total			44

D. Students Assessment Activities

No	Assessment Activities *		Assessment timing (in week no)	Percentage of Total Assessment Score	
1	Homework a	ssignment	2-9	1.25	
2	Lecture Quiz		2-9	1.25	
3	Homework a	ssignment	2-9	1.25	
4	Lecture Quiz		2-9	1.25	
5	Mid-term exam		4-9	15	
6		Practical Sheet	11	5	
7		Lab Report	2,3,4,5,7,9	9	
8	LAB	Final Lab Exam	11	10	
9		Safety Exam	10	3	
10		Group evaluation rubric	2-9	3	
11	Final Exam		12-13	50 %	
Total				100 %	

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	1- العثمان، زيد بن عبدالله و محمود، كريم يوسف حسن. الكروماتوجرافيا: الأسس، تحضير العينات، والطرق المرتبطة. دار جامعة الملك سعود للنشر، الطبعة الأولى، 2021. 2-Skoog, Douglas, Donald West, F. L. Holler, and Stanley Crouch. Fundamentals of analytical chemistry. Cengage Learning, 9th Edition 2014.
Supportive References	 سلامة، أحمد خميس محمد. التحليل الكروماتوجرافي (اساسيات وطرق 2015. التحليل). جامعة المجمعة، الطبعة الأولى، 2015. العسود، بسام إبر اهيم. التحليل الألي. دار الفكر، الطبعة الأولى، 2011 . Ahuja, Satinder. Chromatography and separation science. Vol. 4. Academic Press, 2003. Miller, James M. Chromatography: concepts and contrasts. John Wiley & Sons, 2nd Edition, 2005. Braithwaite, Alan, and J. F. Smith. Chromatographic methods. Springer, 5th Edition, Reprint 1999.
Electronic Materials	 http://www.chromacademy.com/ www.chromforum.org/ http://www.lcresources.com/ http://www.sepscience.com

	• http://chemwiki.ucdavis.edu/Analytical Chemistry/Instrumen
	tal_Analysis/Chromatography/
	• https://chem.libretexts.org/Special:Search?qid=&fpid=230&fp
	th=&query=chromatography&type=wiki
Other Learning Materials	<u>None</u>

2. Required Facilities and equipment

Items	Resources
Facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Lecture Hall for 30 students equipped with modern teaching technology (projector, smart board, computer and internet) Laboratory in accordance with the rules of safety and personal protection accessories should be available to all students
Technology equipment (Projector, smart board, software)	- Laptop computer, smart board and internet access in the classroom and laboratory
Other equipment (Depending on the nature of the specialty)	 Chemicals and standards used in lab experiments Related analytical equipment and instruments such as GC, HPLC, UV lamp for TLC, separation columns and accessories, pH meter, analytical balance,etc

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) Indirect		
Extent of achievement of course learning outcomes	Instructor & Course coordinator	Classroom evaluation (direct & indirect)		
Quality of learning resources	Program coordinator	<u>Indirect</u>		
Exam Quality assessment	Assessment committee	<u>Indirect</u>		
Effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) Indirect		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL / COMMITTEE REFERENCE NO.

DATE

hamstry Department Council CHEMS2301

CHEMS230104

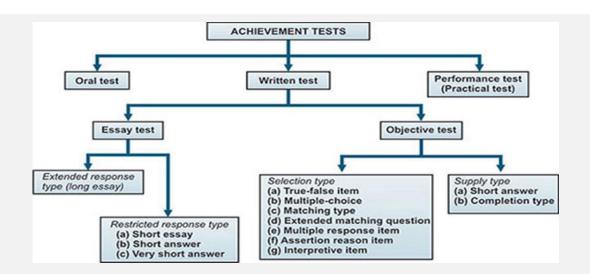
∛1/1/2023G – 18/06/1444H

H. Attachments

1- Practical Work

Experiment	Chemicals, Glassware and Equipment	Remarks
Lab. Experiments' organization and manual design	Data Show.	
Safety demonstration	Safety Equipment in the lab.	
Separating food colors using paper chromatography	Goggles; gloves and fume hoods. Chromatography paper; Capillary tube to spot samples; Beaker tall-form 500-mL; Watch glass large (to fit beaker); Scissors; Pencil; Ruler. Commercial food colors; Sodium chloride solution, NaCl, 0.1%.	
Separating Amino Acids by Thin Layer Chromatography	Goggles; gloves and fume hoods. Thin Layer Chromatography Sheet: (20 x 20 cm) covered with 0.20 mm layer of silica gel 60 (MACHEREY-NAGEL ALUGRAM® Xtra SIL G or similar); Capillary tube to spot samples; Beaker, 1000-mL (Developing Chamber); Watch glass, large (to fit beaker); Spraying bottle for the detecting reagent; Scissors to cut the TLC sheet; Pencil; Ruler. Amino Acids STANDARD solutions of: Lysine, β-Alanine, Tryptophan. Developing solvent (Mobile Phase): a mixture of Acetonitrile: water (70:30 vol/vol). Detecting reagent: Ninhydrin solution - 0.3% (w/vol) Ninhydrin in n-butyl alcohol containing 3% glacial acetic acid. Drying oven or hair dryer for hot air.	
Separation and Identification of Pain- Killing Drugs by Thin Layer Chromatography	Goggles; gloves; face masks and fume hoods. Thin Layer Chromatography Sheet: (20 x 20 cm) covered with 0.20 mm layer of silica gel 60 (MACHEREY-NAGEL ALUGRAM® Xtra SIL G or similar); Capillary tube to spot samples; Beaker, 1000-mL (Developing Chamber); Watch glass, large (to fit beaker); Scissors to cut the TLC sheet; Pencil; Ruler. STANDARD solutions for Active ingredients: Caffeine (6.5 mg/mL); Paracetamol (50 mg/mL); Acetylsalicylic acid (30 mg/mL); Painkiller tablets; Developing solvent (Mobile Phase): a mixture of Ethyl acetate / Hexane / Acetic acid (60:39:1). UV light box with lamp at short wavelength.	
Separation of dyes by Column Chromatography	Goggles; gloves; face masks and fume hoods. Chromatography column (400 x 22 mm); Beakers (2), 100-mL; Plastic droppers or Pasteur pipettes; Measuring cylinder, 50-mL; Funnel with wide stem; Pencil (for tapping); Long glass rod to position the cotton wool plug.	

	Dyes Mixture: Mixture of Methyl Orange and Methylene Blue solutions (1:1). Single-compound solutions are prepared in 95% ethanol; Mobile Phase (Elution solvents): FIRST elution solvent: 95% (v/v) Ethanol/Water. SECOND elution solvent: Acetonitrile-Water-Acetic Acid (80:15:5 v/v).	
Determination of Caffeine and Benzoic Acid in Soft Drinks by HPLC with UV detector	Goggles; gloves; and fume hoods. HPLC with UV Detector; Ultrasonic bath. Volumetric flasks (2x10 mL); Reagent bottles (1x60 mL); Glass pipette (1x1 mL); Beakers (1x50 mL, 2x25 mL); Syringe Filter (0.2 μm); Plastic syringe (1x2 mL); HPLC glass vial (1x1.5mL). Soft drink sample; Phosphate buffer solution at pH=3 (50 mL); HPLC mobile phase components (Methanol and Phosphate buffer).	
Qualitative Separation of Alcohols by Gas Chromatography	Goggles; gloves; and fume hoods. GC with Thermal Conductivity Detector (TCD). Small Vials for the solvents; 10 uL micro syringe. Single-Standard of Alcohols (Methanol, Ethanol, 2- Propanol and 1-Butanol); Mixture of all the four alcohols to examine the separation conditions; Unknown mixture of the above alcohols.	
Field trip to a chromatography lab	A bus accommodating the total number of students in addition to 3 instructors.	
Experiments review and discussions.	Data show and glassware for demonstration.	
Practical and sheet exams	Depends on the experiments assigned for the exam.	Week 11



2- Blue Print

	Chromatographic Analysis
Course Code	313 CHEM-3

PLOs	K1	K2	S1	S2	S3	V1
CLOs	1.1	1.2	2.1	2.2	2.3	3.1
Marks	18	22	30	24	3	3

Learning	PLOs	CLOs	Assessment	Assessment	No of	Marks of	Weight of
Domain			Type	Tool	Questions	the	the
						Assessment	Assessment
Knowledge &	K1	1.1	H.W.	Essay Q	5	1	1.25
understanding		(18M)	Mid term	Objective Q	8	4	4
			Final Exam	Objective Q	1	13	13
	K2	1.2	Quiz	Essay Q	5	1	1.25
		(22M)	Mid term	Essay Q	5	5	5
			Final Exam	Essay Q	4	16	16
Skills	S1	2.1	H.W	Solving	1	1	1.25
		(30M)		Problems &			
				chart analysis			
			Quiz	Solving	5	2	1.25
				Problems &			
				chart analysis			
			Mid term	Solving	3	6	6
				Problems &			
				chart analysis			
			Final Exam	Solving	3	21	21
				Problems &			
				chart analysis			
	S2	2.2	Practical	Objective Q	10	5	5
		(24M)	Sheet				
			Lab Report	Lab Report	6	9	9
				Rubric			
			Final Lab	Lab Exam	1	10	10
	~~		Exam		_		_
	S3	2.3	Safety	Objective Q	6	3	3
		(3M)	EXAM				
Value	V1		Group work	Group	-	3	3
		(3 M)		evaluation			
				rubric		T	100
					TOTAL		100

Course Title: Electrochemical Analysis Methods

Course Code: 314 CHEM-3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 5 January 2023

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessn	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
1. References and Learning Resources	7
2. Required Facilities and equipment	7
F. Assessment of Course Quality	8
G. Specification Approval Data	8
H. Attachments	9
1- Practical Work	9
	4.0

A. General information about the course:

Co	Course Identification								
1.	Credit hours:	3h							
2. Course type									
a.	University □	College □	Dep	artmen	ıt⊠	Track□	Others□		
b.	Required ⊠	Elective□							
3.	3. Level/year at which this course is Level 9								
off	ered:		Year	3					
A .	4 Course general Description								

4. Course general Description

Course Title	Course Number	Contact (CH)	t Hours	Credit unit	Year	Level	Pre-
		Lec.	Prac.	(CU)			requisite
Electrochemical Analysis Methods	314CHEM-3	2	2	3	3	9 th	344CHEM-3

Course objectives: They are to identify the following: -

- Basic principles of analytical electrochemistry and electro-analytical methods
- Using some electro-analytical techniques in chemical analysis
- Experimental applications of some electro-analytical methods.

Syllabus: A-Theoretical contents.

Basic principles, concepts, instrumentation and applications of some electro-analytical methods such as potentiometry including ion selective electrodes, electrogravimetry, coulometry, conductometry, voltammetry including polarography and amperometric titrations.

Syllabus: B-Practical contents.

Selected experiments related to electro-analytical methods.

- 5. Pre-requirements for this course (if any): 344CHEM-3
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

The course is designed to study the basic principles and experimental applications of some electro-analytical methods and their usage in chemical analysis.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and undeable to)	erstanding ; (Upon compl	etion of the course, s	student will be
1.1	Demonstrate broad understanding and critical view of the principles, classification and application of electro-analytical methods. (P)	K(1.1)	lecture / discussion	Objective Q & Essay Q
1.2	Describe correctly the essential facts, principles dealing withelectro- analytical methods. (P)	K(1.2)	lecture / discussion	Objective Q & Essay Q
2.0	Skills ; (Upon comple	etion of the course, stude	nt will be able to)	

Code	Course Learning Outcomes	Code of CLOs aligned	Teaching	Assessment Methods
2.1	Demonstrate ability in critical thinking, numeracy, analytical reasoning, use graphs, charts for solving problems related to electroanalytical methods. (P)	with program S(2.1)	Strategies lecture / discussion	Solving Problems & chart analysis Objective Q & Essay Q
2.2	Applytheir experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments in various fields of electro-analytical methods and to write a report representing the scientific data.(P)	S(2.2)	Lab Work/ group Work	Objective Q & Essay Q, lab report rubric
2.3	Examine lab safety background to follow proper procedures and regulations for safe handling and use of chemicals. (P)	S(2.3)	lab demonstrations / hands-on student learning activities	Safety exam & Objective Q &
3.0		nd responsibility; (Upon	completion of the co	urse, student
3.1	will be able to) Working as group leaderin cooperation with other colleagues. (P)	V(3.1)	Lab demonstrations / whole group and smallgroup discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Basic principles and terminology of electrochemical cells	3
2.	Ion selective electrodes, principles, fabrication, and uses	4
3.	potentiometry and potentiometric titration	3
4.	Electrogravimetry and coulometry	3
5.	Conductometry and conductometric titration	3
6.	Voltammetry, polarography	3
7.	7. Amperometric titration	
8.	Revision	1
9.	Selected Experiments related to course topics	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework	3-8	2%
2.	Quiz	4-6	3%
3.	Midterm Exam	6-9	15%
4.	Lab Sheet	11	5%
5.	Lab Report	Through semester	10%
6.	Final Practical Exam	11	7%
7.	Quiz in Safety	9-11	4%
8.	Group Work Evaluation	2-10	50%
9.	Final Exam	12-14	50%
10	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Undergraduate Instrumental Analysis, James W. Robinson, Eileen M. Skelly Frame and George M. Frame II, Taylor & Francis Group publisher, 7th edition (2014)
Supportive References	Analytical Electrochemistry , by Joseph Wang, John Wiley & Sons. Publisher, 2 nd edition (2006)

	 https://chem.libretexts.org/Courses/British Columbia Institute of Technology/Chem 2305/03%3A Electrochemistry/3.01 %3A An Introduction to Electroanalytical Chemistry https://chem.libretexts.org/Under Construction/Purgatory/Principles of Instrumental Analysis (Skoog et al.) -
Electronic Materials	 Under Construction/23%3A Potentiometry https://chem.libretexts.org/Under Construction/Purgatory/Principles of Instrumental Analysis (Skoog et al.) - Under Construction/25%3A Voltammetry https://chem.libretexts.org/Under Construction/Purgatory/Principles of Instrumental Analysis (Skoog et al.) -
	 Under Construction/25%3A Voltammetry https://chem.libretexts.org/Bookshelves/Analytical Chemistry/Supplemental Modules (Analytical Chemistry)/Analytical Sciences Digital Library/In Class Activities/Electrochemical Methods of Analysis/02 Text/7%3A Electrochemical Analytical Methods/7.4%3A Titrimetic Methods of Analysis
Other Learning Materials	Tutorial videos and pictures. Some course contents and materials are posted on Black board sites

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room(s) for groups of 25 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	Laboratory equipment such as pH-Meter, Conductometer, Ion selective electrodes, polarography apparatus. In addition to glassware, water bath, magnetic stirrer, Electronic balance and hot plate

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect
Effectiveness of student's assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect)
Quality of learning resources	Program coordinator	Indirect

Assessment Areas/Issues	Assessor	Assessment Methods
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

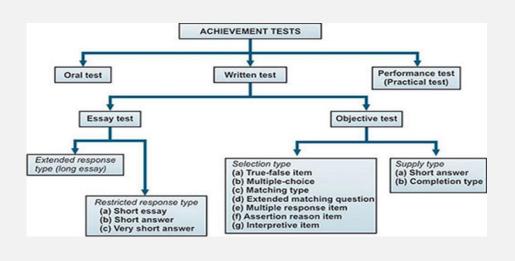
Chemistry Department Council CHEMS2301

CHEMS230104

11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work


No.	Experiment Title	Required Chemicals	Required Glass Wear & equipment	Week
1	Safety and regulations	-	-	1
2	Potentimetric titration of a strong acid using a strong base	HCl, NaOH and distilled water	Glass burette, beaker 100 mL and pH-meter	2
3	Potentimetric titration of a strong acid using a strong base (1st and 2nd derivatization)	-	-	3
4	Potentimetric titration of a strong base using a strong acid	HCl, NaOH and distilled water	Glass burette, beaker 100 mL and pH-meter	4
5	Potentimetric titration of a strong base using a strong acid base (1st and 2nd derivatization)	-	-	5
6	acid using a strong base	Acetic acid, NaOH and distilled water	Glass burette, beaker 100 mL and pH-meter	6
7	Potentimetric titration of a weak acid using a strong base(1st and 2nd derivatization)	-	-	7
8	Potentimetric titration of a strong base using a weak acid	Acetic acid, NaOH and distilled water	Glass burette, beaker 100 mL and pH-meter	8
9	Potentimetric titration of a strong base using a weak acid (1st and 2nd derivatization)	HCl, NaOH and distilled water	Glass burette, beaker 100 mL and pH-meter	9
10	Conductometric titration of a mixture of strong acid and weak acid using a strong base	HCl, Acetic acid, NaOH and distilled water	Glass burette, beaker 100 mL and pH-meter	10
11	Final Lab. Exam	-	-	11

2- Blue Print

Course Nam		Electroch	emical	Analysis	Me	thods				
Course Cod	e	314CHE	M-3							
PLOs		K1	K2	S1		S2	S3	S4	V1	V2
CLOs		1.1	1.2	2.1		2.2	2.3	2.4	3.1	3.2
Marks		15	21	34		22	4	-	4	
Learning	PLOs	CLOs	Asse	essmen	Ass	essment Too)	No of	Marks of	Weight of
Domain			t Ty	oe e				Questi	the	the
								ons	Assessment	Assessment
	K1	1.1 (15M)	Quiz	<u>'</u>	Obj	ective Q & E	ssay Q	1	2	1
Knowledge		(13171)		term	Obj	ective Q & E	ssay Q	2	3	3
&			Fina	l Exam	Obj	ective Q & E	ssay Q	2	11	11
understand	K2	1.2	Quiz	<u>'</u>	Essa	ay Q		2	2	1
ing		(21M)	Mid	term	Essa	ay Q		2	5	5
			Fina	l Exam	Essa	ay Q		3	15	15
S1 2.1 H.W		H.W	,	Solving Problems & chart analysis & Essay Q		8	8	2		
			Quiz	_		ving Problem		2	2	1
			Mid	term		ving Problem		5	5	7
Skills			Fina	l Exam		ving Problem llysis & Essay		5	24	24
	S2	2.2	Prac	tical	Obj	ective Q		6	3	3
		(22M)	Shee	et	Essa	ay Q		2	2	2
			Lab	Report	Lab	Report Rubi	ric	10	10	10
			Fina	l Lab	I Ta	sk experime	nt	1	7	7
		Exar	n							
	S3	2.3 (4M)	Safe	ty Quiz	Objective Q		8	4	4	
Value	V1	3.1 (4M)		tinuous ssment	Group evaluation r		n rubric	-	4	4
	TOTAL	100)							100

Course Title: Chemistry of Transition Elements

Course Code: CHEM 322-4

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 30 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessme	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

Со	Course Identification						
1.	Credit hours:	3h					
2. (2. Course type						
a.	University □	College □	Dep	partment⊠	Track□	Others□	
b.	Required ⊠	Elective□					
3.	3. Level/year at which this course is Level 7						
off	offered: Year 3						

4. Course general Description

Course Title	Course	Contac	t Hours	Credit			
	Number	(CH)		unit (CU)	Year	Level	Pre-
		Lec.	Prac.	(00)			requisite
Chemistry of	CHEM 322-4	3	2	4	3rd	7th	CHEM 221-4

This course aims to study the transition elements (d-block elements) and recognize their chemical and physical properties, and their various uses.

Course objectives: They are to identify the following.

- **Recognizing the transition elements.**
- **Recognizing the properties of these elements.**
- **Recognizing the bond theories of the complexes.**
- **!** Using the molecular orbital theory.

Syllabus: A-Theoretical contents

- a) The scientific content of the theoretical part:
 - ❖ Definition of the transition elements their location in the periodic table and their electronic structure the general properties of their compounds the double salts and coordination compounds Werner's work the effective atomic number rule the valence bond theory the crystal field theory Tetragonal distortion of octahedral complexes (Jahn- Teller distortion) Square planar complexes Tetrahedral complexes The properties, extraction and uses of the ten groups of the transition elements.
- b) The scientific content of the practical part:
 - Selected experiments for the preparation and identification of compounds and complexes of transitional elements and the study of their properties and their composition by the various physiochemical methods.

Syllabus: A-Practical contents

Experimental work illustrating selected parts of the theoretical content.

5. Pre-requirements for this course (if any): CHEM 221-4

6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

This course aims to study the transition elements (d-block elements) and recognize their chemical and physical properties, and their various uses.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	33	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	33
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	55

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Lwill be able to)	lpon completic	on of the cours	se, student
1.1	Demonstrate abroad knowledge on the properties, extraction and uses of the transition elements (d-block elements). (P)	K(1.1)	Lecture / Open discussion in class	Objective Questions
1.2	Describe the theories dealing with the formation of transition element complexes, magnetic properties, color, (P)	K(1.2)	Lecture / Open discussion in class	Objective questions, Essay questions
2.0	Skills: (Upon completion of the co	urse, student i	will be able to)	

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.1	Demonstrate the knowledge and skills required to solve problems in interpreting the properties and measurements of transition elements compounds. (P)	S(2.1)	lecture / Open discussion in class	Essay questions, Solving problems
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments to prepare and analyze of transition elements' compounds and to write a report representing the scientific data. (P)	S(2.2)	Lab work, group work	Objective question, Essay question, Practical Exam, lab report rubric
2.3	Examine his material and lab safety background to follow proper procedures and regulations for safe handling and use of chemicals. (I)	S(2.3)	lab demonstrat ions / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsible student will be able to)	lity; (Upon co	mpletion of the	course,
3.1	Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstrat ions / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to the Transition elements and their general properties.	9
2.	Introduction to the different theories explaining the formation of complexes.	6
3.	Properties and uses of the scandium group's elements. Properties, extraction and uses of the titanium group's elements.	3
4.	Properties and uses of the chromium group's elements.	2
5.	Properties and uses of the manganese group's elements.	2

No	List of Topics	Contact Hours
6.	Properties and uses of the Iron group's elements.	2
7.	Properties and uses of the cobalt group's elements.	2
8.	Properties and uses of the nickel group's elements.	2
9.	Properties and uses of the copper group's elements.	2
10.	Properties and uses of the zinc group's elements.	2
11.	Selected Experiments related to course topics.	22
	Total	55

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Lecture Quizzes	<i>3-8</i>	3 %
2.	Homework assignment	8	2 %
3.	Mid-term exam	6-8	15 %
4.	LAB Sheet	11	5 %
5.	Quiz in Safety	11	3%
6.	Final practical exam	11	9 %
7.	Lab report	2-10	10 %
8.	Group work evaluation	2-10	3%
9.	Final Exam	12 -1 4	50 %
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Tritororonoco ana zoarning recocaroco	
Essential References	1-Concise Inorganic Chemistry, J. D. Lee, 5TH ED, Wiley India Pvt. Limited, 2008. 2- العناصر الانتقالية الأساسية وكيمياء التناسق، د. حسين محمد عبدالفتاح، د. سمير أبو القاسم عبداللطيف، الطبعة الثانية، دار -النشر الدولى 2012
Supportive References	 1- Inorganic Chemistry: Principles of Structure and Reactivity, Okhil K. Medhi, James E. Huheey, Richard L. Keiter, Ellen A. Keiter, 4th Ed., Pearson Education Singapore Pte Ltd., 2006. 2- Advanced Inorganic Chemistry, Author: Cotton Wilkinson Murillo Bochmann, 6th Edition, Wiley India Pvt Ltd., 2012.
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	http://www.chemguide.co.uk/inorganic/transition/features.html http://www.chem.iitb.ac.in/~rmv/ch102/ic3.pdf

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (Depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods	
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect	
Effectiveness of students' assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect	
Quality of learning resources	Program coordinator	Indirect	
The extent to which CLOs have been achieved	Assessment committee	Indirect	
Other			

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Chemistry Department Council CHEMS2301

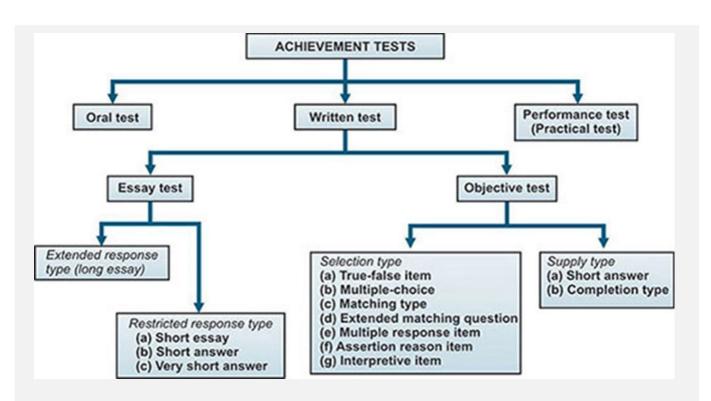
CHEMS230104

11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work

Week	EXPERMENTAL TITLE	Chemicals and Apparatus used	Remarks
1	Safety and regulations		
2	Preparation of nickel ammonium sulphate	Glassware - Nickel(II)sulphate hexa- hydrate - Ammonium sulphate.	None
3	Determination of nickel as the dimethylglyoximate	Glassware -1 % alcoholic solution of dimethylglyoxime - HCl (1:1) - Ammonia solution (1:1)	None
4	Determination of sulphate as barium sulphate	Glassware - Barium chloride solution (5%) - Concentrated hydrochloric acid.	None
5	Calculating of the empirical and the chemical formula of the double salt		None
6	Preparation of copper ammonium sulphate	Glassware - Copper(II)sulphate penta- hydrate. Ammonium sulphate and Acetone.	None
7	Determination of copper iodometrically	Glassware - (0.1 N) sodium thiosulphate. Potassium iodide (solid). Starch solution.	None
8	Determination of sulphate as barium sulphate	Glassware -Barium chloride solution (5%) - Concentrated hydrochloric acid.	None
9	Calculating of the empirical and the chemical formula of the double salt		None


2- Blue Print

Course Name	Chemistry of Transition Elements
Course Code	322CHEM -4

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	16	20	34	24	3		3	

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1	Quiz	Objective Q*	10	10	1
	111	(16M)	Mid term	Objective Q	1	6	3
V			Final Exam	Objective Q	1	12	12
Knowledge & understanding			Quiz	Objective Q	10	10	2
understanding	K2	1.2 (20M)	Mid term	Objective Q Essay Q**	1	10	5
		(2014)	Final Exam	Objective Q Essay Q	1	13	13
	S1		H.W	Essay Q Solving Problems	4	10	2
		2.1 (34M)	Mid term	Essay Q Solving Problems	2	14	7
Skills			Final Exam	Essay Q Solving Problems	3	25	25
			Practical Sheet	Objective Q	2	10	5
	S2	2.2 (24M)	Lab Report	10 EXP.	10	10	10
		(2111)	Final Lab Exam	Practical Exam	1	9	9
	S3	2.3 (3M)	Safety EXAM	Objective Q	9	9	3
Value	V1	3.1 (3)	Continuous assessment	Practical group work Rubric	-	3	3
	TOTAL	100					100

Course Title: CO-ORDINATION CHEMISTRY

Course Code: 323CHEM-3

Program: Bachelor in Chemistry

Department: CHEMISTRY

College: SCIENCE

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 28 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessm	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	7
1- Practical Work	8
	4.4

A. General information about the course:

Со	Course Identification							
1.	Credit hours:	3h	Bh					
2. (2. Course type							
a.	University □	Colleg	je 🗆	Dep	artment∑		Track□	Others□
b.	Required ⊠	Elective	e□					
	Level/year at ered:	which this	cours	se is	Level 9 Year 3.			
Th	4. Course general Description This course aims to study the coordination and organometallic compounds, their methods of preparation and their uses.							
Co	Course Title Course Contact Hours Credit unit Pre- requisite							
			Lec.	Prac.	(CU)	Year	Level	
	oordination nemistry	CHEM 323	2	1	3	3	9	322CHEM4

Course Objectives; They are to identify the following

- **1-** Recognizing the stereochemistry of complexes and molecular symmetry.
- **2-** Recognizing the concept of donating and accepting atom.
- **3-** Recognizing the nomenclature rules of the complexes.
- **4-** Recognizing the types of ligands and the coordination number.
- **5-** Recognizing the polar and non-polar molecules.
- **6-** Recognizing the methods of preparation of organometallic compounds.
- **7-** Recognizing the uses of organometallic compounds.

Syllabus: A-Theoretical contents

- a. <u>Coordination Chemistry</u>: Concept of donating and accepting atoms Types of ligands Coordination number Stereochemistry of complexes and molecular symmetry Central atom groups Nomenclature rules of the complexes Crystal field theory Molecular orbital theory.
- b. <u>Organometallic Chemistry</u>: General rules Different methods of preparation Uses of organometallic compounds in the organic preparations (organic compounds of lithium, magnesium, boron, aluminum and silicon) Organometallic compounds of transition elements, reactions of these compounds and their uses in organic preparations.

Syllabus: A-Practical contents

Selected experiments Selected experiments related to preparation and reactions of the complexes.

- 5. Pre-requirements for this course (if any):322chem
- 6. Co- requirements for this course (if any): None
- 7. Course Main Objective(s)

This course aims to study the coordination and organometallic compounds, their methods of preparation and their uses.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
	Hybrid		
3.	Traditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (able to)	Upon comple	etion of the course, s	tudent will be
1.1	Demonstrate abroad knowledge and understanding about the fundamentals and properties of main groups of transition elements in periodic table, coordination	K(1.1	Lecture / discussion Seminars /presentation	Objective Q

Code	Course Learning Outcomes	Code of CLOs aligned	Teaching Strategies	Assessment Methods
		with program	Strategies	Memous
	parameters, organometallic complexes etc .(P)			
1.2	Describe the postulates of Werner theory, organometallic rules and coordination parameters. (P)	K(1.2)	lecture / discussion / Seminars /Individual presentation	Objective Q Essay Q
2.0	Skills ; (Upon completion	on of the coul	rse, student will be al	ole to)
2.1	Demonstrate the knowledge and skills to calculate the coordination number, CFSE, oxidation state of metal and magnetic moments (P)	S(2.1)	lecture / discussion / Seminars /Individual presentation	Essay Q Solving Problems
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments as well as accurately record and analyze the results of such experiments. (P)	S(2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Examine his material and lab safety background to follow proper procedures and regulations for safe handling and use of chemicals. (I)	S(2.3)	lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsi will be able to)	bility ; (Upon	completion of the co	urse, student
3.1	Working as a group leader in cooperator with other colleagues. (P)	V(3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Definitions, series theory and Werner's theory and types of complexes	2
2.	Calculations of oxidation state of central atom and charge on the coordination sphere, factors affecting of the complex formation	2

3.	Effective atomic number rules, Nomenclature, magnetic susceptibility, coordination numbers and the stereochemistry and types of chelates	4
4.	Isomerisms of coordination compounds.	3
5.	bonding theories (VBT, CFT, CFSE and MOT)	2
6.	Reaction mechanisms of coordination compounds (substitutions and elimination reactions)- Inert and Labile reactions	3
7.	Principles, Nomenclature, Preparation, properties, reactions of organometallic compound	2
8.	-16 and 18 rules of organometallic compound	2
9.	Applications of coordination and organometallic compounds.	2
10	Selected experiments related to the course topic	22
	Total	44

D. Students Assessment Activities

No	Asse	essment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework as	ssignment	3-8	2%
2.	Lecture Quizz	es	5-7	3%
3.	Mid-term exa	ım	6-8	15%
4.		LAB Sheet	11	5%
5.		Safety Exam	11	4%
6.	Practical work	Final practical exam	11	7%
7.	WOIK	Lab report	2-10	10%
8.		Group work evaluation	2-10	4%
9.	Final Exam		12-14	50%
		Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Inorganic Chemistry: Principles of Structure and Reactivity, Okhil K. Medhi, James E. Huheey, Richard L. Keiter, Ellen A. Keiter, 4th Ed., Pearson Education Singapore Pte Ltd., 2006. Advanced Inorganic Chemistry, Author: Cotton Wilkinson Murillo Bochmann, 6th Edition, Wiley India Pvt Ltd., 2012.
Supportive References	Concise Inorganic Chemistry, J. D. Lee, 5TH ED, Wiley India Pvt. Limited, 2008. Introduction to Coordination Chemistry, G. A. Lawrance, A John Wiley and Sons, Ltd., 2010 Direct Synthesis of Coordination and Organometallic Compounds, A.D. Garnovskii and B.I. Kharisov, Elsevier Science, 1999.
Electronic Materials	Some course contents and materials are posted on Black board sites

Other Learning Materials

https://chem.libretexts.org/Bookshelves/Inorganic Chemistry/Modules and Websites (Inorganic Chemistry)/Coordination Chemistry www.wikipedia.org/http://www.wpi.edu/Academics/Depts/Chemistry/Courses/General/

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect		
Effectiveness of students assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect		
Quality of learning resources	Program coordinator	Indirect		
The extent to which CLOs have been achieved	Assessment committee	Indirect		
Other				

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE REFERENCE NO.

DATE

Chemistry Department Council CHEMS2301

CHEMS230104

18/06/1444H

H. Attachments

1- Practical Work

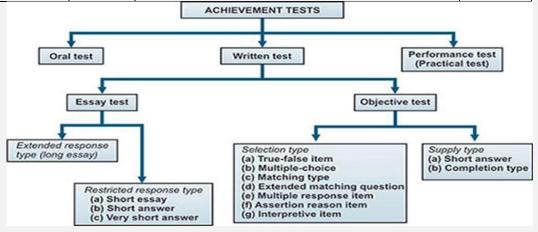
Practical contents

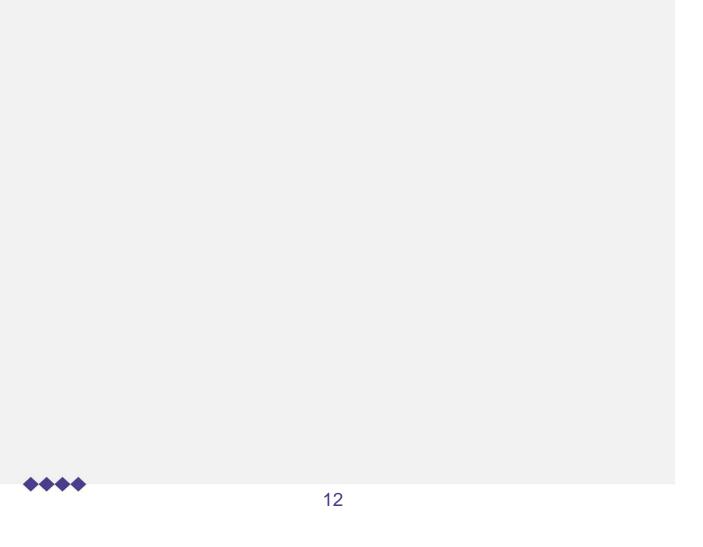
No.	EXPERMENTAL TITLE	Equipment, Chemicals and Tools.	No of weeks for			
exp.			each experiment			
1	General rules of safety					
2	Introduction about coordination chemistry and the safety in the laboratory.	Periodic table	One week			
3	<u>Direct Titration</u>	**0.01M of EDTA	One week			
	Determination of Magnesium	**Buffer (PH=10)				
	(II)	**Soiochrome Black T (E.B.T) Indicator				
		**Mg ⁺² solution				
4	Direct Titration	**0.01M of EDTA	One week			
	Determination of Zinc (II)	**Buffer (PH=10)				
		**Soiochrome Black T(E.B.T)Indicator				
		**Zn ⁺² solution				
5	<u>Direct Titration</u>	**0.01M of EDTA	One week			
	Determination of cadmium (II)	**Buffer (PH=10)				
		**Soiochrome Black T(E.B.T) Indicator				
		**Cd ⁺² solution				
6	<u>Direct Titration</u>	**0.01M of EDTA	One week			
	Determination of Copper (II)	**Buffer (PH=10)				
		**Murexide (Indicator)				
		**Cu ⁺² solution				
7	<u>Direct Titration</u>	**0.01M of EDTA	One week			
	Determination of Manganese	**Buffer (PH=10)				
	(II)	**Soiochrome Black T(E.B.T)Indicator				
		**Mn ⁺² solution				
8	Direct Titration Exps.	**0.01M of EDTA	One week			
	Determination of Lead (II)	**Buffer (PH=10)				
		**Soiochrome Black T (E.B.T) Indicator				

		Pb ⁺² solution	
9	Indirect and Back Titration	**0.01M of EDTA	One week
	Exps.	** 0.01 M Zinc Sulphates	
	Determination of Aluminum (III)	**Buffer (PH=10)	
		**Soiochrome Black T(E.B.T) Indicator	
		**Al ⁺³ solution	
10	. Indirect and Back Titration	**0.01M of EDTA	One week
	Exps.	** 0.01 M Zinc Sulphates	
	Determination of Nickel (II)	**Buffer (PH=10)	
		** Murexide (Indicator)	
		** Ni ⁺² solution	
11	Substitution Titration Exp.	**0.01M of EDTA	One week
	Determination of Calcium	**Ca ⁺² solution	
		**Buffer (PH=10)	
		**Magnesium Complex of EDTA (Mg-EDTA)	
12	InDirect Titration Exps.	**0.01M of MgSO ₄	One week
	Determination of Lead (II)	**0.01M of EDTA	
		**Buffer (PH=10)	
		**Soiochrome Black T(E.B.T) Indicator	
		Pb ⁺² solution	
13	Preparation and analysis of	** Glassware.	One week
	monooxalato iron(II) complex	** Ferrous sulfate	
		** Ferrous ammonium sulphate.	
		**oxalic acid dihydrate.	
		** Acetone.	
		** Ni ⁺² solution	
14	Preparation and	** Glassware.	One week
	characterization of potassium trisoxalatochromate(III)	**chromium sulfate	
	trihydrate	** Potassium dichromate	
	K ₃ [Fe(C ₂ O ₄)].3H ₂ O	** Potassium oxalate monohydrate	

		** Oxalic acid dihydrate	
		** Sulphuric acid	
		** Potassium permanganate	
		** Ammonoium persulphate	
		** H ₂ O ₂	
		** Ethanol	
15	Preparation of potassium cis	** Glassware.	One week
	and trans-diaqua dioxalato chromate (III). Cis &Trans K[Cr(C ₂ O ₄) ₂ (H ₂ O) ₂]	** chromium sulfate	
		** Potassium dichromate	
		** Potassium oxalate monohydrate	
		** Oxalic acid dihydrate	
		** Ethanol	

Instructors conducts selected Exps from the Table according to the availability of materials and discussions with coordiators.





2- Blue Print

Course Name	Co-ordination Chemistry
Course Code	323 CHEM3

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.2 2.3		3.1	3.2
Marks	15	21	34	22	22 4		4	
Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool		No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1 (15M)	Quiz	Objectiv	e Q *	2	2	1
			Mid term	Objectiv	re Q	6	3	3
			Final Exam	Objectiv		22	11	11
Knowledge &	K2	1.2 (21M)	Quiz	Objectiv		1	1	1
understanding			Mid term	Objectiv Essay Q		3	5	5
			Final Exam	Objectiv		10	5	15
				Essay Q		4	10	
	S1	2.1 (34M)	H.W Essay Q Solving Problems		Problems	4	2	2
			Quiz	Objectiv Essay Q		1	1	1
	Final		Mid term	Essay Q Solving	Problems	3	7	7
			Final Exam	Essay Q Solving Problems		7	24	24
Skills	S2	2.2 (22M)	Practical Sheet			6	3	3
		Lab Report		Objectiv Essay Q		2	2	2
			10 EXP.		10	10	10	
			Final Lab Exam	Practical	l Exam	1	7	7
	S3	2.3 (4M)	Safety Exam	Objectiv	re Q	8	4	4
Value	V1	3.1 (4)	Continuous assessment	Practical group work Rubric		-	4	4
	TOTAL	100						100

Course Title: Heterocyclic Organic Chemistry

Course Code: 333CHEM-3

Program: Bachelor of Science in Chemistry

Department: Chemistry

College: Faculty of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 29 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assess	
C. Course Content	
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
1. References and Learning Resources	7
2. Required Facilities and equipment	7
F. Assessment of Course Quality	8
G. Specification Approval Data	8
H. Attachments	9
1- Practical Work	9

A. General information about the course:

Co	urse Identification	on					
1.	Credit hours:						
2.	Course type						
a.	University □	College □	Dep	partment⊠	Track□	Others□	
b.	Required ⊠	Elective□					
	Level/year at whered:	nich this course	is	Level 7 Year 3			
1.	1. Course Description						

Course Title	Course	Contact Hours Credit unit		.,		Pre- requisite	
	Number	Lec.	Prac.	(CU)	Year	Level	
Heterocyclic Organic Chemistry	333CHEM-3	2	2	3	3	7	232CHEM-3

Course objectives:

- 1. Identification and classification of heterocyclic organic compounds.
- 2. To identify the physical properties of heterocyclic organic compounds.
- 3. Study of the addition reactions, the electrophilic and nucleophilic substitution reactions on a five and six-membered ring with one and two heteroatoms.
- Syllabus: A-Theoretical contents

Definition, classification and nomenclature of heterocyclic organic compounds - physical properties of heterocyclic compounds - Addition reactions, elctrophilic and nucleophilic substitutation reactions of five and six-membered rings with one or two heteroatoms-pyrrole, furan, thiophene, pyrazole, imidazole, oxazole, thiazole, isothiazole, azine, thiazine, pyridine, alkyl pyridine, pyridazine, pyrimidine and quinoline - Synthesis of five and six-membered rings with one or two heteroatoms - some poly-heterocyclic compounds - synthesis and reactions.

❖ Syllabus: B-Practical contents

Investigation and identification of organic compounds

- 4. Pre-requirements for this course (if any): 232CHEM-3
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

This course aims to provide student with basic knowledge of heterocyclic organic compounds, their physical and chemical properties and their most important chemical reactions.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Up able to)	on completi	on of the course, s	student will be
1.1	Demonstrate a broad, knowledge and understanding in heterocyclic topic as Nomenclature of heterocyclic compounds, Five-Membered rings with one hetero atom, Fused benzene ring Five-Membered rings with one hetero atom, Five-Membered rings	K(1.1)	lecture / discussion Seminars /presentation	Objective question

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	with two hetero atom, Six-Membered rings with one hetero atom, Fused benzene ring Six-Membered rings with one hetero atom, important of Biological activities of heterocyclic compounds (P)			
1.2	Describe the aromatic character of some heterocyclic compounds and giving explanation to some of their synthetic methods. (P)	K (1.2)	lecture / discussion Seminars /presentation	Objective question
2.0	Skills; (Upon completion of the coul	rse, student	will be able to)	
2.1	Demonstrate the knowledge and skills to interpret products obtained from different reaction conditions regarding heterocyclic chemistry (P)	S(2.1)	lecture / discussion / Seminars /Individual presentation	Objective question
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments as well as accurately record and analyze the results of such experiments. (P)	S(2.2)	Lab work, group work	Objective question , lab report rubric
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (I)	S(2.3)	lab demonstrations / hands-on student learning activities	
3.0	Values, autonomy, and responsibility will be able to)	y; (Upon cor	mpletion of the cou	urse, student
3.1	Work as a group leader in cooperation with other colleagues (I)	V(3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
	Introduction of heterocyclic compounds	
1.	Nomenclature of heterocyclic compounds	2
	Nomenclature of one ring heterocyclic compounds with one heteroatoms (N,O,S)	
	Nomenclature of heterocyclic compounds:	
2.	Nomenclature of one ring heterocyclic compounds with two or more heteroatoms (N,O,S).	3
	Nomenclature of fused ring heterocyclic compounds with one or more heteroatoms (N,O,S).	
	Five-Membered rings with one hetero atom	
3.	Pyrrole (Azole), Furan and Thiophene (Methods of preparation, Physical properties and structure, Chemical properties)	4
	Reactions : (basicity ; acidity properties) .	
	Fuse ring Five-Membered rings with one hetero atom	
4.	Indole – benzofuran- benzothiophene (Methods of preparation,	3
	Physical properties and structure, Chemical properties.	
5.	Five-Membered rings with two hetero atoms	2
0.	Pyrazole and Imidazole (Methods of preparation, Physical properties and structure, Chemical properties)	2
6.	Six-Membered rings with one hetero atom \Pyridine (Methods of preparation. Physical and chemical properties Derivative of pyridine (alkyl pyridine, amino pyridine) Six-Membered rings with two hetero atom	4
	Pyradiazine, pyrimidine, pyrazine (Methods of preparation. Physical properties and Chemical properties	
	Fused Six-Membered rings with one hetero atom	
7.	Quinoline and isoquinoline (Methods of preparation. Physical properties and chemical properties.	3
8.	Six membered rings with one oxygen atom (Pyran-Coumarin-4-Chromone) Six-membered rings with two different heteroatoms (Morpholine-piperazine-phenoxazine)	1
9	Selected experiments related to the course topic	22
	Total	

D. Students Assessment Activities

No	Assessment Activities *		Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homewo	rk assignment	3-8	2 %
2.	Lecture C	Quizzes	4-7	3 %
3.	Mid-term exam		5-7	15 %
4.		LAB Sheet	12	7 %
5	LAD	Safety EXAM	11	3%
6	LAB	Final practical exam	12	7 %
7		Lab report	2-11	10 %
8	Group work evaluation		2-11	3%
9	Final Exam		12-14	50 %
	Total			100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Introduction to Heterocyclic Chemistry, Peter A. Jacobi ISBN: 978-1-119-41768-2 August 2018 272 Pages
Supportive References	 Heterocyclic chemistry; Gilchrist, T. L. 3rd ed.; Addison Wesley Longman: Edinburgh Gate, 1997. Heterocyclic chemistry; Joule, J. A.; Mills, K.; 4th ed.; Blackwell Science: Oxford, 2000. Heterocyclic Chemistry, R. R. Gupta, M. Kumar, V. Gupta, Volume II: Five-Membered Heterocycles, Springer, ISBN 978-3-642-08460-7, 1999.
Electronic Materials	 https://b-ok.asia/book/829427/cae9f4 https://chem.libretexts.org/Bookshelves/Organic Chemistry/Map %3A Organic Chemistry (McMurry)/15%3A Benzene and Arom aticity/15.06%3A Aromatic Heterocycles- Pyridine and Pyrrole
Other Learning Materials	Computer-based programs/ ChemDraw

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students

Items	Resources
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of students assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Chemistry Department Council CHEMS2301

CHEMS230104

11/1/2023G - 18/06/1444H

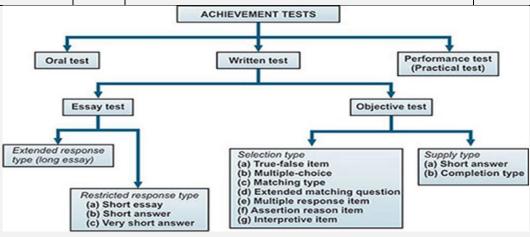
H. Attachments

1- Practical Work

Attachment:

1- EXP. Table

No.	List of Topics	APPARATUS	CHEMICALS	Week
1	Safe handling when	Smart board, Data	NaOH, Conc. HNO ₃ , Conc. H ₂ SO ₄ ,	1
	using chemicals	show, Black	ethanol, benzene	
		board, internet		
	Qualitative Analysis of	Flame distilled	Litmus paper	
2	Organic Compounds.	water - test tubes	Simple salts of organic compound	1
	Preliminary Tests -	– Beaker- flask	such as (oxalic acid-benzoic acid-	
	Physical Constants		aniline HCl-Urea- Glucose	
	Analysis for elements present- Solubility tests		1-Naphthylamin 1-naphthole	
3		Flame distilled		1
3	Qualitative Analysis for Elements	Flame distilled water - test tubes	Litmus paper Simple salts of organic compound	1
	Lassaigne's Sodium	– Beaker-flask	such as (oxalic acid-benzoic acid-	
	Fusion Test - Heat Test.	- Deaker-mask	aniline HCl-Urea- Glucose	
	Heating with soda lime		1-Naphthylamin	
	- Nitration - Sulphation		1-naphthole	
	Treatment with NaOH-		Reagents :- NaOH, FeCl ₃ , conc.	
	Treatment with FeCl ₃		HNO ₃ , conc. H ₂ SO ₄ , soda lime,	
4	Identification of organic	Flame distilled	Carbohydrate	2
	compounds	water - test tubes -	Molisch Test. Benedict's Test	
	Combination of (H, C,O)	Beaker-flask	Barfoed's Test Bial's test	
	[Carbohydrate,		Seliwanoff's Test	
	Carboxylic acid,		Carboxylic acid	
	phenols]		Acidity test	
			Nitration	
			FeCl ₃ test	
			CaCL ₂ test	
			Phthalein test	
			Phenols	
			Phenol, resorcinol, cresol	
5	Combination of (H, C,O	Flame distilled	1-naphthol Heat test	1
3	and metallic) [Salts of	water - test tubes –	Nitration	1
	acid]	Beaker-flask	FeCl ₃ test	
	ucio ₁	Bound Hush	CaCL ₂ test	
			Phthalein test	
6	Combination of (H, C,O	Flame distilled	Simple of amm. Salts	2
	and N) [Amm. Salts,	water - test tubes -	Acidity test	
	Amide, imides]	Beaker-flask	Nitration	
			FeCl ₃ test	
			CaCL ₂ test	
			Phthalein test	
			Urea, imide	
			NaOH test	
			CuSO ₄	


7	Combination of (H, C,O, N,S)	Flame distilled water - test tubes -	Aniline H ₂ SO ₄ Thiourea, Sulphaline acid	1
		Beaker-flask		
7	Combination of (H,	Flame distilled	Aniline HCl	1
	C,O, N, X)	water - test tubes -	Chlorale	
		Beaker-flask		
8	Review	Flame distilled	Carbohydrate	1
		water - test tubes	Carboxylic acid	
		 Beaker-flask 	Salts of acids	
			Amm. salts	
9	Final Exam.			11

2- Blue Print

Course Name	Heterocyclic Organic Chemistry
Course Code	333CHM-3

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	17	23	30	24	3	0	3	

Learning Domain	PLOs	CLOs	Assessment Type	Assessment	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1	Quiz	Objective test	1	1	1
		(17	Homework		4	1	1
		M)	Mid term		1	5	5
Knowledge &			Final Exam		1	10	10
understanding	K2	1.2	Quiz	Objective test	2	2	2
		(23	Homework	Essay question	3	1	1
		M)	Mid term		2	5	5
			Final Exam		2	15	15
	S1	2.1 (30 M)	Midterm	Essay question	2	5	5
			Final Exam		3	25	25
Skills	S2	2.2 (24M)	Practical Sheet	Objective test	3	7	7
			Lab Report	Lab Report Rubric		10	10
			Final Lab Exam	Report of Lab Exam	7	7	7
	S3	2.3 (3 M)	Safety EXAM	Objective test	8	3	3
Value	V1	3.1 (3 M)	Continuous assessment	Group evaluation rubric	-	3	3
	TOTAL	100					100

Course Title: Spectroscopy of Organic Compound

Course Code: 334CHEM2

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 22 December 2022

Table of Contents:

A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Me	
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
1. References and Learning Resources	7
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

Content

A. General information about the course:

Course Identification							
1.	Credit hours:	2h					
2. (Course type						
a.	University □	College □	Department⊠	Track□	Others□		
b.	Required ⊠	Elective□					
	3. Level/year at which this course is offered: Level 9 / Year 3						
4. (4. Course general Description						

Course Title	Course Number	Contact Hours (CH)		Credit unit (CU)	Year	Level	Pre- requisite
		Lec.	Prac.				requisite
Spectroscopy of Organic Compounds	334CHEM2	2	0	2	3	9	232CHEM3

This course aims to give students the basic knowledge of different regions of electromagnetic radiations and their properties to develop skills in elucidation of the molecular structure of organic compounds

Course objectives: They are to identify the following.

- To understand different regions of electromagnetic radiations and their interaction with atoms and molecules.
- To identify the spectra due to the electronic absorption.
- The basic principles of nuclear magnetic resonance spectroscopy.

Syllabus: A-Theoretical contents

Empirical, Molecular, Structural formula and Index of hydrogen deficiency. The electromagnetic radiations - interaction with atoms and molecules – the electronic absorption

Ultra violet and visible spectroscopy (UV) – effect of molecular structure and stereochemistry of compounds on electronic absorption – Infra red spectroscopy (IR) – effect of molecular structure on stretching and bending vibrations (conjugation – induction – hydrogen bonding – stereo positions) – Nuclear magnetic resonance spectroscopy – the magnetic nuclei – effect of external magnetic field on magnetic nuclei – shielding and deshielding effect - spinning protons – splitting of signals – chemically and magnetically equivalent protons – integration – coupling constant – exchangeable protons with deuterium – mass spectrometry – formation of molecular ion – rules of fragmentation of molecular ions – isotopes in nature – molecular ion area – high resolution mass spectrometry.

Syllabus: A-Practical contents

none

5. Pre-requirements for this course (if any):

232CHEM3

6. Co-requirements for this course (if any):

none

7. Course Main Objective(s)

This course aims to give students the basic knowledge of different regions of electromagnetic radiations and their properties to develop skills in elucidation of the molecular structure of organic compounds

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	22

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes Knowledge and understanding; (U	Code of CLOs aligned with program	Teaching Strategies of the course, s	Assessment Methods
1.1	Demonstrate a broad knowledge and understanding in spectroscopy, electromagnetic radiation, chromophore, Auxochrome its applications., etc (P)	K (1.1)	Lecture group work discussion	Objective Q
1.2	Describe the essential facts, principles and theories related to spectroscopic chemistry and its uses in identification of simple organic compounds ,etc (P)	K(1.2)	Lecture group work discussion	Short answer Questions
2.0	Skills; (Upon completion of the cours	se, student will	be able to)	
2.1	Use numeracy skills in calculating \(\lambda\) max for identification of organic compounds, Label the components of the instrument to be used for each spectral method and its work, analyze experimental data obtained from different spectroscopy charts (P)	S(2.1)	lecture group work discussion	Solving Problems & chart analysis
2.2	access useful and specialized sites on the internet, in order to search and select specific information about spectroscopic topics (I)	S((2.4)	project-based learning Technology- enabled learning	Research presentatio n rubric
3.0	Values, autonomy, and responsibil student will be able to)	lity; (Upon com	pletion of the co	urse,
3.1	Act with integrity and good ethics in chemistry profession and their obligation to society (M)	V(3.2)	Research activities	Ethic check rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Empirical, Molecular and Structural formula. Index of hydrogen deficiency	1
2.	What is light and electromagnetic radiation - Interaction between light and matter.	1
	UV Spectroscopy: Ground and excited states, Lambert-Beers law and types	2
3	of bands, molar absorptivity, a calculation of λ_{max} to the possible structure. The Woodward-Fieser roles for dienes and Carbonyl compounds,	
	structure. The woodward-rieser roles for dienes and Carbonyi Compounds,	

	enones.	
	infrared spectroscopy: Infrared absorption process - Instrumentation - Sample	2
		-
4	preparation (solid, liquid and gas), types of vibrations, H00k s law and its	
	application.	
	Characteristic infrared bands of different organic functional groups:	2
_	hydrocarbons, alcohols and phenols, ethers, Amines, Alkyl and aryl halides.	
5	Carbonyl compounds, Factors influence the carbonyl group, aldehydes, ketones,	
	carboxylic acids, esters, amides, acid chlorides, anhydrides. Nitriles,	
6	Applications of IR in identification of organic compounds.	2
	Nuclear Magnetic Resonance Spectroscopy: Nuclear spin states - Nuclear	3
7	magnetic moments -Absorption of energy, The mechanism of absorption	
	(Resonance)- NMR spectrometer.	
	Chemical and magnetic equivalence and non-equivalence. Integrals and	
	integration- Chemical environment and chemical shift- Shielding and	
8	deshielding. Local diamagnetic shielding: Electronegativity effect,	2
	Hybridization effects, acidic and exchangeable protons, H-bond. Magnetic	
	anisotropy. Spin →Spin coupling and coupling constant.	
9	13C NMR spectroscopy (chemical shift); more complex spin-spin splitting patterns	2
10	Mass spectroscopy: Ionization of the compounds and formation of molecular ion	1
11	Rules of fragmentation and Some applications.	2
	Spectroscopic identification of Organic compounds: how to use the synergistic	
12	information afforded from the combination of mass, UV, IR and NMR spectra	2
	to identify the structure of an organic molecule.	
	Total	22

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score		
1.	Homework assignment	2-5	2		
2.	Lecture Quizzes (Q1)	3	2		
3.	Mid-term exams. (MID.)	4-9	30		
4.	Lecture Quizzes (Q2)	7	3		
5.	Research Presentation	9	3		
	Final Exam	12-14	60		
	Total	100			

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Introduction to spectroscopy, D.L.Pavia, G.M.Lampnon, .S.Kriz,3rd ed.2000, Brooks, Cole Pub.Co					
Supportive References	 Spectroscopy of Organic Compounds 6th ed., Kalsi, New Age International (p) Ltd, 2004 Introduction to Spectroscopy, 5th Edition AUTHORS: Pavia/Lampman/Kriz/Vyvyan - ©2015 					
Electronic Materials	Some course contents and materials are posted on Black board sites					
Other Learning Materials						

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect		
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect		
Quality of learning resources	Program coordinator	Indirect		
The extent to which CLOs have been achieved	Assessment committee	Indirect		
Other				

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

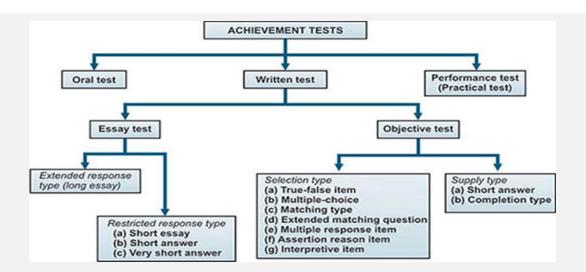
CHEMS230104

DATE

11/120236 18/06/1444H

H. Attachments

1- Practical Work


None

2- Blue Print

Course Name	SPECTROSCOPY OF ORGANIC COMPOUNDS
Course Code	334 CHEM2

PLOs	K1	K2	S1	S2	S3	3	S4		V1	V2				
CLOs	1.1	1.2	2.1			- 2.2		2		3.1				
Marks	15	25	53			4		1		3				
Learning Domain	PLOs	CLOs	Assessment Type				NO OI estions		arks of the sessment	Weight of the Assessment				
			Quiz	Object	Objective Q		3 3		3	3				
	K1	1.1	Midterm	Object	Objective Q		4	2		2				
Knowledge &	2	(15 M) Final Exam		n Object	Objective Q		5	10		10				
understanding	3	1.2 (25 M)	HW	Object	ive Q		8		4	4				
	K2		Midterm	Object	Objective Q		5		5	5				
			Final Exan	n Object	Objective Q		6 16		16	16				
			Homework	probl	ems	2			1	1				
	S1	2.2 (53	Midterm	problen spectra	Solving problems and spectral data analysis		6		18	18				
Skills		M)	Final Exan	n problem	Solving	34	34							
		2.4	Dagaarah	Comb Spec			-		1	1				
	S4	2.4 (4M)	Research Presentation	l data an	data analysis		-		1	1				
			i resemano	struct	structural elucidation		-		2	2				
Value	V2	3.1 (3 M)	Research ethic check	U	Plagiarism check						-		3	3
TOTAL		100		•					100					

Course Title: Organic Reactions Mechanisms

Course Code: 335 CHEM-3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 28 December 2022

Table of Contents:

Content			
A. General information about the course:	3		
1. Teaching mode (mark all that apply)	4		
2. Contact Hours (based on the academic semester)	4		
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assess			
C. Course Content			
D. Students Assessment Activities	6		
E. Learning Resources and Facilities	7		
1. References and Learning Resources	7		
2. Required Facilities and equipment	7		
F. Assessment of Course Quality	8		
G. Specification Approval Data	8		
H. Attachments	9		
1- Practical Work	9		

A. General information about the course:

Со	Course Identification						
1.	Credit hours:	3h					
2. (Course type						
a.	University □	College □	Departmen	t⊠	Track□	Others□	
b.	Required ⊠	Elective□					
3.	3. Level/year at which this course is offered: Level 8 Year 3						

4. Course general Description

1. Course Description

Course Title	Course Number	Contact Hours (CH)		Credit unit (CU)	Year	Level	Pre-
	Number	Lec.	Prac.	rear	Lever	requisite	
Organic Reaction Mechanisms	335СНЕМ -3	2	2	3	3	8	232CHEM -2

Course objectives: They are to identify the following.

- 1. Types of organic reactions.
- 2. Identify the factors affecting the mechanism of organic reactions.
- 3. Identification of substitution, elimination and addition reactions.
- 4. Studying the rection mechanisms of the reactions.
- 5. Recognition of the role of Stereochemistry during the mechanism of reactions.

Syllabus: A-Theoretical contents

A general introduction to the mechanics of organic reactions - include(atomic orbitals - the bonds in organic compounds - properties of organic reactions) Classification of organic reactions - Electrophilic substitution in aromatic systems, Nucleophilic substitution reaction (SN1, SN2) on saturated carbon atom; mechanistic pathways, nature of the transition state and relative reactivity, Elimination reaction (E1, E2); mechanistic pathways, nature of the transition state and relative reactivity, rearrangement reactions, Addition reactions on carbonyl group, Addition reactions at (C=C) double bond, Name reactions.

Syllabus*: B-Practical contents

Selected experiments related to the course topics.

*See attachment

- 5. Pre-requirements for this course (if any): 232 CHEM-3
- 6. Co-requirements for this course (if any): None

7. Course Main Objective(s)

This course aims to expertise students, types of reactions and their basic principles of organic reactions mechanisms (atomic orbitals-the bonds in organic compounds - properties of organic reactions) etc...

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	
3.	Field	22
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding be able to)	; (Upon con	npletion of the cour	se, student will
1.1	Demonstrate abroad knowledge and understanding in, fundamental principles of organic chemistry that include chemical bonding, breaking of a covalent bond, stereochemistry, chemical reactions and mechanism. (P)	K (1.1)	lecture / discussion Seminars /presentation	Objective question
1.2	Describe the synthesis and analysis of organic reaction mechanisms and their products. (P)	K (1.2)	lecture / discussion Seminars /presentation	Objective question
2.0	Skills; (Upon completion of the	e course, st	udent will be able to	0)
2.1	Demonstrate the knowledge and skills required to Predict the reactivity of an organic compound from its structure and explain the multi-step synthesis of organic compounds. (P)	S (2.1)	lecture / discussion Seminars /presentation	Objective question
2.2	Perform experiments as well as accurately record and analyze the results of such experiments. (P)	S (2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper Procedures and regulations for safe handling when using chemicals. (I)	S (2.3)	lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responstudent will be able to)	onsibility;(Upon completion	of the course,

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.1	Working as a group leader or a member of a team. (I)	V (3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	A general introduction to the mechanics of organic reactions – include (atomic orbitals - the bonds in organic compounds - properties of organic reactions).	3
2.	Electrophilic substitution in aromatic systems.	3
	Nucleophilic substitution reaction (SN1, SN2) on saturated carbon atom;	
3.	mechanistic pathways, nature of the transition state and relative reactivity.	4
4.	Elimination reaction (E1, E2); mechanistic pathways, nature of the transition state and relative reactivity.	4
5.	Addition reactions on carbonyl group.	2
6.	Addition of double bond.	2
7.	Introduction to rearrangement reactions.	2
8.	Name reactions.	2
	Experimental Part	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	3-8	2%
2.	Lecture Quizzes	5-7	3%
3.	Mid-term exam	6-8	15%
4.	LAB Sheet	11	5%
5.	Quiz in Safety	11	4%
6.	Final practical exam	11	7%
7.	Lab report	Through Semester	10%

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
8.	Group work evaluation	Through Semester	4%
9.	Final Exam	12-14	50%
	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Peter sykes/ A guide book to the mechanism in organic chemistry. Jerry March / Advanced organic chemistry- Reactions, Mechanisms, Structures. Organic Reactions, Larry E. Overman, John Wiley & Sons, 2002. Organic Reaction Mechanisms, Gallego, Techmedia, 2004 Advanced Organic Chemistry: Part A: Structure And Mechanisms, Carey, Springer Verlag Gmgh, 2007. 		
Supportive References	1- A Guidebook to Mechanism in Organic Chemistry, Peter Sykes Third Edition, longman U.K., (1996).2- Understanding Organic Reaction Mechanisms, Adam Jacobs, Cambridge University Press, 1997.		
Electronic Materials	https://doi.org/10.1036/1097-8542.475400 https://app.knovel.com/web/toc.v/cid:kpAOCRM002/viewerType:toc/		
Other Learning Materials	 Computer-based programs/ ChemDraw http://en.wikipedia.org/ http://www.chemhelper.com/mechanisms.html https://chem.libretexts.org/Special:Search?qid=&fpid=230 &fpth=&query=organic+reaction+mechanism&type=wiki 		

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms capacity (30) students. Lab capacity (15) students.
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet.
Other equipment (depending on the nature of the specialty)	Chemical Models, scientific videos

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect
Effectiveness of student's assessment	Instructor & Course coordinator	Class room evaluation (direct and indirect)
Quality of learning resources	Program committee	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Chemistry Department Council CHEMS2301

CHEMS230104

11/1/2023G - 18/06/1444H

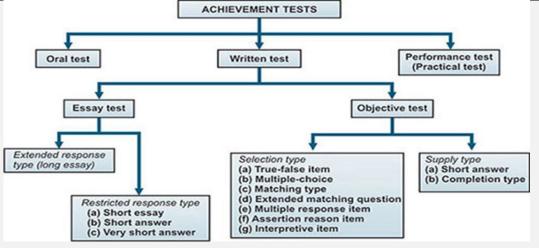
H. Attachments

1- Practical Work

No.	List of Topics	APPARAT US	CHEMICAL	Week	Cont act Hrs
1	Introduction of course 1- Definition of safety in the laboratory 2- Identification of Carboxylic acid organic compounds 3- Identification of carbohydrate. 4-Identification of hydrocarbon. 5- Identification of phenols, 6- Identification of salts of acid (amm. And metallic) 7- Identification of Base	Flame distilled water - test tubes - Beaker- flask	Carboxylic acids, carbohydrates, phenols, Base, HCl, NaOH, Na₂CO₃	1	2
2	Acid + Acid mixture	Filter paper Glass (Beakers- Separating funnel-Conical Flask-Test Tube - Glass plate measuring cylinder.	Aliphatic acid (Oxalic acid- Tartic acid- (Citric acid- Succinic acid-) -Aromatic acid (Benzoic acid- Phthalic acid- Salicylic acid-Phenyl acetic acid cinnamic acid) Regent (CaCl ₂ -FeCl ₃ - NH ₄ OH, NaOH KMnO ₄ , H ₂ SO ₄ , Con. HCl, NaHCO ₃ , Na ₂ CO ₃ Resorcinol- ethanol, methanol.	1	2
3	Acid + Phenols	Filter paper Glass (Beakers- Separating funnel- Conical Flask-Test Tube - Glass plate measuring cylinder.	Aliphatic acid (Oxalic acid- Tartaric acid- Citric acid- Succinic acid-) -Aromatic acid(Benzoic acid-Phthalic acid- Salicylic acid-Phenyl acetic acid cinnamic acid) -Phenol soluble in water (catechol- Hydro quinone, resorcinol- pyrogallol -Phenols insoluble water(1- naphthol-2- naphthol) -Regent (CaCl ₂ -FeCl ₃ - NH ₄ OH-NaOH, KMnO ₄ - H ₂ SO ₄ -Con. HCl-NaHCO ₃ - Na ₂ CO ₃ -Resorcinol-	1	2

			Phenol- filter		
			paperethanol- methanol		
4	Acid + Phenols	Filter paper Glass (Beakers- Separating funnel- Conical Flask-Test Tube - Glass plate measuring cylinder.	-Aliphatic acid (Oxalic acid-Tartaric acid- Citric acid-Succinic acid) - Aromatic acid(Benzoic acid-Phthalic acid- Salicylic acid-Phenyl acetic acid cinnamic acid.) - Phenol soluble in water (catechol-quinolresorcinol-Pyrogallol-Phenols insoluble water(1-naphthol-2- naphthol) - Regent(CaCl2-FeCl3-H4OH-NaOHKMnO4-H2SO4-Con.HCl-NaHCO3-Na2CO3-Resoncenol- Phenol.	1	2
5	Base + Phenol mixture	Filter paper Glass (Beakers- Separating funnel-Conical Flask-Test Tube - Glass plate, measuring cylinder.	Phenol soluble in water (catecholquinol-resorcinol-pyrogallol - Phenols insoluble water (1-naphthol-2-naphthol) – Base(p-Toulidine-1-naphthylamine-2-naphthylamine) - Regent (CaCl2-FeCl3-NH4OH, NaOH- KMnO4-H2SO4-Con.HCl-NaHCO3-Na2CO3-Resorcinol-Phenol.	1	2
6	Acid + Neutral mixture	Filter paper Glass (Beakers- Separating funnel-Conical Flask-Test Tube - Glass plate, measuring cylinder.	Aliphatic acid (Oxalic acid-Tartaric acid- Citric acid-Succinic acid-) -Aromatic acid (Benzoic acid-Phthalic acid- Salicylic acid-Phenyl acetic acid cinnamicacid)-Carbohydrate (Glucose-Galatose- Fructose-Lactose-Maltose-Starch-Sucrose)- Hydrocarbons (naphthane-Ancerthane) - Salts of metallic and Salts of ammonium) -Regent (CaCl2-FeCl3-NH4OH-NaOHKMnO4-H2SO4-Con. HCl-NaHCO3-Na2CO3- Resorcinol-	1	2

			Phenol-1-naphthol-Feling		
			regents-Berfored Regent-		
			picric acid- acetone-		
			ethanol.		
7	Base + Neutral mixture	Filter paper	Carbohydrate (Glucose-	1	2
		Glass	Galatose-Fructose-		
		(Beakers-	Lactose-Maltose-Starch-		
		Separating	Sucrose) -		
		funnel-Conical	Hydrocarbons(naphthane-		
		Flask-Test	Anthracene) -Salts of		
		Tube - Glass	metallic and Salts of		
		plate,	ammonium		
		measuring)-Base (p-Toulidine-1-		
		cylinder.	naphthylamine-2-		
		·	naphthylamine)		
			- Regent (CaCl2-FeCl3-		
			NH4OHNaOH- KMnO4-		
			H ₂ SO ₄ -Con. HCl- NaHCO ₃ -		
			Na ₂ CO ₃ - Resorcinol-		
			Phenol, ethanol-		
			methanol.		
8	Phenol + Neutral mixture	Filter paper	Phenol soluble in water	2	4
		Glass	(catechol-		
		(Beakers-	quinolresorcinol-		
		Separating	PyrogallolPhenols		
		funnel-Conical	insoluble water(1-		
		Flask-Test	naphthol-2-		
		Tube - Glass	naphthol) - Carbohydrate		
		plate,	(Glucose-Galatose-		
		measuring	Fructose-Lactose-		
		cylinder.	Maltose-Starch- Sucrose)		
			-		
			Hydrocarbons(naphthane-		
			Ancerthane) -Salts of		
			metallic and Salts of		
			ammonium)-		
			- Regent (CaCl2-FeCl3-		
			NH4OHNaOH- KMnO4-		
			H ₂ SO ₄ -Con. HCl- NaHCO ₃ -		
			Na ₂ CO ₃ - Resorcinol-		
			Phenol		
			-ethanol-methanol.		
9	Neutral + Neural mixture	Filter paper	Carbohydrate (Glucose-	2	4
		Glass	Galatose-Fructose-		
		(Beakers-	Lactose-Maltose-Starch-		
		Separating	Sucrose)		
		funnel-Conical	-Hydrocarbons		
		Flask-Test	(naphthalene-		
		Tube - Glass	Anthracene) -Salts of		


		plate	metal lic and Salts of		
		measuring	ammonium)		
		cylinder.	-Regent (CaCl2-FeCl3-		
			NH4OH-NaOHKMnO4-		
			H ₂ SO ₄ -Con. HCl-NaHCO ₃ -		
			Na ₂ CO ₃ - Resorcinol-		
			Phenol- ethanol-		
			methanol.		
10	Final exam			11	22

2- Blue Print

Course Name	Organic Reactions Mechanism
Course Code	335 CHEM-3

ografing	: =	PLOs	SOT		ssessme it Type		ssessme nt Tool	No of	s X	the seessme Veight of the
Ī	Marl	ks	15	21	34	22	4		4	
	CLC	Os	1.1	1.2	2.1	2.2	2.3		3.1	
	PLC)s	K1	K2	S1	S2	S3	S4	V1	V2

Learning Domain	PLOs	CLOs	Assessme nt Type	Assessme nt Tool	No of Question s	Marks of the	Weight of the Assessme						
50	17.1	1.1	Mid term	Objective question	1	5	5						
Knowledge & understanding	K1	(15 M)	Final Exam	Objective question	1	10	10						
edg			Quiz	Objective question	2	2	2						
owle erst	K2	1.2	Homework	Solving Problems	3	1	1						
Knc	K2	K2	K2	K2	K2	(21 M)	Mid term	Objective question	2	5	5		
_ =			Final Exam	Objective question	2	13	13						
		1.2	Midterm	Objective question	2	5	5						
	S1		Quiz	Objective question	1	1	1						
	31	31	31	31	31	31	21	(34M)	Homework	Solving Problems	4	1	1
<u>x</u>			Final Exam	Objective question	3	27	27						
Skills		2.2 (22 M)	Practical Sheet	Objective question	3	5	5						
S ₂	S2		Lab Report	10 EXP.		10	10						
		(22 11)	Final Lab Exam	Task	7	7	7						
	S3	2.3 (4 M)	Safety EXAM	Objective question	8	4	4						
Value	V1	3.1 (4 M)	Continuous assessment	Group evaluation rubric	-	4	4						
TOTA	L	100					100						

Course Title: CHEMICAL KINETICS

Course Code: 342CHEM-3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 12 January 2023

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessme	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
1. References and Learning Resources	7
2. Required Facilities and equipment	7
F. Assessment of Course Quality	8
G. Specification Approval Data	8
H. Attachments	9
1- Practical Work	9

A. General information about the course:

Co	Course Identification							
1.	Credit hours:	3hrs						
2. (Course type							
a.	University □	College	De	partment⊠	Track□	Others□		
b.	Required ⊠	Elective						
	Level/year at vered:	vhich this	course is	Level 7 Year 3				
4. (4. Course general Description							
(Course Title	Course	Contact	Credit				

Course Title	Course Number	Contact Hours (CH)				Level	Pre- requisite
		Lec.	Prac.	(CU)			requisite
Chemical kinetics	342CHEM-3	2	2	3	3 rd	7	241CHEM-3

Course objectives: They are to identify the following:

- 1. The laws of reaction rate for different chemical reaction,
- 2. Temperature effect on the reaction rate and Arrhenius equation.
- 3. Collision theory of unimolecular and bimolecular reaction.

Syllabus: A-Theoretical contents

General concepts of chemical kinetics; rate of reaction and factors affecting on it , the reaction rate constant, order and Molecularity, pseudo- order reactions, the rate equations and half- life period- The derivation of the different rate laws and half- life period, zero, 1st, 2nd, and 3rd order reactions- Determination of the order of the reaction; integration, graphical, half- life period, Van,t Hoff,s differential and Ostwald isolation method-Rate laws for complex reactions; parallel, consecutive and chain reactions-Temperature effect on reaction rate- Derivation of Arrhenius equation- Determination of the activation energy of the chemical reactions – Effect of the catalyst on the activation energy-Reaction rate theories; Collision theory and Transition state theory.

Syllabus: B- Practical contents

Experimental work illustrating selected parts of the theoretical content.

*See attachment

- 5. Pre-requirements for this course (if any): 241CHEM3
- 6. Co-requirements for this course (if any): none
- 7. Course Main Objective(s)

This course aims to give the students, knowledge about the principles of chemical kinetics.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (U) able to)	oon compl	etion of the course,	student will be
1.1	Demonstrate a broad knowledge and understanding on principal of chemical kinetics, Concepts and terminology of chemical kinetics topics including; rate of reaction and factors affecting on it, the reaction rate constant and its units, order and Molecularity, pseudo- order reactions, the rate equations, half-life period, complex reactions, activation energy etc(P)	K(1.1)	Lectures, Class Discussion.	Objective questions.
1.2	Describe the different phenomena associated with chemical kinetics;		Lectures, Class Discussion.	Essay question s .

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	the different factors that can affect the rate of the chemical reactions, the difference between order and Molecularity, methods of determination of the order of the reaction, Effect of the catalyst on the activation energy, collision theory and transition state theory etc (P)	K(1.2)		
2.0	Skills; (Upon completion of the cou	irse, stude	nt will be able to)	
2.1	Demonstrate the gained knowledge and skills to solve problems associated with different topics in the course as the reaction rate, the rate constant, half-life period, order of the reaction, the activation energy from applying the Arrhenius equation, Arrhenius factor, collision constant. (P)	S(2.1)	Lectures, Class Discussion.	Solving Problems.
2.2	Perform experiments in chemical kinetics, record, analyze, interpret the scientific data, and write reports. (1)	S(2.2)	Lab work, group work	Objective questions, Essay questions, lab report rubric.
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (1)	S(2.3)	lab demonstrations, hands-on student learning activities .	Safety exam
3.0	Values, autonomy, and responsibiliwill be able to)	ty ; (Upon	completion of the co	urse, student
3.1	Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstrations , whole group and small group discussion	Practical group Leader Rubric

C. Course Content

No	List of Topics	Conta ct Hours
1.	General concepts of chemical kinetics.	4
2.	Simple reactions; zero, 1st, 2nd, and 3rd order reactions.	6
3.	Determination of the order of the reaction; integration, graphical, half-life period, Van't Hoff's differential and Ostwald isolation method.	3
4.	Complex reactions; parallel, consecutive and chain reactions.	3
5.	Arrhenius equation.	2
6.	Collision theory.	2
7.	Transition state theory.	2
8.	Selected experiments related to the course topics	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment.	<i>3-8</i>	<i>5</i> %
2.	Mid-term exam.	6-8	15 %
3.	LAB Sheet.	11	<i>5</i> %
4.	Quiz in Safety.	11	3%
5	Final practical exam.	11	9 %
6	Lab report.	2-10	10 %
7	Group Leader evaluation.	2-10	3%
8	Final Exam.	12-13	50%
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Chemical Kinetics and Reaction Dynamics, 1st edition, Paul L. Houston, 2006.
 Chemical Kinetics and Reaction Dynamics, Santosh K. Upadhyay, Springer, 2006, ISBN 1-4020-4546-8 (HB) - ISBN 1-4020-4547-6 (e-book)
 Principles of Chemical Kinetics, 2nd edition, James E. House, 2007.
 Supportive References

Atkins' Physical Chemistry 11e: Volume 1: Thermodynamics and Kinetics Oct 30, 2018

	اساسيات الحركية الكيميانية – د فكيهة محمد الطيب هيكل - دار النشر الدولي - الطبعة الأولى 2003 م
Electronic Materials	course contents and materials are posted on Black board sites.
Other Learning Materials	https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query =kinetic+energy&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for group of 25 students.
Technology equipment (projector, smart board, software)	Smart board, Data show, Internet 1 Computer laboratory for groups of 25 students.
Other equipment (depending on the nature of the specialty)	Water distillation device, Ice maker, water bath and Balance.

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods	
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect	
Effectiveness of students assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect	
Quality of learning resources	Program coordinator	Indirect	
The extent to which CLOs have been achieved	Assessment committee	Indirect	
Other			

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

Chemistry Department Council CHEMS2301

CHEMS230104

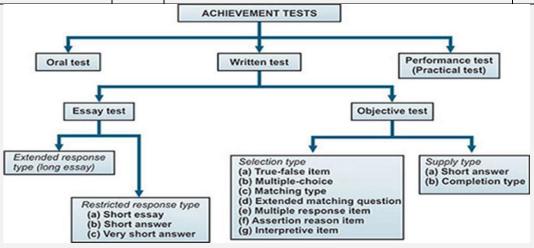
[/]11/1/2023G – 18/06/1444H

DATE

H. Attachments

1- Practical Work

Week	Experimental Title	Chemicals used	Remarks
1	Introduction and lab safety		
2	Catalytic decomposition of hydrogen peroxide	H ₂ O ₂ , KMnO4, sulphuric acid and MnO ₂	None
3	Kinetic study of hydrolysis of ethyl acetate catalyzed by acid	Ethyl Acetate,HCl, Phenolphthalein and NaOH	None
4	Saponification of ethyl acetate.	Ethyl Acetate, Phenolphthalein and NaOH	None
5	Determination of rate constant of lodination of acetone reaction	Acetone, Iodine solution, sulphuric acid, sodium thiosulphate, Starch indicator and Sodium acetate	None
6	Effect of temperature on the reaction rate of hydrolysis of ethyl acetate catalyzed by acid and calculation of activation energy	ethyl acetate, Sodium acetate and Hydrochloric acid	None
7	Determination of rate constant of persulphate- iodide reaction	Potassium persulphate Potassium iodide, Sodium thiosulphate and Starch indicator.	None
8	Reaction rate of magnesium and hydrochloric acid	Magnesium and Hydrochloric acid	None
9	Revision		
10	Final Exam		



2- Blue Print

Course Name	Chemical Kinetics
Course Code	342 CHEM-3

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	18	18	34	24	3		3	

Learning Domain	PLOs	CLOs	Assessment Type Assessment Tool		No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1	H.W	Objective question	4	1	1
		(18M)	Mid term	Objective question	8	4	4
Knowledge &			Final Exam	Objective question	13	13	13
understanding	K2	1.2	H.W	Essay question	2	1	1
		(18M)	Mid term	Essay question	2	4	4
			Final Exam	Essay question	6	13	13
	S1	2.1 (34M)	H.W	Solving Problems	3	3	3
		(-)	Mid term	Solving Problems	3	7	7
			Final Exam	Solving Problems	6	24	24
	S2	2.2	Practical	Objective question	6	3	3
Skills		(24M)	Sheet	Essay question	2	2	2
			Lab Report	Lab report	7	10	10
			Final Lab Exam	Lab Exam	1	9	9
	S 3	2.3 (3M)	Safety Quiz	Objective question	6	3	3
Value	V1	3.1 (3 M)	Continuous	Group Leader	-	3	3
	TOTAL	(5 M) 100	assessment	evaluation rubric			100
	TOTAL	100					100

Course Title: Surface Chemistry & Catalysis

Course Code: 343CHEM -3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T-104 2022**

Last Revision Date: 23 December 2022

Table of Contents:

Content	Page
A. General Information about the course	3
 Teaching mode (mark all that apply) Contact Hours (based on the academic semester) 	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Student Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and Equipment	6
F. Assessment of Course Qualit	7
G. Specification Approval Data	7

A. General information about the course:

Course Identificatio	n						
1. Credit hours:	3hrs						
2. Course type							
a. University □	College □	Dep	artme	nt⊠	Tra	ck□	Others□
b. Required ⊠	Elective□						
3. Level/year at whi		rse is					
offered: level 8 / Yea							
4. Course general D	escription:						
Course Title	Course	Contact H	lours	Credit			
	Number	(CH)	1	unit	Year	Level	Pre- requisite
Curface Chamistan 9	CHEM343-3	Lec.	Prac.	(CU) 3	3	8	241645042
Surface Chemistry & Catalysis	CHEIVI343-3	3	0	3	3	8	241CHEM3
- Parameters affecting of a lidentification of difference of the application of surface of the application of difference of surface of the application of difference of surface of the application of the application of surface of the application of the appli	nt catalytic the ace, catalysis, of cal contents its type, factors as application at compound at alysis, (Enzyries for catalysis at alyst.	eories, ads colloidal and s affecting on the surf s and adso mes), Collo	orption on it, G ace are rption to	and orig rption pr libbs and a and ca theories. type, me	in of ch cocesses Langm Iculation Homog	narge of s. nuir the ons congeneous of prepo	ory for cerning with s and aration and its
none							
	s fou this co		m, d - 2	44.01.153.44			
5. Pre-requirements				41CHEM3	3		
6. Co- requirements	s for this co	urse (if a	• /	none			

7. Course Main Objective(s): The course is designed to give the students' knowledge about catalytic reactions, catalyst and its different applications, and colloids also studying surface chemistry and adsorption, especially on solid surfaces.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	33	100%
2.	E-learning		
	Hybrid		
3.	Traditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	33
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	33

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understandir be able to)	ng; (Upon compl	etion of the course,	student will
1.1	Demonstrate an understanding of the concepts of surface, catalyst, colloidal and its mechanisms and applications (P)	K1	Lecture, Open discussion in class	MCQ Quizzes H.W.
1.2	Describe the essential facts, principles and theories across the modeling isotherm, surface tension laws, theories of	К2	Lecture, Group work discussion	MCQ Labeling diagrams

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	catalysis, preparation of colloids. (P)			
2.0	Skills; (Upon completion of the	course, student	: will be able to)	
2.1	Demonstrate an ability in critical thinking, analytical reasoning and solving problems concerning with surface chemistry and adsorption (P)	51	Lecture, Group work discussion	Oral, solve problems H.W.
2.4	use of communication, modern library searching and information technology about chemistry topics (I)	S4	web-based work Researches individual research projects, oral presentation	Research presentation
3.0	Values, autonomy, and respo	nsibility; (<mark>Upo</mark> n	completion of the c	ourse,
3.1				
3.2	Act with integrity and good ethics in chemistry profession and their obligation to society (M)	V2	Research activities	Plagiarism check

C. Course Content

No	List of Topics	Contact Hours
1.	Meaning of surface / surface tension, parameters affect s on the surface	6
2.	Criteria for surface phenomenon and spreading of liquid, contact angle, adhesion and cohesion force	2
3.	Adsorption of gas on solid, isotherm (Freundlich, Langmuir and BET), applications	6
4.	Gibbs equation, spreading of liquids	3
5.	Catalysis theories, applications	6
6.	colloids and its applications	6
7.	Presentation Session	2
8.	General revision	2
	Total	33

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HW	4-8	5
2.	Mid-term exams	6-9	25
3.	Seminar/ Presentation Session	10	6
4.	Ethic check	10	4
5.	Final Exam	12-13	60
	Total		100

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	مبادئ الكيمياء الفيزيائية المطورة الطبعة الثانية، دار المعارف القاهرة ا.د. محســـن الصباح ا.د. السيد علي حسن 1999 1999 على حسن 2- Handbook of Surface and Colloid Chemistry, Third Edition by K. S. Birdi 20, 2008. 3- Essentials of Physical Chemistry, Arun Bahl, 26 th . Ed (2018) B.S. Bahal, G.D. Yuli.
Supportive References	 Physical Chemistry, James Keeler 11th .Ed.(2018) J.de Paula & P. Atkins. R. I. Masel, "Principles of Adsorption and Reaction on Solid Surfaces", Wiley Series in Chemical Engineering, Wiley-Interscience, New York, USA, 1996, ISBN 978-0-471-30392-3
Electronic Materials	Some course contents and materials are posted on Black board sites-
Other Learning Materials	 www.wikipedia.org/ https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpt h=&query=surface+chemistry&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Lecture room(s) for groups of 40 students.
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert - type Survey (CES) Indirect
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect)
Quality of learning resources	Program coordinator	<u>Indirect</u>
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Chomistry Department Council CHEMS2301

CHEMS230104

11/1/2023G – 18/06/1444H

H. Attachments

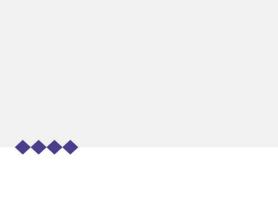
1- Practical Work

None

2- Blue Print

Course Name	Surface Chemistry & Catalysis
Course Code	CHEM343-3

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1			2.4		3.2
Marks	15	25	50			6		4


Learning	PLOs	CLOs	Assessment	Assessment	No of	Marks of	Weight of
Domain			Type	Tool	Questions	the	the
						Assessment	Assessment
	K1	1.1	Mid-term	Objective test	3	3	4
Knowledge &		(15 M)	HW	Objective test	2	2	1
understanding			Final Exam	Objective test	2	10	10
	K2	1.2	Mid-term	Objective test	2	6	7

		ı					
		(25 M)	HW	Objective test	<mark>2</mark>	2	1
			Final Exam	Objective test	<mark>2</mark>	17	17
	S1	2.1 (50 M)	Mid-term	Essay test , Solving Problems, comparison & chart analysis	2	16	14
Skills			HW	Essay test, Solving Problems, comparison & chart analysis	3	3	3
Skills			Final Exam	Essay test, Solving Problems, comparison & chart analysis	2	33	33
	S4	2.4	Research	Research rubric	-	-	2
		(6 M)	presentation	PPT presentation rubric			2
				Oral discussion			2
Value	V2	3.2 (4 M)	Presentation ethic check	Plagiarism check rubric	-	-	4
Т	OTAL	100					100

Achievement tests						
	Writ	ten test				
* Essa	y test	* Objective test				
Extended response	Restricted response	Selection type	Supply type			
type	type					
(long essay)	a) Short essay	a) True-false item	a) Short			
	b) Short answer	b) Multiple-choice	answer			
	c) Very short answer	c) Matching type	b) Completion			
		d) Extended matching question	type			
		e) Multiple response item				
		f) Assertion reason item				
		g) Interpretive item				

Course Title: **ELECTROCHEMISTRY**

Course Code: 344 CHEM -3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University

Version: **T-104 2022**

Last Revision Date: 5 February 2023

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	3
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessmer	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

Coı	Course Identification							
1. (Credit hours: 3hs							
2. C	2. Course type							
a.	University □	College □ Department ⊠ Track □ Others □						Others□
b.	Required ⊠	Elective□						
	_evel/year at wh ered:	ich this cours	se is	Leve Year				
4. C	ourse general D	escription						
	Course Title	Course	Contac Hours	ct	Credit unit			0
		Number	Lec.	Prac.	(CU)	Year	Level	Pre- reauisite
	Electrochemistry	344CHEM-3	2	1	3	3	8	241CHEM-3
Co	ourse Objectives; Th	ey are to identify	y the fol	llowing				
	1. Types of cond	uctors						
	2. Classification	of electrolytic ce	lls					
	3. Measuring EM	1F						
	4. Applications of	of electrochemist	ry					
Syl	llabus: A-Theoretica	l contents						
Electrolytic conductors, General electrochemistry concepts, Introduction to electrochemistry: electrode potentials, galvanic and electrolytic cells, Nernst equation, Corrosion and corrosion protection, Overview of applications of electrochemistry								
Syl	Syllabus: A-Practical contents							
Expe	Experimental work illustrating selected parts of the theoretical content							

5. Pre-requirements for this course (if any): 241CHEM-3

6. Co-requirements for this course (if any):

This course aims to give students the basic principles of electrochemistry and its applications

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		

No	Mode of Instruction	Contact Hours	Percentage
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes Knowledge and understanding; (Upon	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	able to)			
1.1	Demonstrate a broad understanding and critical view on principal of electrochemistry, Concepts and terminology of electrochemistry topics including; electrolyte solution theories, electrochemical (Galvanic) cell, origin of electrode potential theories, Faraday's law of electrolysis,etc (P)	K(1.1)	lecture / discussion Seminars /presentation	Objective questions
1.2	Describe correctly the different phenomena associated with electrochemistry i.e.; type of electrodes, cell presentation (notation), cell reactions, electromotive force (P)	K(1.2)	lecture / discussion / Seminars /Individual presentation	Objective questions + Essay Questions
2.0	Skills; (Upon completion of the course	e, student	will be able to)	
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use graphs,	S(2.1)	lecture / discussion / Seminars	Essay Questions + solve Problems

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
	charts and to solving problems related to faraday's law and Nernst equation. (P)		/Individual presentation		
2.2	Perform experiments in electrochemistry, record, analyze, interpret the scientific data, and write reports. (P)	S(2.2)	Lab work, group work	Objective questions + Essay Questions	
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	S(2.3)	lab demonstrations / hands-on student learning activities	Objective questions + Essay Questions	
3.0	Values, autonomy, and responsibility; will be able to)	; (Upon co	mpletion of the co	urse, student	
3.1	Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric	

C. Course Content

No	List of Topics	Contact Hours
1.	Electrolytic and Non-electrolytic conductors	3
2.	Oxidation States & Redox Reactions	2
3.	Galvanic (electrochemical) Cells	3
4.	Cell Potential under Standard Conditions	3
5.	Gibbs Energy and Redox Reactions	2
6.	Cell Potential under Nonstandard Conditions and Nernst equation	3
7.	Batteries & fuel cell	2
8.	Corrosion	2
9.	Electrolytic cell	2
10.	Selected experiments related to the course topic	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	3-8	2 %
2.	Lecture Quizzes	5-7	3 %
3.	Mid-term exam	6-8	15 %
4.	LAB Sheet	15	5 %
5	Safety Exam	11	4%
6	Final practical exam	11	7 %
7	Lab report	2-10	10 %
8	Group work evaluation	2-10	4%
9	Final Exam	12-14	50 %
	Total		Total

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Handbook of Electrochemistry, 2007, Cynthia G. Zoski, Elsevier
Supportive References	 Electrochemistry, 2nd Edition, P.H. Rieger, Springer, 1993 ISBN: 0412043912,9780412043918 Electrochemistry and Corrosion Science, Nestor Perez, 2016, Springer International Publishing, ISBN: 978-3-319-24845-5,978-3-319-24847-9
Electronic Materials	Some course contents and materials are posted on Black board
Lieutioniu iviateriais	sites
Other Learning Materials	 https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/S upplemental_Modules (Analytical_Chemistry)/Electrochemistry https://courses.lumenlearning.com/chemistryformajors/chapter/introduction-to-electrochemistry/ https://pages.uoregon.edu/tgreenbo/electrolysis10.htmlhttps://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for group of 25student
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, Internet

Items	Resources
Other equipment (depending on the nature of the specialty)	Conductivity meter, metal electrodes (i.e. Fe, Cu, Al, Sn, Zn, Mg, Pb), Voltameter, Power source, Balance, potentiostate, galvanostate

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect		
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect)		
Quality of learning resources	Program coordinator	<u>Indirect</u>		
The extent to which CLOs have been achieved	Assessment committee	<u>Indirect</u>		
Other				

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

CHEMS2301

CHEMS230104

DATE

H. Attachments

1- Practical Work

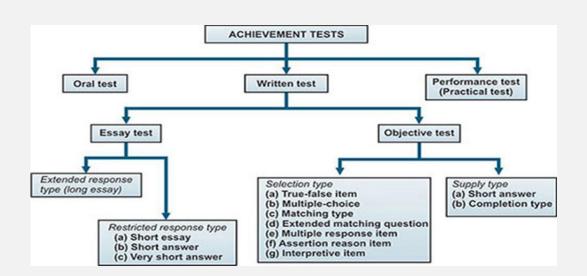
1- LAB EXPERMENTS

Week	EXPERMENTAL TITLE	Chemicals and Apparatus used	Remarks
1	Safety and regulations		
1	Determination of cell constant	0.1N KCl, conductivity cell	
2	Determination of equivalent conductance	0.1N KCl, MgSO4, monochloric acid, conductivity cell	None
3	Activity Series	0.1 M Cu(NO ₃) ₂ , 0.1 M Mg(NO ₃) ₂ , 0.1 M HCl, 0.1 M Zn(NO ₃) ₂ , 0.1 M AgNO ₃ , Mg, Cu, Zn	None
4	Electrochemical Cells	0.5M Cu(NO ₃) ₂ , 0.5M Zn(NO ₃) ₂ , 0.5M Pb(NO ₃) ₂ , 0.5M KNO ₃ rods, DC voltmeter or digital multimeter, copper, zinc, lead.	None
5	Galvanic cell creating from environment	Citric acid, Oxalic acid., sheet of copper, sheet of zinc, distilled water, DC voltmeter or digital multimeter, Lemon, Kiwi,	None
6	Simple galvanic cell using pottery vase or any membrane partition	Zn, Pb, Cu, strips , 0.1M CuSO ₄ , 0.1 M Zn(NO ₃) ₂ , 0.1 M Pb(NO ₃) ₂ , 0.1 M FeSO ₄ and 0.1 M KNO ₃ , DC voltmeter or digital multimeter, porous vase	None
7	Investigation of the temperature coefficient Of Galvanic Cell	Copper Sulfate (CuSO ₄),Zinc Sulfate (ZnSO ₄), sheet of copper ,sheet of zinc, voltmeter or digital multimeter, thermometer	None
8	Corrosion	Zn Sheets, NaOH, balance	None
9	An Electrolytic Cell: Electrolysis of CuCl2	0.2 M CuCl ₂ . Power supply or 9V batteries	None
10	An Electrolytic Cell: Electroplating	1.0 M CuSO ₄ , a copper strip, iron nail, battery or power source,	None
11		Final exam	

For unavailable equipments, we use some stimulated experiments through links as:

https://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html

http://introchem.chem.okstate.edu/DCICLA/voltaicCell20.html



2- Blue Print

Course Name	ELECTI	ROCHEM	ISTRY							
Course Code										
PLOs	K1	K2	S1	S2	S	3 S4	3 S4 V1		V2	
CLOs	1.1	1.2	2.1	2.2	2.	3 2.	4	4 3.1		3.2
Marks	15	21	34	22	4			4		
Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool		No of Questions the Assessment		the	eight of e sessment	
	K1	1.1 (15M)	Quiz	Objective Q)	2		2		1
		(10111)	Mid term	Objective Q)	6		6		3
Knowledge &			Final Exam	Objective Q)	11		11		11
understanding	K2	1.2	Quiz	Essay q		2		2		1
		(21M)	Mid term	Essay q		5		5		5
			Final Exam	Essay q		5		5		15
	S1	2.1 (34M)	H.W	Solving Problems & chart analys		4		4		2
			Quiz	Solving Problems & Essay Ques + solve Problems		1		1		1
Skills			Mid term	Solving Problems & Essay Ques + solve Problems		2		2		7
SKIIIS	Skills		Final Exam	Solving Problems & Essay Ques + solve Problems		6		6		24
	S2	2.2	Practical	Objective Q)	6		6		3
		(22M)	Sheet	Essay q		2		2		2
			Lab Report	Lab report r	ubric	10		10		10
			Final Lab Exam	1Task experiment		1		1		7
	S3	2.3 (4M)	Safety Exam	Objective Q Essay q		8	8			4
Value	V1	3.1 (4)	Continuous assessment	Group evaluation r	ubric	-		4		4
Т	OTAL	100							10	0

Course Title: Methods of Instrumental Analysis

Course Code: 415CHEM4

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: : Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 25 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and A	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	8
H. Attachments	9
1- Practical Work	9
2- Rlue Print	10

A. General information about the course:

Co	ourse Identifica	ition							
1.	Credit hours:								
2.	Course type								
a.	University □	College	□ De	partmen	t⊠	Trac	k□	Others□	
b.	Required	Elective							
	Level/year at v	which this	course is	Level 1					
of	fered:			Year	4 th				
4.	Course genera	l Descripti	on						
(Course Title	Course	Contact Hou	rs (CH)	Credit				
		Number		5	unit	Year	Level	Pre-	
			Lec.	Prac.	(CU)	reur	Level	reauisite	
	Methods of Instrumental Analysis	415CHEM4	3	2	4	4	10	212CHEM3	
	Analysis							ZIZCIILIVIS	ı

This course aims to give students the basic principles of methods of instrumental analysis and their applications

Course objectives: They are to identify the following.

- Recognizing the Electromagnetic Radiation.
- Recognizing the Molecular Ultraviolet and Visible Absorption Spectroscopy.
- Recognizing the Infra-Red Spectroscopy, Spectrum of IR and IR Instrumentation.
- Recognizing the Atomic and emission Spectrometry as well as NMR, MS and X-Ray Spectroscopy

Syllabus: A-Theoretical contents

Spectroscopic methods: Introduction to electromagnetic radiation and molecular transitions, UV- and visible radiations and spectrophotometer, Laws of spectral absorption, Fluorimetry, Infra-red spectrometer, atomic absorption and atomic emission spectrometers, NMR spectrometer, Mass spectrometry, X-ray absorption and fluorescence.

Syllabus: B-Practical contents

- Selected experiments related to instrumental analysis (See attachment)
- 5. Pre-requirements for this course (if any): 212 CHEM4
- 6. Co- requirements for this course (if any): None
- 7. Course Main Objective(s)

This course aims to give students the basic principles of methods of instrumental analysis and their applications

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	33	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	33
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	55

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes Knowledge and understanding; (L	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	able to)			
1.1	Demonstrate a broad understanding and knowledge in different topics of the course as, electromagnetic radiation, molecular transitions after absorption of light, electronic transitions, dual nature of light radiations and use of analytical instruments for qualitative and quantitative chemical analysis and in addition the necessary background in Physics and Mathematics.	K(1.1)	lecture / discussion Seminars /presentation	Objective questions
1.2	Describe correctly Chemical phenomena using instrumental		lecture / discussion /	Objective questions

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	analysis principles and scientific reasoning	K(1.2)	Seminars /Individual presentation	
2.0	Skills; (Upon completion of the co	urse, student	will be able to)	
2.1	Demonstrate an ability in critical thinking, analytical reasoning and solving problems concerning with instrumental analysis (in measurement and modeling of chemical systems) S(2.1)		Solving Problems & chart analysis & Essay questions	
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments in the field of instrumental analysis and to write a report representing the scientific data.	S(2.2)	Lab work, group work	Lab final exam / lab report rubric/ Objective questions
2.3	Examine his material and lab safety background to Follow proper procedures and regulations for safe handling and use of chemicals.		lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsibi will be able to)	lity ; (Upon co	mpletion of the co	urse, student
3.1	Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Types of Instrumental Analysis Methods and Applications of Instrumental Methods of analysis and Advantage of instrumental analysis	3
2.	Electromagnetic field, Elementary theoretical basis of spectroscopy, Electronic Excitations, Electronic absorption	3

3.	Spectroscopy, UV-Vis spectroscopy, Absorption laws, Lambert-Beer Law, Instrumentation Sample Preparation Sample Cleanup	6
4.	Mass spectroscopy for qualitative and quantitative analysis and nuclear magnetic resonance for identification of the organic compounds (qualitative analysis)	3
5.	Infrared spectroscopy, IR-Radiation, Modes of Vibration, Typical Infrared Absorption Regions, Frequencies of common structural units, Sample Application, Measurement process, Infrared Absorption, Calibration and Background Spectrum, Advantages of IR analysis, Detection and Quantitation, FT-IR Qualitative and Quantitative	3
6.	Atomic spectroscopy, Atomic Absorption Spectroscopy (AAS), Atomic Emission Spectroscopy (AES), Steps of Atomic Absorption measurement, Vaporization and Atomization	6
7.	Atomic Emission Spectroscopy, Recording and Analysis, Inductively coupled plasma (ICP) and advantages of ICP	3
8.	X-Ray Analysis, What is X-Ray? , Generation of X-Rays, Sampling, Identifying and Quantization of Compounds	3
9.	Fluorescence Spectroscopy, What is Fluorescence Spectroscopy? Introduction to Fluorescence Spectroscopy, Sampling	3
10.	Selected experiments related to instrumental analysis	22
	Total	55

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework	3-8	2 %
2.	Quiz	4-6	3 %
3.	Midterm Exam	6-8	15 %
4.	LAB Sheet	10-11	5 %
5.	Quiz in Safety	10-11	4%
6.	Final practical exam	11	10 %
7.	Lab report	2-10	5%
8.	Group work evaluation	2-10	6 %
9.	Final Exam	12-14	50 %
	Total		100 %

^{*}As8.sessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References

د. إبراهيم الزامل (التحليل الآلي) – دار الخريجي- الطبعة الثالثة 1998

- Douglas A. Skoog, F James Holler and Stanley R. Crouch, Principles of instrumental analysis, (2016) 7 th edition Thomson Brooks/Cole
د. سلامة أحمد خميس محمد (المطيافيات بين النظرية و التطبيق) جامعة المجمعة- الطبعة الأولى – (143)2010
Some course contents and materials are posted on Black board sites
Websites on the internet that are relevant to the topics of the course https://learnchemistry12.com/2018/02/modern-chemical-analysis-book.html
https://chem.libretexts.org/Bookshelves/Analytical Chemistry/Supplemental_Modules_(Analytical Chemistry)/Instrumental_Analysis https://chem.libretexts.org/Courses

2. Required Facilities and equipment

Resources	Items facilities	
1 Lecture room(s) for groups of 50 students 1 Lab room for 25 students	facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	
Smart board, Data show, Black board, internet	Technology equipment (projector, smart board, software)	
none	Other equipment (depending on the nature of the specialty)	(de

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect
Effectiveness of students assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect)
Quality of learning resources	Program coordinator	<u>Indirect</u>
The extent to which CLOs have been achieved	Assessment committee	<u>Indirect</u>
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Chemistry Department Council CHEMS2301

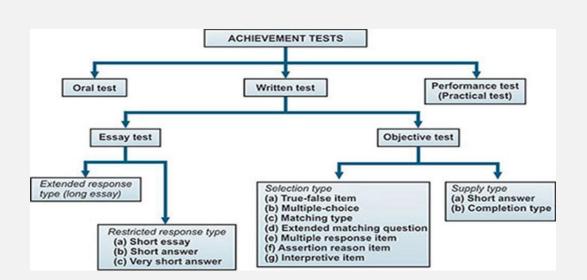
CHEMS230104

11/1/2023G – 18/06/1444H

H. Attachments

1- Practical Work

No	Title of Experiment	Tools, Chemicals, and equipment Needed in Experiments	Week no.	
1.	Safety measures	-	1	
2.	Introduction to spectroscopic analysis and related calculations	-	2	
3.	Determination of chromium chloride (colored compound) concentration using UV-Vis. Spectrophotometer	Conical flasks, chromium chloride, distilled water UV-Vis. Spectrophotometer	3	
4.	Determination of potassium nitrate (colorless compound) concentration using UV-Vis. Spectrophotometer	orless compound) concentration using distilled water		
5.	Spectrophotometric determination of paracetamol in tablets	Conical flasks, paracetamol bulk powder, Panadol tablets, distilled water, methanol, UV-Vis. Spectrophotometer	5	
6.	Spectrophotometric determination of paracetamol in tablets	Conical flasks, paracetamol bulk powder, Panadol tablets, distilled water, methanol, UV-Vis. Spectrophotometer	6	
7.	Spectrofluorimetric determination of eosin yellow dye			
8.	IR- identification of benzoic acid Benzoic acid, potassium bromide, acetone, IR- spectrometer		8	
9.	Determination of metals concentration using atomic absorption spectrometer	Nickel standard solutions, water samples containing nickel, nitric acid, distilled water, atomic absorption spectrometer	9	
10.	Determination of metals concentration using flame spectrometer	Nickel standard solutions, water samples containing nickel, nitric acid, distilled water, flame spectrometer	10	
11.	Final exam	-	11	


2- Blue Print

Course Name	Methods of instrumental analysis
Course Code	415CHEM4

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	
Marks	10	18	42	20	4		6	

Learning	PLOs	CLOs	Assessment	Assessment	No of	Marks of the	Weight of the
Domain			Туре	Tool	Questions	Assessment	Assessment
	K1	1.1 (10M)	Quiz	Objective questions	2	1	1
			Mid term	Objective questions	3	2	2
Knowledge &			Final Exam	Objective questions	3	7	7
understanding	K2	1.2 (18M)	Quiz	Objective questions	2	1	1
		(101/1)	Mid term	Objective questions	4	5	5
			Final Exam	Objective questions	6	12	12
	S1	2.1 (42M)	H.W	Solving Problems & chart analysis & Essay questions	4	2	2
			Quiz	Solving Problems & chart analysis & Essay questions	2	1	1
Skills			Mid term	Solving Problems & chart analysis & Essay questions	6	8	8
J KIIIS			Final Exam	Solving Problems & chart analysis & Essay questions	12	31	31
	S2	2.2 (20M)	Practical Sheet	Objective questions	2	8	5
			Lab Report	Lab report rubric	5	5	5
			Final Lab Exam	I Task experiment	1	7	10
	S3	2.3 (4M)	Safety Quiz	Objective questions	1	8	4
Value	V1	3.1 (6M)	Continuous assessment	Group evaluation rubric	-	6	6
F	ΓΟΤΑL	100		1		<u> </u>	100

Course Title: Lanthanides & Actinides

Course Code: 424CHEM3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 1 January 2023

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessn	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	7
1- Practical Work	8
	_

10

322CHEM4

A. General information about the course:

Cc	Course Identification							
1.	Credit hours:	3h						
2.	Course type							
a.	University □	College □	Departme	ent⊠	Trac	ck□	Others□	
b.	Required ⊠	Elective□						
	3. Level/year at which this course is offered: Level 12 Year 4							
4.	4. Course general Description							
C	Course Title	Course	Contact Hours					
		Number	(CH)	unit (CU)	Year	Level	Pre- requisite	

This course aims to give the students some information about the nuclear fission and fusion, how to measure the doses of radiation, recognizing the effect of radiation and the methods of protection and giving an idea about the elements of lanthanides and actinides

Prac.

Course objectives: They are to identify the following.

- 1. Recognizing the concept of nuclear fission and fusion.
- **2.** Recognizing the method of measuring of low and high radiation doses.
- **3.** Recognizing the effect of radiation on biological systems and the ways of protection.

Lec.

- **4.** Recognizing the lanthanides and actinides elements.
- **5.** Recognizing the electronic structures, chemical and physical properties, and the reactions of those elements
- a) Syllabus: A-Theoretical contents

Lanthanides & Actinides 424CHEM3

- b) The scientific content of the theoretical part:
- 1) Nuclear and Radiochemistry: The nature of nuclear and radiochemistry and the sources of ionizing radiation Radiation decay and standard units Radiation interaction with matter Theories related to the structure of nucleus Nuclear fission and fusion and emitted energy Measurement of low and high radiation doses The effect of radiation on biological systems and the ways of protection.
- 2) Lanthanides Group: Comparative study between lanthanides and transition elements Comparative study between lanthanides and alkaline earth metals The electronic structure of the elements Different oxidation states The physical properties such as magnetic, spectral and color properties Electronic shield Methods of separation: Fractional crystallization, ion exchange, etc.
- 3) Actinides Group: electronic structure Methods of preparation Radiation decay Element enrichment.

Syllabus: A-Practical contents

Experimental work illustrating selected parts of the theoretical content.

- 5. Pre-requirements for this course (if any): 322CHEM
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

This course aims to give the students some information about the nuclear fission and fusion, how to measure the doses of radiation, recognizing the effect of radiation and the methods of protection and giving an idea about the elements of lanthanides and actinides

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity Contact Hours			
1.	Lectures	22		
2.	Laboratory/Studio	22		
3.	Field			
4.	Tutorial			
5.	Others (specify)			
	Total	44		

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; able to)	(Upon completion of th	ie course, stud	dent will be
1.1	Demonstrate abroad knowledge and understanding on the properties, occurrence, separation and uses of lanthanides and actinides	K(1.1)	lecture / discussion Seminars /presentati on	Objective question
1.2	Describe the radioactivity of unstable isotopes, fission and	K(1.2)	lecture / discussion /	Essay question

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	fusion reactions and their applications. (M)		Seminars /Individual presentatio n	
2.0	Skills: (Upon completion of the c	course, student will be	able to)	
2.1	Demonstrate the knowledge and skills required to solve problems in the nuclear equation, radioactivity half-life, decay series, fission and fusion.	S(2.1)	lecture / discussion / Seminars /Individual presentatio n	Solving Problems
2.2	Practice the experimental skills and to write a report in laboratory representing the obtained results. (M)	S(2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Follow proper procedures and regulations for safe handling and use of chemicals.	S(2.3)	lab demonstrat ions / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsivil be able to)	ibility; (Upon completic	on of the cours	e, student
3.1	Working as group leader and as a member of a team in Lab. (M)	V(3.1)	lab demonstrat ions / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction Electronic structure, oxidation states, abundance, extraction and uses of lanthanides.	2
2.	Separation of the lanthanide elements.	2

3.	Chemical properties of (+iii), (+iv) and (+ii) lanthanides compounds.	2
4.	Colour and spectra of lanthanides.	1
5.	Magnetic properties, lanthanide contraction and complexes.	2
6.	Electronic structure, oxidation states and occurrence of actinides.	2
7.	Preparation of actinides.	1
8.	General properties of actinides.	1
9.	Occurrence, extraction and chemical properties of thorium and uranium.	2
10.	Structure, forces and stability of the nucleus.	1
11.	Modes of decay, half-life period, binding energy and nuclear stability	2
12.	$Nuclear\ fission, nuclear\ power\ stations, moderators\ and\ types\ of\ reactors.$	2
13.	Nuclear fusion and some applications of radioactive isotopes.	2
14.	Selected Experiments related to course topics.	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *		Assessment timing (in week no)	Percentage of Total Assessment Score
1.		Homework assignment	2-6	2 %
2.		Lecture Quizzes	4-6	3 %
3.	Mid-term exam		6-8	15 %
4.		LAB Sheet	10	<i>5</i> %
5.	Dunation	Quiz in Safety	10-11	4%
6.	Practical work	Final practical exam	11	7 %
7.	WOIK	Lab report	2-10	8 %
8.		Group work evaluation	2-10	6%
9.	Final Exam		12-14	50 %
	Total			100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Lee, J. D. (2009) Concise Inorganic Chemistry, 5 th Edition Authorized Reprint Published by Blackwell Science Limited, France. F. Albert Cotton, Geoffrey Wilkinson, Paul L. Gaus. Basic Inorganic Chemistry, 3rd Edition ISBN: 978-0-471-50532-7 January 1995,
Supportive References	1. Simon A. Cotton, (2013) Lanthanide and Actinide Chemistry, Macmillan Education, 204p.

	2. Walter D. Loveland, David J. Morrissey, Glenn T. Seaborg (2017) Modern Nuclear Chemistry, John Wiley & Sons.
Electronic Materials	 https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry https://www.britannica.com/science/lanthanum https://byjus.com/jee/f-block-elements/
Other Learning Materials	 https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Book%3A_Introductory_Chemistry_(CK-12)/06%3A_The_Periodic_Table/6.14%3A_Lanthanides_and_Actinides https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query=Lanhanides+and+actinides&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (Depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect		
Effectiveness of students' assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect		
Quality of learning resources	Program coordinator	Indirect		
The extent to which CLOs have been achieved	Assessment committee	Indirect		
Other				

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE REFERENCE NO.

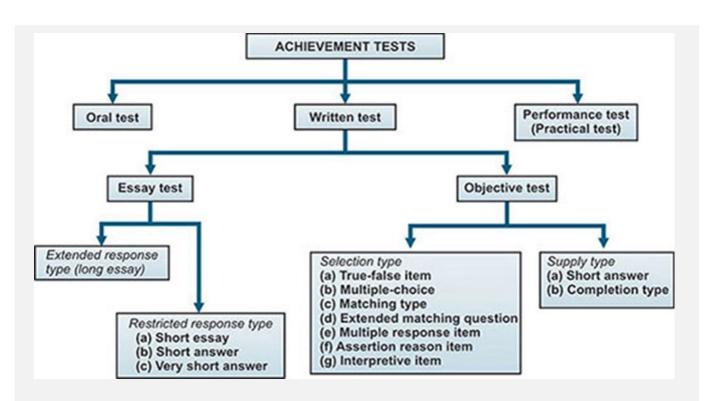
CHEMS230104

11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work

#	EXPERMENTS	Equipment, Chemicals and Tools.	No of weeks for each experiment
1	Introduction and lab safety		One week
2	The Structure of Atoms	Theoretical calculation	One weeks
3	Chemical Periodicity	Theoretical calculation	One weeks
4	Chemical Bonding	Theoretical calculation	Two weeks
5	Exam	Theoretical calculation	One week
6	Molecular Structure and Covalent Bonding Theories	Theoretical calculation	Two weeks
7	Coordination Compounds	Theoretical calculation	Two weeks
8	Revision		One week
9	Final Exam		One week



2- Blue Print

Course Name	Lanthanides & Actinides
Course Code	424CHEM -3

CLOs	PLOs	K1	K2	S1	S2		S3	S4	V1	V2	
Carring Domain PLOS CLOS Assessment Assessment No of Questions Marks of the Assessment Assess	CLOs	1.1	1.2	2.1	2.2	2	2.3	2.4	3.1	3.2	
Note	Marks	10	18	42	20)	4		6		
Nowledge & Now	_	PLOs	CLOs		ent	Asse	ssment Tool			_	
Nowledge & Company C	Domain								+		
Final Exam Objective Q 14 7 7 7 7 7 7 7 7 7								+			
Minimal	_		(10 M)					+	+		
Company					kam			+			
Final Exam	understan	K2		Quiz		Essa	ıy Q	2	2		
S1	ding		(18 M)	Mid ter	m	Essa	ıy Q	4	4	4	•
Continuous Con				Final Ex	kam	Essa	ıy Q	7	13	13	3
Skills		S1	2.1	H.W		Solv	ing	2	2	2	
Quiz Solving 2 2 1			(42 M)			Prol	olems and				
Problems and Essay Q						Essa	ıy Q				
Skills				Quiz		Solv	ing	2	2	1	
Mid term Solving 2 3 9						Prol	olems and				
Skills Problems and Essay Q Final Exam Solving 4 12 30						Essa	ıy Q				
Skills Essay Q				Mid ter	m	Solv	ing	2	3	9	
Skills Final Exam Solving Problems and 6 18 18						Prol	olems and	3	6		
S2						Essa	ıy Q				
S2	Skills			Final Ex	kam	Solv	ing	4	12	30)
S2						Prol	olems and	6	18		
Company Comp						Essa	ıy Q				
Lab Report Lab Rubric 5 5 8		S2	2.2	Practica	al	Obje	ective Q	2	2	2	
Lab Report Lab Rubric 5 5 8			(20 M)	Sheet		Essa	ıy Q	3	3	3	
Exam experiment				Lab Rep	ort	Lab	Rubric	5	5	8	
Exam experiment								7	7		
S3 2.3 Safety Exam Objective Q 8 4 4 Value V1 3.1 Continuous Group 1 6 6 Value (6 M) assessment evaluation rubric				Exam		exp	eriment				
Value V1 3.1 Continuous Group 1 6 6 1 (6 M) assessment evaluation rubric			Exam			8	4	4			
Value V1 3.1 Continuous Group 1 6 6 (6 M) assessment evaluation rubric				,	, , , , , , , , , , , , , , , , , , , ,		·				
Value (6 M) assessment evaluation rubric		V1		Continu	lous	Gro	up	1	6	6	
rubric	Value						•				
	3.1.3.2		,		-						
	TO	TAL	100					1		10	0

Course Title: Group Theory

Course Code: 425CHEM-2

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 29 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessme	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

Со	urse Identificati	on			
1.	Credit hours:				
2.	Course type				
a.	University □	College □	Department⊠	Track□	Others□
b.	Required ⊠	Elective□			
3.	Level/year at wl	hich this course	e is		

offered: Level 12 / Year 4

1. Course Description

Course Title	Course	Contact Hours		Credit			
	Number	(CU)		unit (CU)	V		Pre-
	Number	Lec.	Prac.		Year	Level	requisite
Group theory	425CHEM-2	2	0	2	4	12	322CHEM4

Course objectives: They are to identify the following.

- 1- Recognizing the elements of symmetry and point groups.
- 2- Recognizing the reducible and irreducible representations.
- 3- Recognizing the vibrational spectroscopy.
- 4- Recognizing the infrared absorption bands and Raman lines.

Syllabus: A-Theoretical contents

Elements of symmetry and point groups – Reducible and irreducible representations – Character tables - Vibrational spectroscopy - Infrared absorption bands and Raman lines - Bonding in transition elements complexes - Spectra of octahedral, tetrahedral and square planar complexes.

Syllabus: B-Practical contents

Non

- 5. Pre-requirements for this course (if any): 322CHEM-4
- 6. Co- requirements for this course (if any):Non

7. Course Main Objective(s)

The course of Group theory designed to give the students some information about the principles of symmetry and group theory, laws, and their applications in chemistry.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Lable to)	Jpon compl	etion of the course, s	student will be
1.1	Demonstrate a broad, knowledge in the symmetry element and recognize symmetry operations, resonance, molecular vibrations. (M)	K (1.1)	Lecture group work discussion	Objective Q
1.2	Describe the essential facts, principles and theories in group theory and its application in chemistry. (M)	K(1.2)	Lecture group work discussion	Short answer Questions
2.0	Skills; (Upon completion of the co	urse, stude	nt will be able to)	
2.1	Demonstrate the knowledge and skills in the aspects of group theory,	S(2.1)	lecture group work discussion	Solving Problems

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	to analyze the obtained from symmetry. (M)			
2.2	Make effective use of communication, and online technology about chemistry topics in order to improve their basic knowledge in writing (report and paper/poster) with a good verbal and clear scientific language. (M)	S((2.4)	project-based learning Technology- enabled learning	Research presentation rubric
2.3				
2.4				
3.0	Values, autonomy, and responsibi will be able to)	lity; (Upon	completion of the co	urse, student
3.1	Act with integrity and good ethics in chemistry profession and their obligation to society (M)	V(3.2)	Research activities	Ethic check rubric
3.2				

C. Course Content

No	List of Topics	Contact Hours	
1.	Symmetry Elements and Operations	5	
2.	Point Groups - Groups of Low and High Symmetry Other Groups	5	
3.	Properties and Representations of Groups - Matrices - Representations of Point Groups Character Tables	3	
4.	Examples and Applications of Symmetry - Polarity & Chirality Molecular Vibrations	3	
5.	Resonance spectrum and reduced spectrum Infra-red spectroscopy Raman spectroscopy	3	
6.	Octahedral, tetrahedral and square planer complexes	3	

Total 22

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score	
1.	HW	4-9	5	
2.	Mid-term Exams	<i>5-10</i>	25	
3.	Presentation Session	11	6	
4	Ethic check	11	4	
5	Final EXAM	12-13	60	
	Total		100	

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Inorganic Chemistry, 5 th Edition by Gary L. Miessler, Paul J. Fischer, Donald A. Tarr, (2013)
Supportive References	Molecular Symmetry and Group Theory: A Programmed Introduction to Chemical Applications, 2 nd Edition by Alan Vincent (2001)
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	http://symmetry.otterbein.edu/gallery/index.html3D sym op android program

2. Required Facilities and equipment

Items	Resources		
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students		
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet		
Other equipment (depending on the nature of the specialty)	none		

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

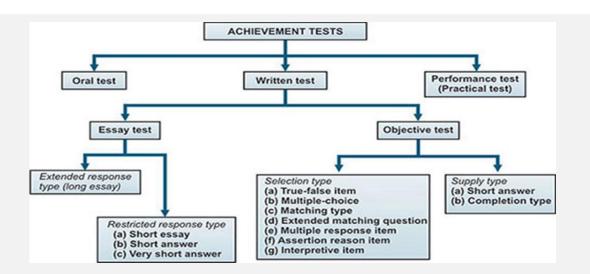
COUNCIL /COMMITTEE REFERENCE NO.

CHEMS230104

3/1/1/2023G – 18/06/1444H

H. Attachments

1- Practical Work


2- Blue Print

Course Name	Group Theory
Course Code	425CHEM-2

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1			2.2		3.1
Marks	10	20	60			6		4

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment	
Knowledge &	K1	1.1 (10M)	HW	Objective Q	2	2	1	
understanding			Mid-term	Objective Q	4	2	2	
			Final Exam	Objective Q	14	7	7	
	K2	1.2 (20M)	HW	Short answer Questions	1	1	1	
		(2011)	Mid-term	Short answer Questions	6	6	6	
			Final Exam	Short answer Questions	7	13	13	
Skills	S1 2.1 (60N	2.1 (60M)	HW	Solving Problems & chart analysis	3	3	3	
				Mid-term	Solving Problems & chart analysis	7	17	17
			Final Exam	Solving Problems & chart analysis	8	40	40	
	S4	2.2 (6M)		Research rubric	-	-	2	
				PPT design	-	-	2	
				Oral discussion	-	-	2	
Value	V2	3.1 (4)	Research ethic check	ethic check rubric	-	4	4	
Т	OTAL	100					100	

Course Title: CHEMISTRY OF NATURAL PRODUCTS

Course Code: 436CHEM2

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 25 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessmen	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

Со	Course Identification					
1.	Credit hours:	3h				
2. (Course type					
a.	University □	College □	Departmen	t⊠	Track□	Others□
b.	Required ⊠	Elective□				
3.	3. Level/year at which this course is offered:			Level 10 Year 4		
A 4	4 Course general Deceription					

4. Course general Description

Course Title	Course Number	Contac (C Lec.	t Hours H) Prac.	Credit unit (CU)	Year	Level	Pre- requisite
Chemistry of Natural Products	436CHEM2	2	1	3	4	12	232CHEM3

Course objectives: They are to identify the following.

- Main classes of natural products and their types.
- **❖** Terpenoid; importance, classification, extraction, isolation, and structure elucidation.
- Alkaloids; importance, classification, extraction, isolation, and structure elucidation.
- Natural phenolic compounds; classification, extraction, isolation, and structure elucidation.

Syllabus: A-Theoretical contents

❖ Definition and classification of different classes of natural products and their isolation by different chromatographic methods- Structure elucidation by means of physical and chemical methods. Some chemical reactions and biosynthesis of terpenes, steroids, alkaloids and natural phenolic (flavonoids, xanthones, anthraquinons and coumarins

Syllabus: A-Practical contents

- Preparation and identification of some organic compounds, (such as aspirin Benzoyl Glycine - benzamide - phthalimide - picric acid - P- nitro-acetanilide, etc.)
- 5. Pre-requirements for this course (if any): 232CHEM3
- 6. Co- requirements for this course (if any): None
- 7. Course Main Objective(s)

This course aims to provide students with the basic knowledge about the main classes of natural products, means of extraction, isolation, structure characterization, and their most important uses

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Upon able to)	completion o	f the course, stud	dent will be
1.1	Demonstrate a broad knowledge and understanding of the principles of natural product chemistry, concepts and terminology related to secondary metabolites including the different classes of them such as terpenes, alkaloids, phenols, steroids etc. (M)	K(1.1)	Lectures, directed reading, group discussion and assignments	Objective question
1.2	Know the different strategies for extraction and isolation of secondary metabolites from their sources and outline the importance and uses of these compounds. (M)	K(1.2)	Lectures, directed reading, group discussion and assignments	Objective question, Essay question
2.0	Skills: (Upon completion of the course,	student will b	ne able to)	
2.1	Demonstrate knowledge and ability to think critically to distinguish and compare between different types of	S(2.1)	Lectures, directed	Objective question, Essay

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	secondary metabolites and how to isolate and elucidate the structure of these compounds by the different methods. (P)		reading, group discussion and assignments	question, Solving Problems
2.2	Conducting experiments to isolate secondary metabolites from their sources and identify them as well as synthesis important organic compounds in lab, analyze results and write a scientific report about them. (M)	S(2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Know and follow appropriate procedures and regulations for the safe handling, use and disposal of chemicals. (P)	S(2.3)	Lab work	MCQ Safety exam
3.0	Values, autonomy, and responsibility; will be able to)	(Upon comple	etion of the cours	e, student
3.1	Work as a group leader in cooperation with other colleagues. (P)	V(3.1)	Group work	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to natural products, classification, extractions, isolation, and structure elucidation	3
2.	Terpenoid; importance, classification, extraction, isolation, and structure elucidation.	7
3.	Alkaloids; importance, classification, extraction, isolation, and structure elucidation.	4
4.	Natural phenolic compounds; classification, extraction, isolation, and structure elucidation.	5
5.	Miscellaneous natural products	3
6.	Selected experiments on preparation, isolation, and purification of simple organic compounds	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *		Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework	assignment	3-10	3%
2.	Quiz		4	2%
3.	3. Mid-term exam		7	15%
	Lab	Safety EXAM	5	4%
		Lab reports	2-10	5%
4.		Final sheet exam	11	6%
		Final practical exam	11	10%
		Group work evaluation	2-10	5%
5.	Final Exam		12-14	<i>50</i> %
	Total			100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	-كيمياء المنتجات الطبيعية – الجزء النظري, أ.د. طاهر حسن, جامعة البعث, مديرية الكتب المطبوعات الجامعية - المنتجات الطبيعية، د. حسن بن محمد الحازمي، جامعة الملك سعود-عمادة شؤون المكتبات، 1995
Supportive References	 Chemistry of Natural Products, S.V. Bhat, B.A. Nagasampagi, S. Minakshi, Springer, 2005 Chemistry of Natural Products, Ayodhya Singh, Campus Books International, 2004 Natural Products Isolation, S. D. Saker, Z. Latif, A. I. Gray, 2nd ed., Humana Press, Totowa, New Jersey, 2006.
Electronic Materials	https://chem.libretexts.org https://chem.libretexts.org/Bookshelves/Organic Chemistry/Bookshelves/Organic Chemistry/Bookshelve
Other Learning Materials	 www.wikipedia.org https://www.slideshare.net/ShvetaArya/chemistry-of-naturalproducts

2. Required Facilities and equipment

Items	Resources
facilities	
(Classrooms, laboratories, exhibition rooms,	1 Lecture room(s) for groups of 50 students
simulation rooms, etc.)	

Items	Resources
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (Depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods	
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect	
Effectiveness of students' assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect	
Quality of learning resources	Program coordinator	Indirect	
The extent to which CLOs have been achieved	Assessment committee	Indirect	
Other			

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Themistry Department Council CHEMS2301

CHEMS230104

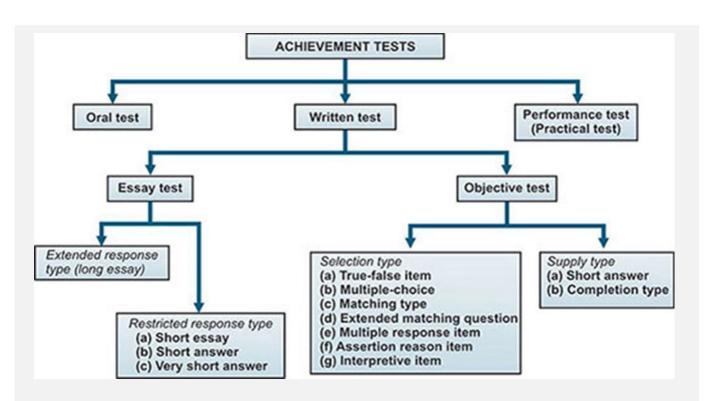
11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work

	Experiment	Equipment, Chemicals and Tools	Week Due	Remarks
1	Lab Safety		1	The required equipment
2	Preparation of Aspirin	Salicylic acid, acetic anhydride	2	and tools for teaching the practical part are:
3	Preparation of acetanilide	Aniline acetic anhydride	3	- UV/Vis Spectrophotometer
4	Preparation of Phthalimide	Phthalic anhydride and Urea	4	- IR spectrophotometer
5	Preparation of Phthalyl glycine	Phthalic anhydride and Glycine	5	- Hotplate magnetic
6	Preparation of benzoin	Benzaldehyde and Potassium cyanide	6	- Condensers
7	Preparation of benzophenone Oxime	Benzophenone and hydroxylamine hydrochloride	7	- Separating funnels different sizes
8	Preparation of 7- hydroxycoumarine	Resorcinol, ethyl acetoacetate, and sulphuric acid	8	- Rotary evaporator - Melting point
9	Extraction of caffeine from green tea	Green tea, chloroform, and separating funnel	9	apparatus - Heating mantle
10	IR spectra of selected prepared compounds	Infra-Red Spectroscopy apparatus	10	- TLC sheets - Capillary tubes
11	Final shee	t and practical exam	11	,

Instructors select experiments according to availability of chemicals and tools


2- Blue Print

Course Name	Chemistry of Natural Products
Course Code	436CHEM-3

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	12	20	38	21	4		5	

Learning	PLOs	CLOs	Assessment	Assessment	No of	Marks of the	Weight of the
Domain	PLOS	CLOS	Type	Tool	Questions	Assessment	Assessment
			Quiz	01: .:	1	0.5	0.5
	K1	1.1 (12 M)	Mid term	Objective question	1(2)	3.5	3.5
Knowledge &		(12 WI)	Final Exam	question	1(4)	8	8
understanding			Quiz	Objective	1	0.5	0.5
understanding	K2	1.2	Mid term	question,	1(5)	5.5	5.5
	112	(20 M)	Final Exam	Essay question,	1(7)	14	14
			HW	Objective	3(5)	3	3
			Quiz	question,	1(2)	1	1
	S1	2.1 (38 M)	Mid term	Essay	1(3)	6	6
			Final Exam	question, Solving Problems,	1(7)	28	28
	S2		Lab Report	Lab report rubric	10	5	5
Skills		2.2 (21 M)	Final sheet exam	Objective question, Essay question,	3	6	6
			Final practical exam	l Task experiment	1	10	10
	S3	2.3 (4 M)	Safety Quiz	MCQ Safety exam	8	4	4
Value	V1	3.1 (5 M)	Continuous assessment	Group work evaluation rubric		5	5
TOTAL	,	100					100

Course Title: STEREOCHEMISTRY

Course Code: 437CHEM2

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 31 December 2022

Table of Contents:

A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment M	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	7

Content

A. General information about the course:

Со	urse Identificat	ion						
1.	Credit hours:	2h						
2. (Course type							
a.	University □	College □	D	epartm	nent⊠	Track	(Others□
b.	Required ⊠	Elective□						
	Level/year at w		ırse is					
off	ered: Level 8 / Y	ear 3						
4. (4. Course general Description							
	Course Title		Canatana	.	Constit	1	I	
	Course Title	Course		t Hours	Credit unit			Pre-
		Number	Lec.	Prac.	(CU)	Year	Level	requisite
	Stereochemistry		2	0	2	3	8	232CHEM3
	s course aims to gi		ic princip	oles of s	tereo mode	els, projed	ctions, sy	mmetry and
ayn	amic and static ste	reocnemistry.						
C	ourse objectives:	They are to ide	entify th	e follow	ring.			
0	To identify the d	ynamic and stat	ic stereo	chemist	ry concepts	5.		
0	To identify differ compounds.	ent shapes of o	rganic co	mpound	ds and nom	enclature	e of chira	1
0	To distinguish be	etween chiral aı	nd achiro	al compo	ounds.			
0	To identify of th	e spatial models	s, sequer	ices rule	s and prior	-		
0	To identify some		ons (addi	ition, eli	mination, a	ınd rearro	angemen	t)
	and their stered	ochemistry.						
S	yllabus: A-Theore	etical contents						
G	eneral introduction	of stereochemi	stry – iso	omerism	- conforma	tion - spo	atial mod	lels
	sequence rules - Ci				-	-		
	ctivity – Enantiome				•	ynamic S	tereoche	mistry
	<i>cluding, addition, e</i> yllabus: A-Practic		rearrang	gement i	reactions.			
	•	002.002.00						
none								
5.	5. Pre-requirements for this course (if any): 232CHEM3							
6.	6. Co- requirements for this course (if any):							
			r	one				
	Course Main Ok	. ,			C . L		120	
	s course aims to give logical applications		pasic prii	nciples o	f photoche	mistry an	id its che	mical and

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	22

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Up be able to)	oon completion	of the course, st	tudent will
1.1	Demonstrate a broad, knowledge and understanding in the basic information of stereochemistry, the distinguish between static and dynamic stereochemistry, enantiomers and diastereomers. (M)	K (1.1)	Lecture group work discussion	Objective Q
1.2	Describe the essential facts, principles and theories across the identification of the absolute configuration of chiral compounds using Cahn -Ingold _Prelong system, and Fischer Projections. (M)	K(1.2)	Lecture group work discussion	Short answer Questions
2.0	Skills; (Upon completion of the cours	se, student will	be able to)	
2.1	Demonstrate the knowledge and skills required to solve problems about the	S(2.1)	lecture	Solving Problems &

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	specific rotation of optically active compounds, enantiomeric excess of both enantiomers, and modeling of chemical systems. (P)		group work discussion	chart analysis
2.2	Make effective use of communication, and online technology about chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language about stereochemistry. (I)	S((2.4)	project-based learning Technology- enabled learning	Research presentatio n rubric
3.0	Values, autonomy, and responsibil student will be able to)	lity; (Upon con	pletion of the co	urse,
3.1	Act with integrity and good ethics in chemistry profession and their obligation to society (M)	V(3.2)	Research activities	Ethic check rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Chapter 1: Conformations of Alkanes and Cycloalkanes: Conformations of Alkanes and Cycloalkanes: Constitutional Isomers of Alkanes. Drawing Newman Projections. Conformational Analysis of Ethane and Propane Conformational Analysis of Butane Stability of Cycloalkanes.	3
2.	Conformations of Cyclohexane Drawing Chair Conformations Monosubstituted Cyclohexane cis-trans Stereoisomerism Chapter 2: Stereoisomerism: Introduction to Stereoisomerism. Designating Configuration Using the Cahn-Ingold-Prelog System.	3
3	Designating Configuration Using the Cahn-Ingold-Prelog System. Optical Activity. Stereoisomeric Relationships: Enantiomers and Diastereomers.	3
4	Chapter 3: Elimination Reactions: Introduction to Elimination Reaction-Stereoisomerism in Alkenes. Possible Mechanisms for Elimination; E1, E2 mechanism Drawing the Products of an E2 Reaction. Regioselective and Stereoselective of E2 Reactions.	3
5	The E1 Mechanism Drawing the Complete Mechanism of an E1 Process and rearrangement of carbocations.	3
6	Chapter 3: Addition Reactions	3

	Introduction to Addition Reactions, Hydrohalogenation -Acid-Catalyzed Hydration.	
7	Acid-Catalyzed Hydration. Halogenation- General Revisions.	3
8	Presentation Session	1
	Total	22

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HW	7-8	5
2.	Mid-term Exam	5-8	25
3.	Presentation Session	11	6
4.	Ethic check	11	4
5.	Final EXAM	12-13	60
	Total	100	

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Organic Chemistry, David R. Klein (Johns Hopkins University), John Wiley & Sons, Inc., 2010.
Supportive References	 Stereochemistry, R K Sharma, Discovery Publishing House, 2007. Organic Stereochemistry, Robinson, Oxford University Press N Delhi, 2005. Organic Chemistry, T.W. Graham Solomons and Craig B. Fryhle. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes.
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	 https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpt h=&query=steriochemistry&type=wiki

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet

Items	Resources
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL
/COMMITTEE

REFERENCE NO.

DATE

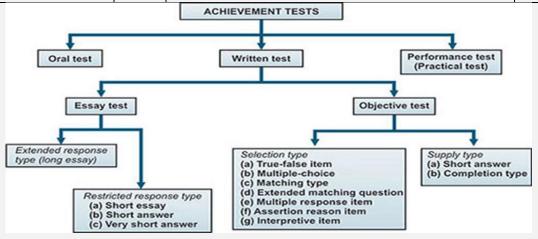
CHEMS2301

CHEMS230104

11/1/2023G – 18/06/1444H

H. Attachments

1- Practical Work


None

2- Blue Print

Course Name	STEREOCHEMISTRY
Course Code	437 CHEM2

PLOs	K1	K2	S1	S2	S 3	S4	V1	V2
CLOs	1.1	1.2	2.1			2.2		3.1
Marks	12	23	55	-	-	6	-	4

Learning Domain	PLOs	CLOs	Assessment Type Assessment Tool		No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1	HW	Objective Q	4	2	2
		(12M)	Mid-term	Objective Q	4	2	2
Knowledge &			Final Exam	Objective Q	8	8	8
understanding	K2	1.2	HW	Short answer Questions	2	2	2
		(23M)	Mid-term	Short answer Questions	3	6	6
			Final Exam	Short answer Questions	3	15	15
	S1	2.1 (55M)	HW	Solving Problems & chart analysis	1	1	1
			Mid-term	Solving Problems & chart analysis	4	17	17
Skills			Final Exam	Solving Problems & chart analysis	4	37	37
	S4	2.2	Research	Research rubric	-	2	2
		(4M)	presentation	PPT design	-	2	2
				Oral discussion	-	2	2
Value	V2	3.1 (6)	Research ethic check			4	4
	TOTAL	100					100

Course Title: Applied Organic Chemistry

Course Code: 438 CHEM3

Program: Bachelor in Chemistry

Department: **Chemistry**

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 25 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessm	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

Со	Course Identification									
1.	Credit hours:	3h								
2. (Course type									
a.	University □	College □	Dep	Track□	Others□					
b.	Required ⊠	Elective□								
3.	Level/year at wh	nich this course i	S	Level 12						
offered:				Year 4						

4. Course general Description

Course Title	Course Number	Contact Hours (CH)		Credit unit (CU)	Year	Level	Pre- requisite
		Lec. Prac.					
Applied Organic Chemistry	CHEM 438	2	2	3	4	12	232 CHEM3

The main purpose of Applied organic chemistry course is giving the students basic information about the petroleum, Petrochemicals, Polymers, and Dyes with their classifications, applications and their uses.

Course objectives: They are to identify the following.

- ♣ Discuss the occurrence, extraction, properties of petroleum and application of fractional distillation, catalytic cracking and catalytic reforming during petroleum processing.
- → Describe using equations and flow diagrams, the manufacture of some petrochemicals, namely, ethylene, propylene, synthetic gas, benzene and inorganic petrochemicals.
- identify polymers, their physical properties and different kinds of addition polymerization
- Identify the characteristics of some common polymers and the industrial importance of polymers and their uses in various fields.
- Identify the types of pigments and paints.

Syllabus: A-Theoretical contents

The course is designed to give the students an idea about the polymer science – definition, classification of polymers, and polymerization by addition (chain reaction) – ionic polymerization (anionic and cationic) – free radical polymerization –polymerization by condensation– (linear polymerization– cross section polymerization). Introduce an idea about petroleum, Petrochemicals and industrial applications of organic chemistry, such as organic polymers and their uses in various fields and the manufacture of dyes and paints.

Syllabus: B-Practical contents

Basic knowledge concerning general Safety Rules, Lab Equipment, Purification of Organic Compounds, synthesis of some polymers, soap, cream, some dyes and examine their properties and their applications.

- 5. Pre-requirements for this course (if any): 232CHEM3
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

The main purpose of Applied organic chemistry course is giving the students basic information about the petroleum, Petrochemicals, Polymers, and Dyes with their classifications, applications and their uses.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
	Hybrid		
3.	Traditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessme nt Methods
1.0	Knowledge and understanding; (Upon completion of the course, student will be able to)			
1.1	Demonstrate a broad knowledge and understanding of industrial chemistry, petroleum, petrochemicals, polymer, and dyes. (P)	K (1.1)	lecture/ discussion Seminars/presentation	Objective question

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessme nt Methods
1.2	Describe the uses and applications of petrochemicals, polymers, and dyes in our life. (P)	K (1.2)	lecture / discussion / Seminars /Individual presentation	Essay question
2.0	Skills; (Upon completion of the cou	rse, student	will be able to)	
2.1	Demonstrate ability in critical thinking, analyzing reaction mechanisms and classifying industrial compounds. (P)	S (2.1)	lecture / discussion / Seminars /Individual presentation	Solving Problems & Essay question
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instructions, and classical techniques for carrying out experiments in polymers, dyes and petroleum and write a report representing the scientific data. (P)	S (2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Examine and follow proper procedures and regulations for safe handling, use, and disposal of chemicals. (P)	S (2.3)	lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsibil be able to	ity; (Upon co	empletion of the course, s	tudent will
3.1	Working as a group leader in cooperation with other colleagues. (P)	V (3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Definitions, origin, and composition of crude oil.	2
2.	Characterization and classification of crude oil.	2
3.	Basic petroleum refining.	2
4.	Petrochemicals, classifications, uses and applications.	2
5.	Definition, Properties, and classifications of Polymers.	2
6.	Addition Polymerization.	2
7.	Condensation Polymerization.	2
8.	Application of industrial polymers.	2
9.	Introduction and Classifications of Dyes.	2
10.	Preparation, uses, and applications of dyes.	2
11.	Paints, types, constitutions and applications.	2

12.	selected experiments covered the course topics, Polymer synthesis, synthesis of some dyes, Soap manufactureetc	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	3-10	4%
2.	Lecture Quizzes	4	1%
3.	Mid-term exam	<i>6-8</i>	15%
4.	LAB Sheet	10	5%
5.	Quiz in Safety	11	4%
6.	Final practical exam	11	6%
7.	Lab report	2-10	10%
8.	Group work evaluation	2-10	5%
9.	Final Exam	12-13	50%
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Industrial Organic Chemicals by Harold A. Wittcoff, Bryan G. Reuben and Jeffery S. Plotkin, 2012 ISBN: 0470537434	
Supportive References	كتاب الصناعات البترولية والبتروكيماوية تأليف أ. د سالم بن سليم الذياب كيمياء و تقنية البوليمرات بواسطة أ. د. سالم سليم الذياب	
Electronic Materials	 https://en.wikipedia.org/wiki/Chemical_industry http://www.rsc.org/learn-chemistry https://www.khanacademy.org/science/organic-chemistry https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/intro1.htm https://chem.libretexts.org/ 	
Other Learning Materials	None	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 1 Lecture room(s) for groups of 50 students 1 Laboratory for a group of 25 student

Items	Resources	
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet	
Other equipment (Depending on the nature of the specialty)	Bunsen burner, reagent bottles, beakers, Buchner funnel, Test tube and many more. Scientific videos	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of student's assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

hemistry Department Council CHEMS2301

CHEMS230104

11/1/2023@ = 18/06/1444H

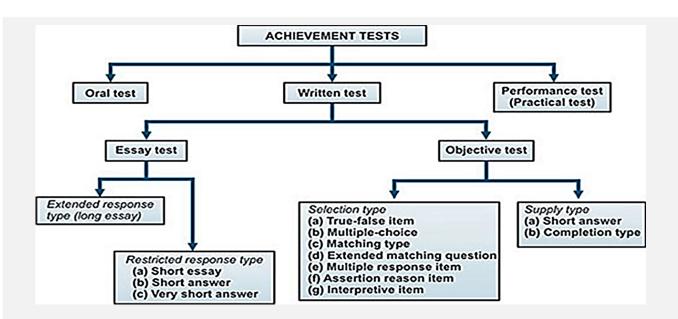
H. Attachments

1- Practical Work

While specific laboratory experiments vary depending on the instructor and the semester, the following list is representative of the experiments that are used:

Week	EXP, titles	Chemicals and tools	Remarks
1		Glacial acetic acid, 40% formaldehyde	None
	Phenol formaldehyde resin	solution, Phenol, conc. HCl.	
	Phenoi formaldenyde resin	Glass rod, beakers, funnel, heater and	
		filter paper, analytical balance, FTIR.	
2		Urea, Formaldehyde, 35-40 % neutral	None
		solution, Oxalic acid, saturated solution.	
		Concentrated ammonia solution	
	Urea- Formaldehyde Resins	Conc. HCl.	
		Flame, Beakers, Test Tubes, Filter	
		papers, Funnels, filtration system,	
		analytical balance	
3		Fat, Oil, Fatty acids, Standard N/2 HCl,	None
	Determination of Saponification	Alc. KOH and phenolphthalein.	
	Value	Round bottom flask, burette, pipette,	
	- 3.3.3	water condenser, water bath, analytical	
	balance.		
4		Aniline hydrochloride, Aniline sulfate,	None
	DETERMINATION OF PURITY	Standard 0.1N HCl, and	
	ANILINE SALTS	phenolphthalein.	
		burette, pipette, conical flasks and	
	dropper, analytical balance		
5		Barium hydroxide solution 0.05N,	None
	Determination of the Equivalent	phenolphthalein, carboxylic acids	
	Weight of a Carboxylic Acid	Burette, pipette, conical flasks and	
6		dropper, analytical balance 4-Nitroaniline,2-naphthol, HCl, Sodium	None
6		•	None
	Preparation of para-Red and	Nitrite, Sodium Hydroxide	
	Dyeing	Beakers, Dropper, Magnetic stirrer, Thermometer, Ice-Bath, Filtration	
	byenig .	system, Ethanol, Fibers sample,	
		analytical balance, FTIR	
7		Oil, Fat, Sodium hydroxide, Sodium	None
		Chloride, Ethanol.	
	Preparation of Soap	Water-bath, thermometer, magnetic	
		stirrer, filtration system, Round-	
		bottomed flask, analytical balance	

8		Oil, Fat, Potassium hydroxide, Sodium	None
	Synthesis of Biodiesel and	Chloride, Calcium chloride anhydrous,	
	studying its properties	Acetic acid.	
		Water-bath, Separating funnel, Conical	
		flask, analytical balance	
9		oils, fats, Borax, Mineral oil, water and	None
		waxes.	
	Creams	Beakers, Water-bath, magnetic stirrer,	
		Thermometer, Filter papers, analytical	
		balance	
10		phthalic anhydride	None
		anhydrous sodium acetate	Í
		ethylene glycol	ı
		glycerol	Í
		analytical balance	Í
		2 large test tubes (20- x 150-mm)	Í
		1-mL graduated pipette	Í
	Preparation of glyptal resin.	Bunsen burner	Í
		ring stand	Í
		2 utility clamps (not rubber coated	Í
		clamps) FTIR	ı
		(optional) melting point apparatus	ı
		(optional) small test tubes or spot plate	ı
		(optional) assorted solvents such as	1
		water, alcohol, acetone,	İ
11	Presentation/Report rubric		
	/Assessment	Theoretical	ı


2- Blue Print

Course Name	Organic Applied Chemistry
Course Code	438 Chem -3

PLOs	K1	К2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	10	18	42	20	4		6	

Learning Domain	PLOs	CLOs	Assessment Type	Assessment	No of Questions	Marks of the Assessment	Weight of the Assessment
Knowledge & understanding	K1	1.1 (10 M)	Quiz	Objective question	5 5	10	1
			Mid term	Objective question	4 2	2 1	2
			Final Exam	Objective question	7	7	7
	K2	1.2	HW	Essay question	10	10	2
		(18 M)	Mid term	Essay question	3	3	3
			Final Exam	Essay question	4	13	13
Skills	S1	2.1	HW	Essay question	4	2	2
		(42 M)	Mid term	Essay question	4	10	10
			Final Exam	Essay question	6	30	30
	S2	2.2 (20 M)	Practical Sheet	Objective question	10	5	5
			Lab Report	10 experiments	10	10	10
			Final Lab Exam	1 task experiment	1	5	5
	S3	2.3 (4 M)	Safety EXAM	Objective question	8	4	4
Value	V1	3.1 (6 M)	Continuous assessment	Group evaluation rubric		6	6
Total		100				100	100 %

Course Title: Applied Organic Chemistry

Course Code: 438 CHEM-3

Program: Bachelor in Chemistry

Department: **Chemistry**

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 25 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessme	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

Со	Course Identification						
1.	Credit hours:	3h					
2. (Course type						
a.	University □	College □	Dep	partment⊠	Track□	Others□	
b.	Required ⊠	Elective□					
3. Level/year at which this course is			S	Level 12			
	offered:			Year 4			

4. Course general Description

Course Title	Course Number	Contact Hours (CH)		Credit unit (CU)	Year	Level	Pre- requisite
		Lec.	Prac.				
Applied Organic Chemistry	CHEM 438	2	2	3	4	12	232 CHEM3

The main purpose of Applied organic chemistry course is giving the students basic information about the petroleum, Petrochemicals, Polymers, and Dyes with their classifications, applications and their uses.

Course objectives: They are to identify the following.

- ♣ Discuss the occurrence, extraction, properties of petroleum and application of fractional distillation, catalytic cracking and catalytic reforming during petroleum processing.
- Describe using equations and flow diagrams, the manufacture of some petrochemicals, namely, ethylene, propylene, synthetic gas, benzene and inorganic petrochemicals.
- identify polymers, their physical properties and different kinds of addition polymerization
- Identify the characteristics of some common polymers and the industrial importance of polymers and their uses in various fields.
- Identify the types of pigments and paints.
- Discuss the classification, synthesis and uses of dyes.

Syllabus: A-Theoretical contents

The course is designed to give the students an idea about the polymer science – definition, classification of polymers, and polymerization by addition (chain reaction) – ionic polymerization (anionic and cationic) – free radical polymerization –polymerization by condensation– (linear polymerization– cross section polymerization). Introduce an idea about petroleum, Petrochemicals and industrial applications of organic chemistry, such as organic polymers and their uses in various fields and the manufacture of dyes and paints.

Syllabus: B-Practical contents

Basic knowledge concerning general Safety Rules, Lab Equipment, Purification of Organic Compounds, synthesis of some polymers, soap, cream, some dyes and examine their properties and their applications.

- 5. Pre-requirements for this course (if any): 232CHEM3
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

The main purpose of Applied organic chemistry course is giving the students basic information about the petroleum, Petrochemicals, Polymers, and Dyes with their classifications, applications and their uses.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
	Hybrid		
3.	Traditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessme nt Methods
1.0	Knowledge and understanding; (Up able to)	oon completi	on of the course, student	will be
1.1	Demonstrate a broad knowledge and understanding of industrial chemistry, petroleum, petrochemicals, polymer, and dyes. (P)	K (1.1)	lecture/ discussion Seminars/presentation	Objective question

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessme nt Methods
1.2	Describe the uses and applications of petrochemicals, polymers, and dyes in our life. (P)	K (1.2)	lecture / discussion / Seminars /Individual presentation	Essay question
2.0	Skills; (Upon completion of the cou	rse, student	will be able to)	
2.1	Demonstrate ability in critical thinking, analyzing reaction mechanisms and classifying industrial compounds. (P)	S (2.1)	lecture / discussion / Seminars /Individual presentation	Solving Problems & Essay question
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instructions, and classical techniques for carrying out experiments in polymers, dyes and petroleum and write a report representing the scientific data. (P)	S (2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Examine and follow proper procedures and regulations for safe handling, use, and disposal of chemicals. (P)	S (2.3)	lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsibil be able to	ity; (Upon co	empletion of the course, s	tudent will
3.1	Working as a group leader in cooperation with other colleagues. (P)	V (3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Definitions, origin, and composition of crude oil.	2
2.	Characterization and classification of crude oil.	2
3.	Basic petroleum refining.	2
4.	Petrochemicals, classifications, uses and applications.	2
5.	Definition, Properties, and classifications of Polymers.	2
6.	Addition Polymerization.	2
7.	Condensation Polymerization.	2
8.	Application of industrial polymers.	2
9.	Introduction and Classifications of Dyes.	2
10.	Preparation, uses, and applications of dyes.	2
11.	Paints, types, constitutions and applications.	2

12.	selected experiments covered the course topics, Polymer synthesis, synthesis of some dyes, Soap manufactureetc	22
	44	

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	3-10	4%
2.	Lecture Quizzes	4	1%
3.	Mid-term exam	6-8	15%
4.	LAB Sheet	10	5%
5.	Quiz in Safety	11	4%
6.	Final practical exam	11	5%
7.	Lab report	2-10	10%
8.	Group work evaluation	2-10	6%
9.	Final Exam	12-13	50%
	Total		100 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Industrial Organic Chemicals by Harold A. Wittcoff, Bryan G. Reuben and Jeffery S. Plotkin, 2012 ISBN: 0470537434
Supportive References	كتاب الصناعات البترولية والبتروكيماوية تأليف أ. د سالم بن سليم الذياب كيمياء و تقنية البوليمرات بواسطة أ. د. سالم سليم الذياب
Electronic Materials	 https://en.wikipedia.org/wiki/Chemical_industry http://www.rsc.org/learn-chemistry https://www.khanacademy.org/science/organic-chemistry https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/intro1.htm https://chem.libretexts.org/
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 1 Lecture room(s) for groups of 50 students 1 Laboratory for a group of 25 student

Items	Resources	
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet	
Other equipment (Depending on the nature of the specialty)	Bunsen burner, reagent bottles, beakers, Buchner funnel, Test tube and many more. Scientific videos	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods			
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect			
Effectiveness of student's assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect			
Quality of learning resources	Program coordinator	Indirect			
The extent to which CLOs have been achieved	Assessment committee	Indirect			
Other					

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Change of the Council CHEMS 2301

CHEMS230104

11/1/20236 18/06/1444H

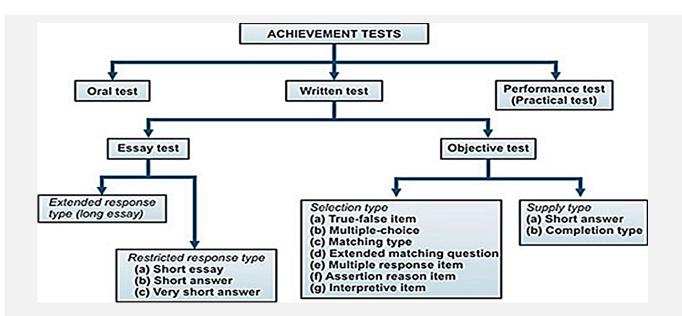
H. Attachments

1- Practical Work

While specific laboratory experiments vary depending on the instructor and the semester, the following list is representative of the experiments that are used:

Week	EXP, titles	Chemicals and tools	Remarks
1		Glacial acetic acid, 40% formaldehyde	None
	Phenol formaldehyde resin	solution, Phenol, conc. HCl.	
	Phenoi formaldenyde resin	Glass rod, beakers, funnel, heater and	
		filter paper, analytical balance, FTIR.	
2		Urea, Formaldehyde, 35-40 % neutral	None
		solution, Oxalic acid, saturated solution.	
		Concentrated ammonia solution	
	Urea- Formaldehyde Resins	Conc. HCl.	
		Flame, Beakers, Test Tubes, Filter	
		papers, Funnels, filtration system,	
		analytical balance	
3		Fat, Oil, Fatty acids, Standard N/2 HCl,	None
	Determination of Saponification	Alc. KOH and phenolphthalein.	
	Value	Round bottom flask, burette, pipette,	
	- 3.330	water condenser, water bath, analytical	
		balance.	
4		Aniline hydrochloride, Aniline sulfate,	None
	DETERMINATION OF PURITY	Standard 0.1N HCl, and	
	ANILINE SALTS	phenolphthalein.	
		burette, pipette, conical flasks and	
		dropper, analytical balance	None
5	Baranata di Salara da Calara d	Barium hydroxide solution 0.05N,	None
	Determination of the Equivalent	phenolphthalein, carboxylic acids	
	Weight of a Carboxylic Acid	Burette, pipette, conical flasks and	
6		dropper, analytical balance 4-Nitroaniline,2-naphthol, HCl, Sodium	None
0		Nitrite, Sodium Hydroxide	None
	Preparation of para-Red and	Beakers, Dropper, Magnetic stirrer,	
	Dyeing	Thermometer, Ice-Bath, Filtration	
	J'emg	system, Ethanol, Fibers sample,	
		analytical balance, FTIR	
7		Oil, Fat, Sodium hydroxide, Sodium	None
		Chloride, Ethanol.	
	Preparation of Soap	Water-bath, thermometer, magnetic	
		stirrer, filtration system, Round-	
		bottomed flask, analytical balance	

8		Oil, Fat, Potassium hydroxide, Sodium	None
	Synthesis of Biodiesel and	Chloride, Calcium chloride anhydrous,	
	studying its properties	Acetic acid.	
	studying its properties	Water-bath, Separating funnel, Conical	
		flask, analytical balance	
9		oils, fats, Borax, Mineral oil, water and	None
		waxes.	
	Creams	Beakers, Water-bath, magnetic stirrer,	
		Thermometer, Filter papers, analytical	
		balance	
10		phthalic anhydride	None
		anhydrous sodium acetate	
		ethylene glycol	
		glycerol	
		analytical balance	
		2 large test tubes (20- x 150-mm)	
		1-mL graduated pipette	
	Preparation of glyptal resin.	Bunsen burner	
	. 071	ring stand	
		2 utility clamps (not rubber coated	
		clamps) FTIR	
		(optional) melting point apparatus	
		(optional) small test tubes or spot plate	
		(optional) assorted solvents such as	
		water, alcohol, acetone,	
11	Presentation/Report rubric	water, alcohor, acctoric,	
11	/Assessment	Theoretical	
	/ 1336331116116		



2- Blue Print

Course Name	Organic Applied Chemistry
Course Code	438 Chem -3

PLOs	K1	К2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	10	18	43	20	4		6	

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
Knowledge & understanding	K1	1.1 (10 M)	Quiz	Objective question	5 5	10	1
			Mid term	Objective question	4 2	2 1	3
			Final Exam	Objective question	6 2	3 4	6
	K2	1.2	HW	Essay question	10	10	2
		(18 M)	Mid term	Essay question	3	5	4
			Final Exam	Essay question	4	12	12
Skills	S1	2.1	HW	Essay question	12	24	2
		(42 M)	Mid term	Essay question	4	7	9
			Final Exam	Essay question	6	32	32
	S2	2.2 (20 M)	Practical Sheet	Objective question	10	5	5
			Lab Report	10 experiments	10	10	10
			Final Lab Exam	1 task experiment	1	5	5
	S3	2.3 (4 M)	Safety EXAM	Objective question	8	4	4
Value	V1	3.1 (6 M)	Continuous assessment	Group evaluation rubric		6	6
Total		100				100	100 %

Course Title: **Principles of Biochemistry**

Course Code: 439 CHEM-3

Program: Bachelor in Chemistry

Department: **Chemistry**

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 25 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Asses	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

Со	Course Identification							
1.	Credit hours:	3h	3h					
2. (2. Course type							
a.	University □	College □	Dep	oartment⊠	Track□	Others□		
b.	Required ⊠	Elective□						
3. Level/year at which this course is			S	Level 12				
	offered:			Year 4				

4. Course general Description

Course Title	Course Contact Number (CH)		Contact Hours (CH)						Year	Level	Pre- requisite
		Lec.	Prac.	(CU)							
Principles of Biochemistry	CHEM 439	2	1	3	4	12	232CHEM3				

This course aims to provide students basic principles and definition of biochemistry, structure, functions and a general idea of metabolic reactions, biological functions of proteins, amino acids, enzymes and Nucleic acids. Carbohydrates studies and their function and Glucose oxidation to get energy. Lipids and their biological importance

Course objectives: They are to identify the following.

- The importance of biochemistry in our life.
- Biological fluids and metabolic reactions (catabolic and anabolic)
- Nucleic acids, its structure and functions (DNA and RNA).
- Enzyme's classification, regulation, factors affecting enzyme action.

Syllabus: A-Theoretical contents

General introduction to the study of biomolecules – biological fluids - metabolic reactions (catabolic and anabolic) – production of bioenergetics – structure and function of macro bio-molecules, including proteins, amino acids, enzymes and carbohydrates (monosaccharides, disaccharides and polysaccharides) – Biological oxidation of glucose to obtain energy - lipids – classification and biological importance – structure and function of lipids - Fatty acids – beta oxidation of fatty acids to obtain energy – nucleic acids; structure and function - DNA and RNA, structure and function

Syllabus: B-Practical contents

Selected experiments related to Biochemistry analysis

- 5. Pre-requirements for this course (if any): 232CHEM3
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

This course aims to provide students basic principles and definition of biochemistry, structure, functions and a general idea of metabolic reactions, biological functions of proteins, amino acids, enzymes and Nucleic acids. Carbohydrates studies and their function and Glucose oxidation to get energy. Lipids and their biological importance.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs Course Learning Outcomes aligned with reaching Strategies program		Assessme nt Methods
1.0	Knowledge and understanding; (Upo	n completion of	the course, student will	be able to)
1.1	Demonstrate knowledge and an understanding of fundamental biochemistry principles, including bimolecular structure and metabolic pathways. (P)	K (1.1)	lecture/ discussion Seminars/presentatio n	Objective question
1.2	Explain the essential facts in biochemistry and correlate between	K (1.2)	lecture / discussion / Seminars /Individual presentation	Essay question

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessme nt Methods
	the metabolic disorders and diagnosis of diseases. (P)			
2.0	Skills; (Upon completion of the cours	e, student will b	e able to)	
2.1	Solve problems in biochemistry, differentiate between metabolic pathways and the energy production level from different biomolecules, and evaluate the level of different biological metabolites in biological fluids. (P)	S (2.1)	lecture / discussion / Seminars /Individual presentation	Solving Problems & Essay question
2.2	Design, carry out, and record the results of biochemical experiments using classical techniques and modern instruments, then analyze those results to draw reasonable, accurate conclusions and write reports. (P)	S (2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	S (2.3)	lab demonstrations / hands-on student learning activities	Safety exam
3.0	Values, autonomy, and responsibility able to)	; (Upon comple	tion of the course, stude	nt will be
3.1	Working as a group leader in cooperation with other colleagues. (P)	V (3.1)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

C. Course Content

No	List of Topics	Contact Hours
1.	An introduction to biochemistry and water structure, hydrogen bonds, ionization, pH and buffer solutions.	2
2.	Carbohydrates, classification, Nomenclature of monosaccharides and their derivatives, isomerism and mutarotation.	2
3.	Reactions of monosaccharides, structures and functions of disaccharides and poly saccharides.	2
4.	Amino acids chemistry, classification and reactions.	2
5.	Peptide formation, protein functions, classification, separation, solubility and reactions.	2

6.	Enzyme's nomenclature, classification, mechanism, inhibitions and their types.	2
7.	Lipid's identification and classification. Triglycerides functions. Compound lipids (Conjugated and derived) and fatty acids Classification	2
8.	Chemical properties of fatty acids, rancidity, nucleic acid classification and structure.	2
9.	Types of nucleic acids, DNA Transcription, RNA translation and protein synthesis.	2
10.	Metabolism, Glycolysis and Kreb's cycle.	2
11.	Gluconeogenesis, phosphate pentose shunt and glycogenolysis.	1
12.	Beta Oxidation and digestion of proteins.	1
13.	Lab Experiments	22
	Total	44

D. Students Assessment Activities

No	As	sessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score	
1.	Homework ass	ignment	<i>3-8</i>	3%	
2.	Lecture Quizze	s	4-8 2%		
3.	Mid-term exan	า	6-8	15%	
4.		LAB Sheet	10	5%	
5.		Quiz in Safety	11	4%	
6.	Practical work	Final practical exam	11	5%	
7.	WOIK	Lab report		10%	
8.		Group work evaluation	2-10	6%	
9.	Final Exam		12-14	50%	
	Total			100 %	

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Lehninger, principals of biochemistry (sixth edition) by David L. Nelson Michafi M. Cox. W. H. FREEMAN AND COMPANY. New York. 2013
Supportive References	اسس الكيمياء الحيوية. الدكتور عبد المنعم الاعسر , المجلد الاول, المكتبة الاكاديمية 2011
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	 www.wikipedia.org/ http://www.wpi.edu/Academics/Depts/Chemistry/Courses/General http://med-mu.com/wp-content/uploads/2018/06/DM-Vasudevan- Textbook-of-Biochemistry-For-Medical-Students-6th-Edition.pdf

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (Depending on the nature of the specialty)	Colorimetric devices, Bunsen burner, microscopes, reagent bottles, beakers, Buchner funnel, Test tube and many more. Scientific videos

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of student's assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Chemistry Department Council CHEMS2301

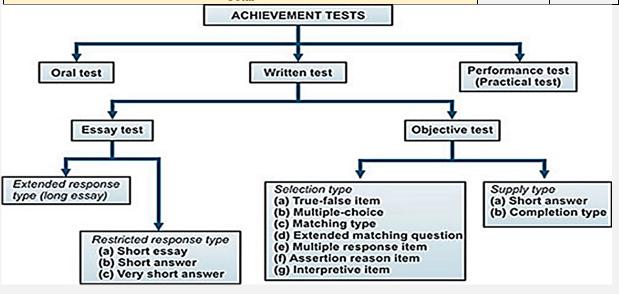
CHEMS230104

11/1/20236 - 18/06/1444H

H. Attachments

1- Practical Work

Week	EXP, titles	Chemicals and tools	Remarks
1	Course Introduction include: -Safety during handling with Chemicals and biological samples. Preparation of buffer solution.	Safety tools, and Devices	None
2-3	Carbohydrate detection	Molisch's, Barfoed. Reducing tests, Fehling's, Benedict's, Ammoniacal silver nitrate, Rapid furfural, furfural, Osazone formation and Iodine test	None
4	Estimation of the content of reducing sugars using Fehling's and Benedict's test	Fehling's and Benedict's reagent; copper (II) sulfate, potassium sodium tartrate, Potassium hydroxide	None
5	Estimation of glucose in serum by phenol-sulphuric acid method	Spectrophotometer, ethanol Phenol, Sulfuric acid, Water bath, Tubes with covers, filter paper, Cones	None
6	General tests for proteins	Ninhydrin reagent, copper sulfate in a strong base, sodium hydroxide solution, water bath	None
7	Solubility and Precipitation of protein	heavy metals (e.g., Hg2+, Pb2+, Cu2+), Alkaloidal reagents (e.g., tannate & trichloro acetate), by denaturation (heat coagulation test, strong acids, strong base)	None
7	Color reactions of proteins, Biuret test, Millon's test and Reduced sulfur test, Hopkins-Colé test	copper sulfate, sodium hydroxide, Millon's reagent, Hopkins-Colé reagent, H2SO4	None
8	Estimation of amino acid	-Using Ninhydrin - titration with potassium hydroxide in the presence of formaldehyde	None
9	Properties of fats and oils	Melting point, Crystallization, Viscosity, Density, Solubility, Refractive index, The Saponification number, iodine number, Rancidity	None
10	Estimation of triglyceride	4-chlorophenol, Magnesium aspartate, Sodium Azide	None



2- Blue Print

	Principle of Biochemistry
Course Code	439Chem -3

PLOs	K1	K2	S 1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	10	18	42	20	4		6	

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
Knowledge &	K1	1.1	Quiz	Objective question	5	5	1
understanding		(10 M)	Mid term	Objective question	4	2	2
			Final Exam	Objective question	14	7	7
	K2	1.2	Quiz	Essay question	2	2	1
		(18 M)	Mid term	Essay question	2	4	4
			Final Exam	Essay question	4	13	13
Skills	S1	2.1	H. W Essay question 6		6	3	3
		(42 M)	Mid term	Mid termEssay question4Final ExamEssay question6Practical SheetObjective question10		9	9
			Final Exam			30	30
	S2	2.2 (20 M)				5	5
			Lab Report	10 experiments	10	10	10
			Final Lab Exam	Lab 1 task experiment 1		5	5
	S3	2.3 (4 M)	Safety EXAM	Objective question	8	4	4
Value	V1	3.1 (6 M)	Continuous assessment	ntinuous Group evaluation		6	6
		100	100 %				

Course Title: **SOLUTION CHEMISTRY**

Course Code: 445CHEM3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 25 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessme	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
1. References and Learning Resources	7
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	8
H. Attachments	9
1- Practical Work	9

A. General information about the course:

Со	Course Identification								
1.	Credit hours:	3h							
2.	Course type								
a.	University □	College □	Dep	oartm	ent⊠	Tra	ck□	Others□	
b.	Required ⊠	Elective□							
	3. Level/year at which this course is 6. Level 12 6. Year 4.								
4.	4. Course general Description								
С	ourse Title	Course Number	Contact F	lours	Credit unit (CU)	Year	Level	Pre-	

The course aims to give the students basic information about the Solution chemistry, Debye Huckel theory, conductivity measurements and its application, Transport numbers and Ion association

Course objectives: They are to identify the following.

445CHEM3

- ❖ Become acquainted with the theory and assumptions of Debye Hückel
- **Become acquainted with the electrolytic conductivities and their applications**
- Become acquainted with the theory of diffusion and transport numbers and implications
- Identify Ion Association and the various theories that have addressed ion association.
 Syllabus: A-Theoretical contents

a) The scientific content of the theoretical part:

- Debye Hückel theory, Concentration and activity, Electrolytic conductance, Ionic association, Properties of electrolytic conductance, diffusion theory, Transport numbers, Theories of ion association, Bjerrum theory, Brönsted theory, Fuoss theory, Different methods for measurements of ion association.
- b) The scientific content of the practical part:
 - Some selected experiments in the field of chemical kinetics, thermo chemistry and solution chemistry.

Syllabus: A-Practical contents

Solution Chemistry

Experimental work illustrating selected parts of the theoretical content.

- 5. Pre-requirements for this course (if any): 344CHEM
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

The course aims to give the students basic information about the Solution chemistry, Debye Huckel theory, conductivity measurements and its application, Transport numbers and Ion association

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; able to)	(Upon completion of th	ie course, stud	dent will be
1.1	Demonstrate a broad understanding and critical view on principal of Solution chemistry, Concepts and terminology of Solution chemistry topics including electrolyte solution, Debye	K(1.1)	lecture / discussion Seminars /presentati on	Objective question

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	Huckel (DHLL) Theory, Application of DHLL in determinations of solubility measurements, activity coefficient, electrolytic conductance, ion association theoriesetc. (P)			
1.2	Describe correctly the different phenomena associated with solution chemistry i.e.; Kohlrausch's laws for weak and strong electrolyte, Arrhenius theory, application of conductance measurements (P)	K(1.2)	lecture / discussion / Seminars /Individual presentatio n	Essay question
2.0	Skills: (Upon completion of the c	course, student will be	able to)	
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and to solving problems related to Debye Huckel theory, electrolytic conductance, different laws, and theories based on electrolytic conductance. (P)	S(2.1)	lecture / discussion / Seminars /Individual presentatio n	Solving Problems & chart analysis
2.2	Perform experiments in Solution chemistry, record, analyze, interpret the scientific data, and write reports. (P)	S(2.2)	Lab work, group work	Objective question, Essay question, lab report rubric
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	S(2.3)	lab demonstrat ions / hands-on student learning activities	Safety exam
2.4	No.	la ilita u Al Imparamenta di	o 6 No	- Audion
3.0	Values, autonomy, and responsivil be able to)	ibility; (Upon completic	on of the cours	e, student

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.1	Working as a group leader in cooperation with other colleagues. (P)	V(3.1)	lab demonstrat ions / whole group and small group discussion	Practical group work Rubric
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	Basic concepts of solution chemistry	3
2.	Postulates of Debye – Huckel theory	2
3.	Derivation of Debye Huckel theory	3
4.	Experimental support for the limiting law Solubility of sparingly soluble salt	3
5.	Treatment of conductance data of weak electrolyte	2
6.	Transport properties in electrolyte	2
7.	Ionic velocity and mobility	2
8.	Electrolytic conductance	2
9.	Application of conductance measurements	2
10.	Ionic association	2
11.	Selected topics related to course content	22
	Total	44

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework assignment	<i>3-8</i>	2 %
2.	Lecture Quizzes	4-6	3 %
3.	Mid-term exam	6-8	15 %
4.	LAB Sheet	15	<i>5</i> %
5.	Quiz in Safety	11	4%
6.	Final practical exam	15	7 %
7.	Lab report	2-10	10 %
8.	Group work evaluation	2-10	4%
9.	Final Exam	12 -1 4	50 %
	Total		100 %

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	An Introduction to Aqueous Electrolyte Solutions, by Margaret Robson Wright Formerly of St Andrews University, UK. Willy 2007.
Supportive References	Essentials Of Physical Chemistry. Bahl A., et al. S.Chand. 2010, English. 4ed. 1166\1166. 1122910
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	 https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpt h=&query=electrolyte+solution&type=wiki. www.wikipedia.org/ http://www.wpi.edu/Academics/Depts/Chemistry/Courses/ General/

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (Projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (Depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of students' assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Chemistry Department Council CHEMS2301

CHEMS230104

11/1/2023G – 18/06/1444H

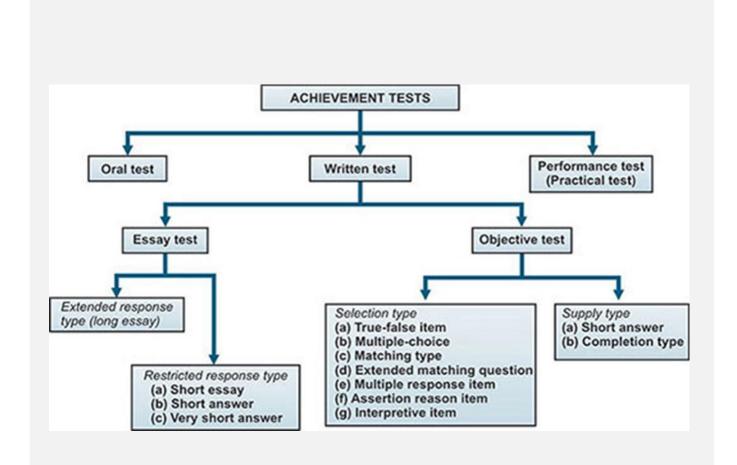
H. Attachments

1- Practical Work

Week	EXPERMENTAL TITLE	Chemicals and Apparatus used	Remarks
1	Safety and regulations		
2	Revision on Determination of cell constant	Acids, bases, conductivity cell and conductivity meter	None
3	Revision on Determination of equivalent conductance of strong electrolyte	HCl, conductivity cell and conductivity meter	None
4	Revision on Determination of equivalent conductance of weak electrolyte	Acetic acid, conductivity cell and conductivity meter	None
5	Validation of Debye Huckel theory using Ionic strength Calculations	HCl, NaOH, conductivity cell and conductivity meter	None
6	Experimental validation of Kohlrausch's Law for weak electrolytes	HCOOH, Acetic acid, NH ₄ OH, conductivity cell and conductivity meter	None
7	Experimental validation of Kohlrausch's Law for strong electrolytes	KCl, NaCl, NaOH, conductivity cell and conductivity meter	None
8	Experimental Validation of Ostwald's dilution law	Acetic acid, conductivity cell and conductivity meter	None
9	Determination of ionization constant of some selected electrolytes	HCl, NH ₄ Cl, HCOOH, CH ₃ COOH, H ₂ SO ₄ , conductivity cell and conductivity meter	None

For unavailable equipment's, we use some stimulated experiments through links as:

https://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html http://introchem.chem.okstate.edu/DCICLA/voltaicCell20.html


2- Blue Print

Course Name	Solution Chemistry
Course Code	445CHEM-3

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	12	20	38	21	4		5	

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1 (12M)	Quiz	Objective question	1	1	1
			Mid term	Objective question	2	2	2
W 1.1 0			Final Exam	Objective question	9	9	9
Knowledge & understanding	K2	1.2 (20M)	Quiz	Essay question	2	2	2
			Mid term	Essay question	4	4	4
			Final Exam	Essay question	2	14	14
	S1	2.1 (38M)	H.W	Solving Problems & chart analysis	4	2	2
			Quiz	Solving Problems & chart analysis	2	2	2
			Mid term	Solving Problems & chart analysis	2	5	7
Skills			Final Exam	Solving Problems & chart analysis	6	24	27
	S2	2.2 (21M)	Practical Sheet	Objective question	6	3	3
				Essay question	2	2	2
			Lab Report	10 EXP.	10	10	10
			Final Lab Exam	Task	1	7	7
	S3	2.3 (4M)	Safety Quiz	Objective question	8	4	4
Value	V1	3.1 (5M)	Continuous assessment	Group evaluation rubric	-	5	5
7	TOTAL	100					100

Course Title: Chemistry of Polymer

Course Code: 446CHEM2

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 28 December 2022

Page

Table of Contents:

A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Met	
	1
C. Course Content	
	5
C. Course Content	5 5
C. Course Content D. Students Assessment Activities	5 5 6
C. Course Content D. Students Assessment Activities E. Learning Resources and Facilities	5 6

Content

A. General information about the course:

Cc	urse Identifica	tion						
1.	Credit hours:	2h						
2.	Course type							
a.	University □	College] [Departn	nent⊠	Tracl	Κ□	Others□
b.	Required ⊠	Elective□						
	3. Level/year at which this course is offered: Level 11 / Year 4							
	Course genera		1					
	3	, , , , , , , , , , , , , , , , , , , ,						
	Course Title	Course	Contac	t Hours	Credit			
		Number	(CII)	Duna	unit (CU)	Year	Level	Pre-
	Chemistry of	446CHEM2	Lec.	Prac.	2	4	11	requisite 342CHEM3
Thi	s course aims to	aive students th	ne basic i	orinciple	s of photoci	hemistrv	and its	chemical and
	logical application				, o, p	,		
(Course objectives	· They are to id	lentify th	ne follov	vino			
	•	·	-					
	. Nomenclature, c . Mechanisms and		-		ımers			
	structural morph				eric materia	ls (Crysta	ıllinity ar	nd
	Amorphous poly			, porym		15 (C) y5t0	ey an	
4	. Physical propert	•	echanical	and mo	lecular weig	ıht distrik	oution) o	of polymeric
	materials	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,	,	, , , , , , , , , , , , , , , , , , , ,
5	. The applications	of polymeric me	aterials (packagir	ng-Medical)			
S	yllabus: A-Theo	retical content	s					
The course is divided into 4 sections: Polymer solution behaviors - Physical and structural morphology of polymers - Mechanical and thermal properties of polymers								
S								
	Syllabus: A-Practical contents							
n	none							
5.	Pre-requireme	ents for this o		(if any) 2CHEM3				
6.	Co- requireme	ents for this o			:			
	none							

This course aims to give students the fundamental principles of polymer chemistry, mechanism, kinetics, morphological structure and its chemical industrial applications.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	22

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (U) be able to)	pon completion	of the course, st	tudent will
1.1	Demonstrate a broad knowledge and understanding in polymer chemistry topics as, polymer monomer, polymerization, tacticity, crystalline and amorphous polymers, stress and strain, etc (M)	K (1.1)	Lecture group work discussion	Objective Q
1.2	describe the behaviors and properties of polymers as a function of their morphology, composition, thermal propertiesetc (M)	K(1.2)	Lecture group work discussion	Short answer Questions
2.0	Skills; (Upon completion of the cours	se, student will	be able to)	

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.1	Demonstrate the knowledge and skills required to calculate the rate of polymerization reaction and solve problems in molecular weight distribution as well as calculate activity ratios in copolymer equation etc (M)	S(2.1)	lecture group work discussion	Solving Problems & chart analysis
2.2	Use communication and on line technology to prepare a report/poster on selected polymer chemistry topic (M)	S((2.4)	project-based learning Technology- enabled learning	Research presentatio n rubric
3.0	Values, autonomy, and responsibil student will be able to)	lity; (Upon con	pletion of the co	urse,
3.1	Act with integrity and good ethics in the chemistry profession and their obligation to society (M)	V(3.2)	Research activities	Ethic check rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Nomenclature , classification, and synthesis of polymers	3
2.	Mechanisms and kinetics of free radicals- ionic polymerization	3
3	Copolymerization and copolymer equation	3
4	Polymer solution behaviors	3
5	Molecular weight distribution and polydispersity index	3
6	Thermal and mechanical properties	3
7	Techniques and applications of polymer chemistry	3
8	Presentation Session	1
	Total	22

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HW	7-8	5
2.	Mid-term Exam	5-8	25

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
3.	Presentation Session	11	6
4.	Ethic check	11	4
5.	Final EXAM	12-13	60
	Total		100

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Introduction to Physical Polymer Science, Fourth Edition Author(s): L.H. Sperling 2006 John Wiley & Sons, Inc.					
Supportive References	 Polymer Physics (Chemistry) by M. Rubinstein and Ralph H. Colby, 2003. Photochemistry, Past, Present and Future; Angelo Albini, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662- 47976-6 					
Electronic Materials	Some course contents and materials are posted on Blackboard sites					
Other Learning Materials	 https://www.longdom.org/scholarly/physical-chemistry-for-polymers-journals-articles-ppts-list-202.html https://www.routledge.com/Polymers-for-Packaging-Applications/Alav https://www.youtube.com/results?search_query=polymer+solutions https://pubs.acs.org/doi/abs/10.1021/ed029p105. https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query=polymer+chemistry&type=wiki 					

2. Required Facilities and equipment

	Items	Resources		
(Class	facilities rooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students		
(p	Technology equipment projector, smart board, software)	Smart board, Data show, Black board, internet		
(depe	Other equipment ending on the nature of the specialty)	none		

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect		
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect		
Quality of learning resources	Program coordinator	Indirect		
The extent to which CLOs have been achieved	Assessment committee	Indirect		
Other				

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

Themstry Department Council CHEMS2301

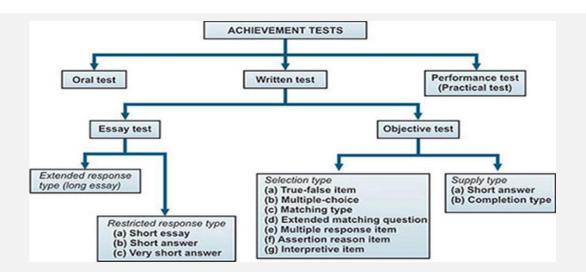
CHEMS230104

11/1/2023G – 18/06/1444H

H. Attachments

1- Practical Work

None


2- Blue Print

Course Name	Chemistry of Polymer
Course Code	446 CHEM

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1			2.2		3.1
Marks	10	20	60			5		5

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1	HW	Objective Q	2	2	1
		(10M)	Mid-term	-term Objective Q		2	2
Knowledge &			Final Exam	Objective Q	14	7	7
understanding	K2	1.2 (20M)	HW	Objective Q	2	2	2
			Mid-term	term Objective Q		5	5
			Final Exam	Objective Q	7	13	13
	S1 2.1 (60M)		HW	Objective Q ,Solving Problems & chart analysis	3	3	2
			Mid-term	Objective Q ,Solving Problems & chart analysis	6	17	18
Skills			Final Exam	Objective Q ,Solving Problems & chart analysis	8	40	40
	S4	2.2	Research	Research rubric	-	-	5
		(5M)	presentation	PPT design		-	
				Oral discussion			
Value	V2	3.1 (5M)	Research ethic check	thic ethic check rubric			5
	TOTAL	100					100

Course Title: Quantum Chemistry

Course Code: 447CHEM3

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 1 January 2023

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Meth	nods4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	ε
1. References and Learning Resources	ε
2. Required Facilities and equipment	€
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	ç

2- Blue Print8

A. General information about the course:

Course Identification									
1.	Credit hours:	3h							
2.	2. Course type								
a.	University □	College □		epartm	nent⊠	Track□ Others□			
b.	Required ⊠	Elective□							
	Level/year at wered: Level 9 / \		ırse is						
4. (Course general	Description							
Co	ourse Title	Course	Contac	t Hours	Credit				
		Number	(CH)		unit (CU)	Year	Level	Pre-	
			Lec.	Prac.				requisite	
Q	uantum chemistry	447CHEM3	3	0	3	3	9	Math 202	
 The nature of the classical mechanics as well as its failure to describe microscopic particles The historical development of the quantum theory and its postulates The application of quantum theory for H-atom as an example of simple chemical systems Syllabus: A-Theoretical contents classical mechanics – black body radiation and photoelectric effect – Hydrogen electronic 									
spectra – Compton-effect – De Broglie relation and dual nature of microscopic particles- Schrödinger equation- solution of SE for a particle in one (two and three) dimensional box – solution of SE for rigid rotor – solution of SE for harmonic oscillator – solution of SE for H-atom.									
	Syllabus: A-Practical contents none								
5. Pre-requirements for this course (if any): Math 202									
6.	6. Co- requirements for this course (if any): none								

7. Course Main Objective(s)

some chemical systems

This course aims to give students the basic principles quantum theory and its applications on

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	33	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	33
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	33

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Upor be able to)	n completion	of the course, s	tudent will
1.1	Demonstrate a broad knowledge and understanding the course topics as, classical mechanics – black body radiation and photoelectric effect – Hydrogen electronic spectra – Comptoneffect – De Broglie relation and dual nature of microscopic particles-Schrödinger equation,	K (1.1)	Lecture group work discussion	Objective Q
1.2	Describe the difference between classical and quantum mechanics, photoelectric effect, the contribution of scientists (Max Planck, Einstein, De Broglie, Heisenberg, Bohr, Balmer, and Schrödinger) to the quantum theory.	K(1.2)	Lecture group work discussion	Short answer Questions

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.0	Skills; (Upon completion of the course,	student will	be able to)	
2.1	Demonstrate the knowledge and numeracy skills in quantum mechanical solution of the rigid rotor and harmonic oscillator and the validity of the Schrödinger equation to model the particle in a box problem	S(2.1)	lecture group work discussion	Solving Problems & chart analysis
2.2	make effective use of communication, and online technology about quantum chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language.	S((2.4)	project-based learning Technology- enabled learning	Research presentatio n rubric
3.0	Values, autonomy, and responsibility student will be able to)	; (Upon com	pletion of the co	urse,
3.1	Act with integrity and good ethics in chemistry profession and their obligation to society	V(3.2)	Research activities	Ethic check rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Historical Development of the quantum theory	8
2.	Schrödinger equation	5
3	Postulates of the quantum theory	5
4	Evaluation of the quantum theory	5
5	Applications of the quantum theory	8
6	Presentation Session	2
	Total	33

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HW	4 - 9	5
2.	Mid-term Exam	5 - 8	25
3.	Presentation Session	11	6

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
4.	Ethic check	11	4
5.	Final EXAM	12 - 13	60
	Total		100

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Molecular Quantum Mechanics, Atkins PW, Friedman RS 4th ed. Oxford: Oxford University Press; 2005.		
Supportive References	Quantum Chemistry: A Unified Approach, David B. Cook, 2nd Edition, imperial College Press; 2012.		
Electronic Materials	Some course contents and materials are posted on Black board sites		
Other Learning Materials	 Faculty - Department of Chemistry - Simon Fraser University (sfu.ca) Chemistry BSc (Hons) - Undergraduate Courses - University of Liverpool Periodic Table of Elements and Chemistry (chemicool.com) The Orbitron: a gallery of atomic orbitals and molecular orbitals (shef.ac.uk) Home Department of Chemistry (queensu.ca) 11.2: Quantum Numbers for Electrons - Chemistry LibreTexts Search - Chemistry LibreTexts www.wikipedia.org/ Marefa.org) Courses Chemistry & Biochemistry Academics WPI 		

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

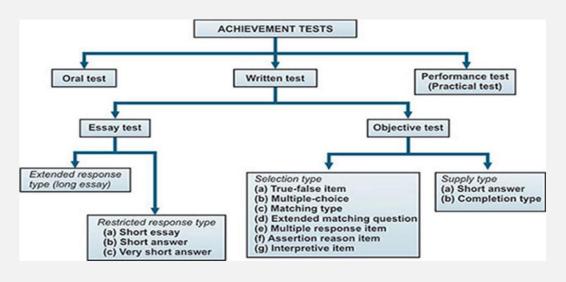
Chemistry Department Council CHEMS2301

CHEMS230104

11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work


None

2- Blue Print

Course Name	Quantum Chemistry
Course Code	447 CHEM

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1			2.2		3.1
Marks	10	20	60			6		4

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1	HW	Objective Q	2	2	1
		(10M)	Mid-term	Objective Q	4	2	2
Knowledge &			Final Exam	Objective Q	14	7	7
understanding	K2	1.2	HW	Short answer Questions	2	2	2
		(20M)	Mid-term	Short answer Questions	5	5	5
			Final Exam	Short answer Questions	7	13	13
	S1	2.1 (60M)	HW	Solving Problems & chart analysis	3	3	2
			Mid-term	Solving Problems & chart analysis	6	18	18
Skills			Final Exam	Solving Problems & chart analysis	8	40	40
	S4	2.2	Research	Research rubric	-	-	2
		(6M)	presentation	PPT design	-	-	2
				Oral discussion	-	-	2
Value	V2	3.1 (4)	Research ethic check	ethic check rubric	1	4	4
	TOTAL	100					100

Course Title: PHOTOCHEMISTRY

Course Code: 448CHEM2

Program: Bachelor in Chemistry

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 22 December 2022

Table of Contents:

Content	raye
A Conoral information about the course:	2

A. General information about the course	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessm	
C. Course Content	
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	6
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8
2- Blue Print	Q

A. General information about the course:

Cour	waa lalamiifiaai	i.a.u						
	rse Identificat	ion						
1. C	redit hours:	2h						
2. C	ourse type							
a. I	University \square	College □		Departm	nent⊠	Track		Others□
b. I	Required ⊠	Elective□						
3. L	.evel/year at w	hich this cou	ırse is					
offe	red: Level 12 /	Year 4						
4. C	ourse general	Description						
	Course Title	Course	Contac	t Hours	Credit			
		Number	(CU)	_	unit (CU)	Year	Level	Pre-
	Photochemistry	448CHEM2	Lec.	Prac.	2	4	12	requisite 447CHEM3
	Photochemistry	446CHEIVIZ	2	U		4	12	44/CHEIVIS
	course aims to g		e basic p	rinciples	of photoch	emistry	and its c	hemical and
biolo	gical applications	S						
Co	urse objectives:	They are to ide	entify th	e follow	ing.			
0	Laws of photoch	emistry						
0	Experimental me	•	chemistr	v				
0	Mechanisms of p	•		•				
0	The applications							
Syl	llabus: A-Theor	etical contents						
Ras	sic principles of p	hotochemistry:	laws of	nhotoch	emistrv- Re	er-lambe	ert law - I	Fluorescence
	d phosphorescen	•	_	-				
	•				•	•		•
pho	photochemical reactions- Experimental methods in photochemistry- The applications of photochemistry.							
C1								
Syllabus: A-Practical contents								
none								
5. Pre-requirements for this course (if any):								
447CHEM3								
6. C	co- requirement	nts for this co	`					
	none							

7. Course Main Objective(s)

This course aims to give students the basic principles of photochemistry and its chemical and biological applications

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	22

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (U) be able to)	pon completion	of the course, s	tudent will
1.1	Demonstrate a broad knowledge in photochemistry topics as, electromagnetic radiation, photochemistry, absorption of light, photochemistry laws and application, quantum yield, electronic and molecular translons, etc (M)	K (1.1)	Lecture group work discussion	Objective Q
1.2	Describe correctly photochemistry phenomena, essential facts, principles and theories across the nature of light and the photon, Jablonski diagram of energy. Frank-Condon principle, the degeneration of the excited states of the quantum yieldsetc. (M)	K(1.2)	Lecture group work discussion	Short answer Questions

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.0	Skills; (Upon completion of the cours	e, student will	be able to)	
2.1	Demonstrate the knowledge and skills required to use charts and solve problems in the relations of light and electromagnetic radiation. ,i.e, Beerlambert law, quantum yield, sternvolmer equation etc (M)	S(2.1)	lecture group work discussion	Solving Problems & chart analysis
2.2	Use communication and on line technology to prepare a report/poster on selected photochemistry topic. (M)	S((2.4)	project-based learning Technology- enabled learning	Research presentatio n rubric
3.0	Values, autonomy, and responsibil student will be able to)	lity; (Upon con	pletion of the co	urse,
3.1	Act with integrity and good ethics in chemistry profession and their obligation to society (M)	V(3.2)	Research activities	Ethic check rubric

C. Course Content

No	List of Topics	Contact Hours
1.	Meaning of photochemistry / photochemical Reactions	3
2.	Laws of photochemistry (Grotthurs-Draper law and Stark- Einstein law)	3
3	Criteria for photochemical reactions and Frank-Condon principle	3
4	Jablonski Diagram	3
5	Importance of photochemical reactions	3
6	Examples of photochemical reactions (Photo addition - Photosynthesis - Photocleavage - photoreduction)	3
7	Techniques and applications of photochemistry	3
8	Presentation Session	1
	Total	22

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	HW	7-8	5
2.	Mid-term Exam	5-8	25

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score		
3.	Presentation Session	11	6		
4.	4. Ethic check		4		
5.	Final EXAM	12-13	60		
	Total 100				

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Photochemistry; C. E. Wayne & R. P. Wayne, 1996, OUP primer Photochemistry, Past, Present and Future; Angelo Albini, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-47976-6
Supportive References	Principles and Applications of Photochemistry, R. P. Wayne, 2009, John Wiley & Sons, Ltd, ISBN 978-0-470-01493-6.
Electronic Materials	Some course contents and materials are posted on Black board sites
Other Learning Materials	 https://en.wikipedia.org/wiki/Photochemistry https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/photchem.htm http://photobiology.info/Photochem.html https://chem.libretexts.org/Bookshelves/Organic Chemistry/Book%3A Basic Principles of Organic Chemistry (Roberts and Caserio)/28%3A Photochemistry https://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	none

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

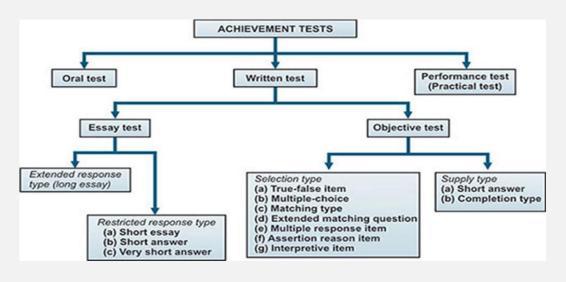
firstry Department Council CHEMS2301

CHEMS230104

1/1/2023G – 18/06/1444H

H. Attachments

1- Practical Work


None

2- Blue Print

Course Name	PHOTOCHEMISTRY
Course Code	448 CHEM

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1			2.2		3.1
Marks	10	20	60			6		4

Learning Domain	PLOs	CLOs	Assessment Type Assessment Tool		No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	1.1	HW	Objective Q	2	2	1
		(10M)	Mid-term	Objective Q	4	2	2
Knowledge &			Final Exam	Objective Q	14	7	7
understanding	K2	1.2	HW	Short answer Questions	2	2	2
		(20M)	Mid-term	Short answer Questions	5	5	5
			Final Exam	Short answer Questions	7	13	13
	S1	2.1 (60M)	HW	Solving Problems & chart analysis	3	3	2
			Mid-term	Solving Problems & chart analysis	6	18	18
Skills			Final Exam	Solving Problems & chart analysis	8	40	40
	S4	2.2	Research	Research rubric	-	-	2
		(4M)	presentation	PPT design	-	-	2
				Oral discussion	-	-	2
Value	V2	3.1 (6)	Research ethic check	ethic check rubric	1	4	4
	TOTAL	100					100

Course Title: **Graduation Project**

Course Code: 491CHEM-2

Program: Bachelor in **Chemistry**

Department: Chemistry

College: College of Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 22 December 2022

Table of Contents:

Content	rage
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessmen	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	7
1. References and Learning Resources	7
2. Required Facilities and equipment	7
F. Assessment of Course Quality	8
G. Specification Approval Data	8
H. Attachments	9
1- Practical Work	9

A. General information about the course:

Course Identification								
1. Credi	hours:	2						
2. Cours	e type							
a. Univ	ersity	C	ollege		Depart	ment⊠	Tra	ack□ Others□
b. Required ⊠ Elective □								
	year at w evel12/Ye		this c	ourse i		vel 11 ar 4		
Course Tit	Cour Numl			ours Prac.	Credit Units	Year	Level	Pre-requisite
Graduatio project	n 491CHI	EM2	1	2	2	Four Year	11	Department Approval.
The course Literature Work, Coll Scientific P Project and	Survey Cond ect Experime aper, Write I Viva.	ion Pro luct Su ental d Resul	oject ail	ms to giv Materia Field Dat uss Resul	als and Me ta, Express Its and Pre	thods, C Experin sent The	onduct Lab	ties to Choose, Conduct oratory and/or Field /or Field Data, Write duation Research
5. Pre-re	quiremen	its fo	r this	course	e (if any)	:		
6. Co- requirements for this course (if any):								
The cou Conduc Discuss	e Main Ob rse of Grade t, Express an Results and esis for Grad	uatior nd Dis Write	n Projec cuss La e Scient	boratory ific Pape	and/or Fi er.	eld Wor		tunities to:

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	11
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	33

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding able to)	; (Upon compl	etion of the course, s	student will be
1.1	Demonstrate a broad understanding and critical view of key theories, concepts, and terms in the field of research. (M)	K (1.1)	Oral discussion	Oral discussion
1.2	Describe correctly Chemical phenomena using chemical principles and scientific reasoning (M)	K(1.2)	Lecture group work discussion	Oral discussion
2.0	Skills; (Upon completion of the	course, stude	nt will be able to)	
2.1	Demonstrate the ability to think critically, numerical, and statistical, and logical analysis, and to use graphs and diagrams	S(2.1)	lecture group work discussion	Oral discussion

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	to solve problems (in the research topic)			
2.2	Apply their experimental basics and skills to know laboratory equipment, modern instrumentation, and classical techniques used related to his research topic. (M)	S(2.2)	 lecture Seminars individual presentation case studies 	Oral discussion
2.3	Examine his material and lab safety background to Follow proper procedures and regulations for safe handling and use of chemicals. (M)	S(2.3)	lectureSeminarsindividual presentation case studies	MCQ
2.4	make effective use of communication, and online technology about chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language. (M)	S(2.4)	lectureSeminarsindividual presentation case	Oral discussion
3.0	Values, autonomy, and respons will be able to)	sibility ; (Upon	completion of the co	urse, student
3.1	Act with integrity and good ethics in chemistry profession and their obligation to society. (M)	V(3.1)	Research activities	Plagiarism Detection
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	Describe chemical phenomena correctly using chemical principles and scientific reasoning.	2

2.	Demonstrate the ability to think critically, numerically, statistically, logically, and use graphs and charts to solve problems (in the research topic)	2
3.	Apply their experimental basics and skills to know laboratory equipment, modern instrumentation, and classical techniques used related to his research topic.	2
4.	Examine his material and lab safety background to Follow proper procedures and regulations for safe handling and use of chemicals.	2
5.	make effective use of communication, and online technology about chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language.	2
6.	Student response to supervisor's instructions during project preparation while adhering to ethical standards.	1
	Total	11

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Demonstrate a broad understanding of key theories, concepts, and terms in the field of research.	2-10	5
2.	Describe chemical phenomena correctly using chemical principles and scientific reasoning.	2-10	5
3.	Demonstrate the ability to think critically, numerically, statistically, logically, and use graphs and charts to solve problems (in the research topic)	2-10	30
	Apply their experimental basics and skills to know laboratory equipment, modern instrumentation, and classical techniques used related to his research topic.	2-10	15
	Examine his material and lab safety background to Follow proper procedures and regulations for safe handling and use of chemicals.	2-10	10
	make effective use of communication, and online technology about chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language.	2-10	20

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score		
	Student response to supervisor's instructions during project preparation while adhering to ethical standards.	2-10	10		
	The student's commitment to the ethical standards of writing during the preparation of the research	2-10	5		
	Demonstrate a broad understanding of key theories, concepts, and terms in the field of research.	2-10	5		

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	To be determined by supervisor from available sources
Supportive References	To be determined by supervisor from available sources
	The Purpose and Value of Scientific Research, https://study.com/academy/lesson/what-is-scientific-research.html Types of Scientific Research, https://innspub.net > types-of-
Electronic Materials	scientific-research
	What is Scientific Research and How Can it be Done,
	https://www.academia.edu/40888930/What_is_Scientific_Research_and_How_Can_it_
	be_Done
Other Learning Materials	Platform connecting researchers with protocols and methods. Springer Nature Experiments

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room.
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	Saudi Digital Library

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods		
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect		
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect		
Quality of learning resources	Program coordinator	Indirect		
The extent to which CLOs have been achieved	Assessment committee	Indirect		
Other				

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

REFERENCE NO.

DATE

 ${\it Chemistry\ Department\ Council\ CHEMS2301}$

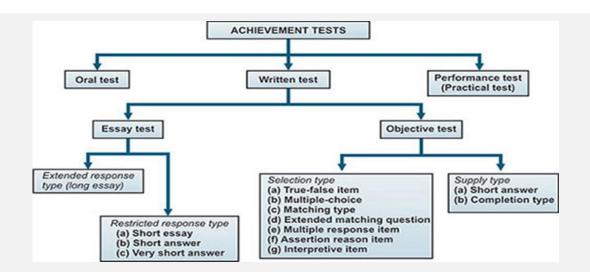
CHEMS230104

11/1/2023G - 18/06/1444H

H. Attachments

1- Practical Work

To be determined by the supervisor depending on the title of project and availability in the departmentetc.


2- Blue Print

Course Name	Graduation Project
Course Code	491CHEM2-

PLOs	K1	K2	S1	S2	S3	S4	V1	V2
CLOs	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2
Marks	5	5	30	15	10	20	-	15

Learning	PLOs	CLOs	Assessment	Assessment	No of	Marks of	Weight of
Domain			Type	Tool	Questions	the	the
						Assessment	Assessment
	K1	1.1	Theoretical	Oral		5	5
Knowledge &		(5M)	discussion	discussion			
understanding	K2	1.2	Theoretical	Oral		5	5
		(5M)	discussion	discussion			
	S1	2.1	Theoretical	Oral		10	10
		(30M)	discussion	discussion			
			Viva	Oral		20	20
			discussion	discussion			
Skills	S2	2.2	Practical	Oral		15	15
SKIIIS		(15M)	evaluation	discussion			
	S 3	2.3	Safety Quiz	MCQ		10	10
		(10M)					
	S4	2.4	Thesis discussion	Oral		20	20
		(20M)		discussion			
	V2	3.2	Ethics of	Plagiarism		10	10
		(15M)	scientific	Detection			
Values, Autonomy and			research	(Viva			
Responsibility				evaluation)			
				Plagiarism		5	5
				Detection			
Т	TOTAL						

Course Title: Organic Chemistry

Course Code: 203 CHEM-3

Program: Bachelor in Biology

Department: Biology

College: College of Science

Institution: Jazan University (JU)

Version: **T-104 2022**

Last Revision Date: 23 January 2023

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessm	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	8
1- Practical Work	8

A. General information about the course:

Co	ourse Identificat	ion						
1.	Credit hours:							
2.	Course type							
a.	University □	College] [Departn	nent⊠	Track		Others□
b.	Required ⊠	Elective□						
	3. Level/year at which this course is Level 4 Year 2							
4.	4. Course general Description							
	Course Title	Course	Contact	Hours	Credit unit (CU)			Pre-
		Number	Lec.	Prac.		Year	Level	requisite
	Organic Chemistry	203 CHEM3	2	2	3	2	4	101CHEM4
M								

IV

Course objectives: By the end of this course, students will be able to:

- 1- Identifying different ways for nomenclature of organic compounds.
- 2- To identify the functional groups in organic compounds.
- 3- To identify the saturated aliphatic hydrocarbons, methods of preparation and the
 - most important chemical reactions.
- 4- To define carbohydrates, amino acids and fatty acids

Syllabus: A-Theoretical contents

Introductory Concepts, structure and hybridization in organic compounds, Types of Organic reactions, functional groups and types of isomerism, Hydrocarbons (Alkanes, their cyclic forms) Nomenclature, preparation, natural source and chemical reactions, Alkenes and alkynes (Nomenclature, isomerism, preparation and reactions), Aromatic compounds benzene and its derivatives Nomenclature of aromatic compounds, Preparation and Electrophilic substitution for benzene, Alcohols, ethers and phenols Nomenclature, preparation and chemical reactions, Aldehydes and ketones Nomenclature, preparation and chemical reactions, Carboxylic acids and its derivatives Nomenclature, preparation and chemical reactions, Amines Nomenclature, preparation and chemical reactions, Definition of Carbohydrates, amino and fatty acids.

Syllabus: B-Practical contents

Selected experiments related to organic chemistry topics.

- 5. Pre-requirements for this course (if any): 101CHEM4
- 6. Co- requirements for this course (if any):

none

7. Course Main Objective(s)

This course aims to give students the basic knowledge concerning organic compound and related carbohydrates, amino acids, fatty acids.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom		100
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Uable to)	pon comple	etion of the course, s	tudent will be
1.1	Demonstrate abroad knowledge and understanding in fundamentals of	K(1.1)	Lecture	Objective Questions

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
	organic chemistry topics as, aliphatic and aromatic hydrocarbons and their reactions. (I)				
1.2	Describe correctly the atomic structure, bonding in organic chemistry, reactions of some organic compounds. (I)	K(1.2)	Lecture	Objective Questions	
2.0	Skills; (Upon completion of the cou	urse, studer	nt will be able to)		
2.1	Demonstrate the knowledge and skills to predict the effect of function groups in the reaction results, types of bonds and hybridization. (I)	S(2.1)	Lecture	Essay Questions+ Solving Problems	
2.2	Demonstrate the skills of designing and carrying out scientific experiments as well as accurately record and analyze the results of such experiments. (I)	S(2.2)	Laboratory	Objective Questions + Essay questions	
2.3	know and follow proper procedures and regulations for safe handling, use, and disposal of chemicals (I)	S(2.3)	Group work Lab work	Objective Questions	

C. Course Content

No	List of Topics	Contact Hours
1.	Introductory Concepts, structure and hybridization in organic compounds	1
2.	Types of Organic reactions, functional groups and types of isomerism	1
3.	Hydrocarbons (Alkanes, their cyclic forms) Nomenclature, preparation, natural source and chemical reactions.	3
4.	Alkenes and alkynes (Nomenclature, isomerism, preparation and reactions)	3
5.	Aromatic compounds benzene and its derivatives Nomenclature of aromatic compounds, Preparation and Electrophilic substitution for benzene	2
6.	Alcohols, ethers and phenols Nomenclature, preparation and chemical reactions.	3
7.	Aldehydes and ketones Nomenclature, preparation and chemical reactions.	3
8.	Carboxylic acids and its derivatives Nomenclature, preparation and chemical reactions	3

9.	9. Amines Nomenclature, preparation and chemical reactions.				
10.	Definition of Carbohydrates, amino and fatty acids.	1			
11.	Some experiments related to the course topics	22			
	Total				

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score		
1.	Homework assignment	End of Each Chapter	5		
2.	Mid-term exam	5 th	15		
3.	Safety Quiz	6 th	3		
4.	Practical Sheet	11 th	7		
5.	Final practical exam	11 th	20		
6.	Final Exam	12 th	50		
	total		100		

^{*}As8.sessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

9.

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Organic Chemistry (tenth edition) Written by T. W. Graham Solomons and Craig B. Fryhle http://chemistry.com.pk/books. رأسس الكيمياء العضوية) الدكتور محمد بن ابراهيم الحسن والدكتور حسن بن محمد الحازمي 2019 الناشر دار الخريجي للنشر و التوزيع
Supportive References	 Organic Chemistry, Robert T. Morrison, Robert N. Boyd Translation copyright 2000 by Arab center for arabization, translation, authorship & publication (ACATAP, branch of ALECSO).
Electronic Materials	 https://www.pdfdrive.net/organic-chemistry https://clemermastio.files.wordpress.com//organic-chemistry solom. https://en.wikipedia.org/wiki/Organic_chemistry https://www.masterorganicchemistry.com/organic-1/
Other Learning Materials	 https://www.youtube.com/watch?v=n5vjCqnVb6s https://www.chemguide.co.uk/orgmenu.html https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/intro1.html

2. Required Facilities and equipment

Items	Resources				
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 1Lecture room for groups of 30 students. 1 Laboratory for group of 15 students 				
Technology equipment (projector, smart board, software)	Data show, smart Board, Chem Draw, power point and Active Inspire.				
Other equipment (depending on the nature of the specialty)	Glassware, chemicals, hotplates, water bathes and flam.				

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods					
Effectiveness of teaching	Student	Likert-type Survey (CES) Indirect					
Effectiveness of students assessment	Instructor & Course coordinator	Class room evaluation (direct & indirect)					
Quality of learning resources	Program coordinator	Indirect					
The extent to which CLOs have been achieved	Assessment committee	Indirect					
Other							

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE

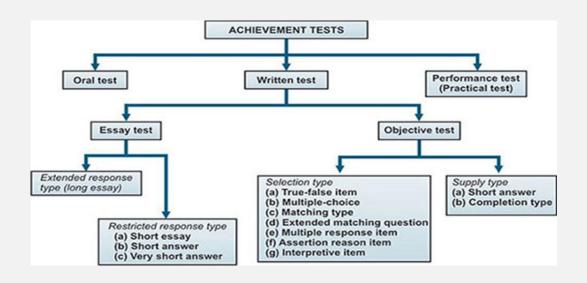
REFERENCE NO.

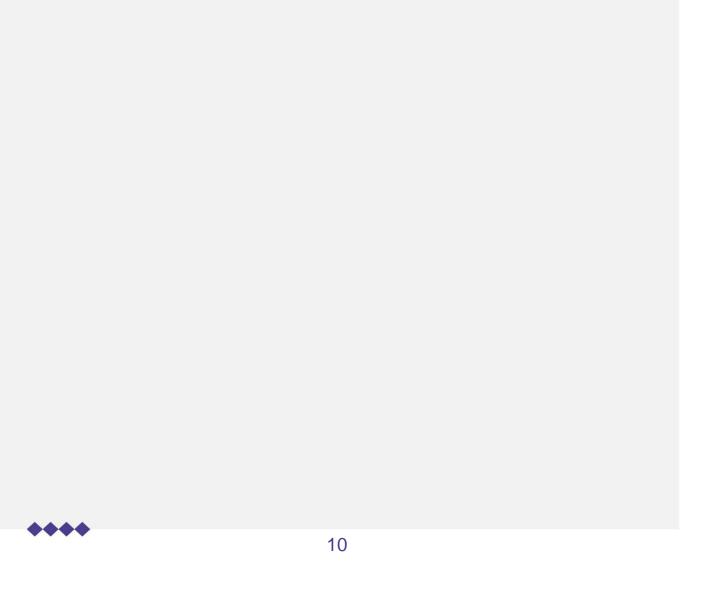
CHEMS230104

DATE 11/1/2023G- 18/06/1444H

H. Attachments

1- Practical Work


#	EXPERMENTS	Equipment, Chemicals and Tools.	No. of weeks for each experiment
1	General Safety Rules, Introduction of Basic Laboratory Techniques	Theoretical	1 week
2	Identification of Carboxylic Acid	Chemicals: Oxalic acid, tartaric acid, citric acid, benzoic acid, salicylic acid, Phthalic Acid FeCl ₃ , CaCl ₂ , H ₂ SO ₄ , KMnO ₄ , Na HCO ₃ Recersinol, NaOH(10%). Tool: test tubes, Beaker Equp. :water bath	2 weeks
3	Salts of carboxylic acid,	Chemicals: Amm.oxalate , Amm.tartarate , sod enzoate sod. Salicylate , FeCl ₃ , CaCl ₂ , NaOH , Na HCO ₃ ,AgNO ₃ , Tool: test tubes, Beaker . Equp. :water bath	2 weeks
4	Aniline salt & Urea	Chemicals: Aniline HCl ,Aniline H ₂ SO ₄ ,Urea , Na ₂ NO ₂ ,β-naphthaol, NaHCO ₃ , AgNO ₃ ,BaCl2	1 week
5	Identification of carbohydrates	Chemicals: Glucose,galactose, ftuctose ucrose, maltose, maltose, lactose, starch, α – aphthaol, H ₂ SO ₄ (conc), barfoid reagent, iodine, Fehling's solution, Bendict reagent Tool : test tubes, Beaker . Equp . :water bath	2 weeks
6	Scheme and revision	All the chemicals and tool and equp. Written above	2 weeks
7	Final Exam		1 week



2- Blue Print

Course Nar			Chemistry	,									
Course Cod		203CHI											
PLOs		K1	K2	S1	S2	S	3 S4			V1	V2		
CLOs		1.1	1.2	2.1	2.2	2	.3						
Marks		30	25	15	27	3	3						
Learnin Domair		PLOs	CLOs	Assessment Type	Assessa			o of stions		arks of the sessment	Weight of the Assessment		
		K1	1.1	Homework	Objecti	ve Q		2		2	2%		
		KI	(30	Midterm	Objecti	ve Q		2		7	7%		
Knowledg			M)	Final Exam	Objecti	Objective Q		2		21	21%		
understand	ding	K2	1.2 Homewor		Objecti	Objective Q 2		2		2%			
			(25	Midterm	Objecti	Objective Q		2		5	5%		
			M)	Final Exam	Objecti	Objective Q		2		18	18%		
			2.1	Homework		Solving Problems		2		1	1%		
		S1 (15	(15	Midterm		Solving Problems		2		3	3%		
			M)	Final Exam		Solving Problems		3		11	11%		
Skills		Skills S2		kills 2.2		Practical Sheet		Objective Q + Essay Q		7		7	7%
				Final Practical Exam	Repor	Report of Lab Exam		f		20	20%		
		S3	2.3 (3 M)	Safety EXAM	Objecti	Objective Q 6		6		3	3		
ТО	TAI		100		•					100	100%		

Course Title: Biochemistry

Course Code: 204CHEM-3

Program: Bachelor in Biology

Department: Biology

College: Science

Institution: Jazan University (JU)

Version: **T104 2022**

Last Revision Date: 28 December 2022

Table of Contents:

Content	Page
A. General information about the course:	3
1. Teaching mode (mark all that apply)	4
2. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessm	
C. Course Content	
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7
H. Attachments	7
1- Practical Work	7

A. General information about the course:

Со	Course Identification						
1.	Credit hours:	3h					
2. (Course type						
a.	University □	College □	De	partment⊠	Track□	Others□	
b.	Required ⊠	Elective□					
	3. Level/year at which this course is Cevel 4 offered: Year 2						
1.	1. Course Description						

Course Title	Course	Contact Hours		Credit unit	.,		Prerequisite
	Number	Lect.	Prac.	(CU)	Year	Level	
Biochemistry	204CHEM-3	2	2	3	2	4	203CHEM -3

Course objectives: They are to identify the following.

- 1- Biological compounds, their functional groups and bioactivity
- 2- Biosynthesis methods of different biological compounds
- 3- Chemical reactions and its composition and their metabolism Syllabus: A-Theoretical contents
- 1- Definition and classification of carbohydrates, lipids, amino acids, proteins, nitrogenous bases and nucleic acids.
- 2- The composition and functions of carbohydrates, lipids, amino acids, proteins, nitrogenous bases and nucleic acids in living cells
- 3- Translation and transcription of nucleic acids
- 4- Enzymes and their role in stimulating cellular reactions enzymatic accompaniments power generation and transmission in the cell and factors affecting enzymatic reactions
- 5- The biosynthesis of some biological molecules.

Syllabus: B-Practical contents

- Qualitative determination and quantitative estimation of some biological compounds belonging to carbohydrates (mono, di and polysaccharides), proteins and amino acids.
- Some chemical properties of lipids and fatty acids

^{*}See attachment

- 5. Pre-requirements for this course (if any): 203 CHEM
- 6. Co- requirements for this course (if any):NON

7. Course Main Objective(s)

This course aims to provide students with the basic knowledge about the main classes of biomolecules, their composition, properties, functions and their transformations in cells

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	22	100 %
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	22
2.	Laboratory/Studio	22
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	44

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding; (Uable to)	pon completion	of the course, s	student will be
1.1	Demonstrate knowledge and understanding in biochemistry related to biology students including the identification, classification and properties of biological compounds. (I)		lecture	Objective Q Short answer Q
1.2	Describe the essential facts, principles and theories related to biochemistry and evaluate the level of different biological metabolites in biological fluids. (I)		lecture	Objective Q Short answer Q

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.0	Skills; (Upon completion of the cou	ırse, student will	be able to)	
2.1	Demonstrate critical thinking ability to differentiate and compare between biological compounds and different factors affecting biological and enzymatic reactions (I)		Lecture	Objective Q Short answer Q
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instructions, and classical techniques to perform experiments of biochemistry (I)		Lab. work	Lab report
2.3	Examine and follow proper procedures and regulations for safe handling, use, and disposal of chemicals (P)		Lab. work	Quiz in safety
2.4				
3.0	Values, autonomy, and responsibili will be able to)	ty ; (Upon comp	letion of the co	urse, student
3.1				
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	An introduction to bio chemistry and water structure, hydrogen bonds, ionization, pH and buffer solutions.	2
2.	Carbohydrates, classification, Nomenclature of monosaccharides and their derivatives, isomerism and mutarotation.	2
3.	Reactions of monosaccharides, disaccharides and poly saccharides.	2
4.	Amino acids chemistry, classification and reactions.	2
5.	Peptide formation, protein functions, classification and separation.	2
6.	Enzymes nomenclature, classification, mechanism, inhibitions and their types.	2
7.	Lipids identification and classification. Triglycerides functions. Compound lipids (Conjugated and derived). Classification and fatty acids	2
8.	Chemical properties of fatty acids, rancidity, nucleic acid classification and structure.	2
9	Types of nucleic acids, DNA Transcription, RNA translation and protein synthesis.	2
10	Metabolism, Glycolysis and Kreb's cycle.	2
11	Gluconeogenesis, phosphate pentose shunt and glycogenolysis.	1
12	Beta Oxidation and digestion of proteins.	1
13	Lab Experiments	22
	Total	

D. Students Assessment Activities

No	Assessment Activities *		Assessment Activities *		Assessment timing (in week no)		centage of Total sessment Score
1.	Homework assignm	nent	3 - 8	4	(4%)		
2.	Mid-term exam		~7	15	(15%)		
3.	Lecture Quizzes		4 - 10	1	(1 %)		
		Safety EXAM	9	3			
4	Practical	Sheet	11	7	30%		
	Final practical exam		11	20			
5	Final Exam		12	50			
	Total		100%				

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

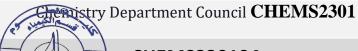
E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Textbook-of-Biochemistry-For-Medical-Students-6th-Edition.pdf
Supportive References	 Lehninger, principales of biochemistry (sixth edition) by David L. Nelson Michafi M. Cox. W. H. FREEMAN AND COMPANY. New York. 2013 Concise Text of Biochemistry. T.N Pattabiraman, 3rd Ed, 2001. اسس الكيمياء الحيوية. الدكتور عبد المنعم الاعسر , المجلد الاول, المكتبة الاكاديمية 2011
Electronic Materials	 https://www.khanacademy.org/science/biochemistry https://www.biochemistry.org/ https://en.wikipedia.org/wiki/biochemistry https://www.masterorganicchemistry.com/
Other Learning Materials	 https://www.youtube.com/watch?v=cAxJw_W05ZY https://www.chemguide.co.uk/orgmenu.html https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/intro1.htm

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	1 Lecture room(s) for groups of 50 students
Technology equipment (projector, smart board, software)	Smart board, Data show, Black board, internet
Other equipment (depending on the nature of the specialty)	none


F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Likert-type Survey CES) Indirect
Effectiveness of students assessment	Instructor & Course coordinator	Classroom evaluation (direct & indirect
Quality of learning resources	Program coordinator	Indirect
The extent to which CLOs have been achieved	Assessment committee	Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE REFERENCE NO.

CHEMS230104

11/1/2023G - 18/06/1444H

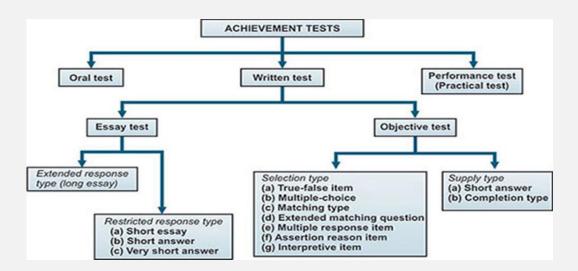
H. Attachments

1- Practical Work

While specific laboratory experiments vary depending on the instructor and the semester, the following list is representative of the experiments that are used:

Week	EXP, titles	Chemicals and tools	hours
1	Course Introduction include: -Safety during handling with Chemicals and biological samples. Introduction to the devices used in the laboratory.	Safety tools, and Devices	2
2-3	Carbohydrate detection	Molisch's, Barfoed. Reducing tests, Fehling's, Benedict's, Ammoniacal silver nitrate, Rapid furfural, furfural, Osazone formation and Iodine test	4
4	Estimation of the content of reducing sugars using Fehling's and Benedict's test	Fehling's and Benedict's reagent; copper(II) sulfate, potassium sodium tartrate, Potassium hydroxide	2
5	Estimation of glucose in serum by phenol-sulphuric acid method	Spectrophotometer, ethanol Phenol, Sulfuric acid, Water bath, Tubes with covers, filter paper, Cones	2

_			_
6	General tests for proteins	Ninhydrin reagent, copper sulfate in a	2
		strong base, sodium hydroxide solution,	
		water bath	
7	Solubility and Precipitation of	heavy metals (e.g., Hg2+, Pb2+, Cu2+),	1
	protein	Alkaloidal reagents (e.g., tannate &	
		trichloro acetate), by denaturation (heat	
		coagulation test, strong acids, strong	
		base)	
7	Color reactions of proteins, Biuret	copper sulfate, sodium hydroxide,	1
	test, Millon's test and Reduced	Millon's reagent, Hopkins-Colé reagent,	
	sulfur test, Hopkins-Colé test	H2SO4	
8	Estimation of amino acid	-Using Ninhydrin	2
		-titration with potassium hydroxide in	
		the presence of formaldehyde	
9	Properties of fats and oils	Melting point, Crystallization, Viscosity,	2
		Density, Solubility, Refractive index, The	
		Saponification number, iodine number,	
		Rancidity	
10	Estimation of triglyceride	4-chlorophenol, Magnesium aspartate,	2
		Sodium Azide	
11	Revision on the theoretical part of		2
	the experiments		
12	FINAL EXAM		2


2- Blue Print

Course	Bioch	Biochemistry							
Name									
Course	CHEM	CHEM-204							
Code									
PLOs	K1	K2	S1	S2	S3	S4	V1	V2	
CLOs	1.1	1.2	2.1	2.2	2.3				
Marks	30	25	15	27	3				

Learning Domain	PLOs	CLOs	Assessment Type	Assessment Tool	No of Questions	Marks of the Assessment	Weight of the Assessment
	K1	4.4	Homewo rk	Objective Q Short answer Q	2	2	2%
		(30	Midterm	Objective Q	2	7	7%
Knowledge & understanding		M)	Final Exam	Objective Q Short answer Q	2	21	21%
	K2	1.2 (25 M)	Homewo rk	Objective Q Short answer Q	2	2	2%
	NZ		Midterm	Objective Q Short answer Q	2	5	5%

			Final Exam	Objective Q	2	18	18%
	S1		Quiz	Objective Q	3	1	1%
		2.1 (15	Midterm	Objective Q Short answer Q	2	3	3%
		M)	Final Exam	Short answer Q	3	11	11%
Skills	S2	2.2 S2 (27 M)	Practical Sheet	Objective Q Short answer Q	7	7	7%
			Final Practical Exam	1 task experiment		20	20%
	S3	2.3 (3 M)	Safety EXAM	Objective Q	6	3	3%
TOTAL		100				100	100%

