Course Title: Biochemistry Course Code: 204CHEM-3 Program: Bachelor in Biology Department: Biology College: Science Institution: Jazan University (JU) Version: **T104 2022** Last Revision Date: 28 December 2022 # Table of Contents: | Content | Page | |--|------| | | | | A. General information about the course: | 3 | | 1. Teaching mode (mark all that apply) | 4 | | 2. Contact Hours (based on the academic semester) | 4 | | B. Course Learning Outcomes (CLOs), Teaching Strategies and Assess | | | C. Course Content | | | D. Students Assessment Activities | 6 | | E. Learning Resources and Facilities | 6 | | 1. References and Learning Resources | 6 | | 2. Required Facilities and equipment | 6 | | F. Assessment of Course Quality | 7 | | G. Specification Approval Data | 7 | | H. Attachments | 7 | | 1- Practical Work | 7 | | | | ### A. General information about the course: | Со | Course Identification | | | | | | | | |------|---|-----------|-----------------------|-----------|--------|---------|--|--| | 1. | Credit hours: | 3h | | | | | | | | 2. (| Course type | | | | | | | | | a. | University □ | College □ | De | partment⊠ | Track□ | Others□ | | | | b. | Required ⊠ | Elective□ | | | | | | | | | 3. Level/year at which this course is Level 4 | | | | | | | | | off | offered: Year 2 | | | | | | | | | 1. | Course Description | on | 1. Course Description | | | | | | | Course Title | Course | Contact
Hours | | Credit
unit | ., | | Prerequisite | |--------------|-----------|------------------|-------|----------------|------|-------|--------------| | | Number | Lect. | Prac. | (CU) | Year | Level | · | | Biochemistry | 204CHEM-3 | 2 | 2 | 3 | 2 | 4 | 203CHEM -3 | Course objectives: They are to identify the following. - 1- Biological compounds, their functional groups and bioactivity - 2- Biosynthesis methods of different biological compounds - 3- Chemical reactions and its composition and their metabolism Syllabus: A-Theoretical contents - 1- Definition and classification of carbohydrates, lipids, amino acids, proteins, nitrogenous bases and nucleic acids. - 2- The composition and functions of carbohydrates, lipids, amino acids, proteins, nitrogenous bases and nucleic acids in living cells - 3- Translation and transcription of nucleic acids - 4- Enzymes and their role in stimulating cellular reactions enzymatic accompaniments power generation and transmission in the cell and factors affecting enzymatic reactions - 5- The biosynthesis of some biological molecules. #### **Syllabus: B-Practical contents** - Qualitative determination and quantitative estimation of some biological compounds belonging to carbohydrates (mono, di and polysaccharides), proteins and amino acids. - Some chemical properties of lipids and fatty acids ^{*}See attachment - 5. Pre-requirements for this course (if any): 203 CHEM - 6. Co- requirements for this course (if any):NON ### 7. Course Main Objective(s) This course aims to provide students with the basic knowledge about the main classes of biomolecules, their composition, properties, functions and their transformations in cells ### 1. Teaching mode (mark all that apply) | No | Mode of Instruction | Contact Hours | Percentage | |----|---|---------------|------------| | 1. | Traditional classroom | 22 | 100 % | | 2. | E-learning | | | | 3. | HybridTraditional classroomE-learning | | | | 4. | Distance learning | | | ### 2. Contact Hours (based on the academic semester) | No | Activity | Contact Hours | |----|-------------------|---------------| | 1. | Lectures | 22 | | 2. | Laboratory/Studio | 22 | | 3. | Field | | | 4. | Tutorial | | | 5. | Others (specify) | | | | Total | 44 | # B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | Cod | Course Learning Outcomes | Code of CLOs
aligned with
program | Teaching
Strategies | Assessment
Methods | |-----|--|---|------------------------|----------------------------| | 1.0 | Knowledge and understanding; (U able to) | pon completion | of the course, s | student will be | | 1.1 | Demonstrate knowledge and understanding in biochemistry related to biology students including the identification, classification and properties of biological compounds. (I) | | lecture | Objective Q Short answer Q | | 1.2 | Describe the essential facts, principles and theories related to biochemistry and evaluate the level of different biological metabolites in biological fluids. (I) | | lecture | Objective Q Short answer Q | | Code | Course Learning Outcomes | Code of CLOs
aligned with
program | Teaching
Strategies | Assessment
Methods | |------|--|---|------------------------|----------------------------| | 2.0 | Skills; (Upon completion of the cou | ırse, student will | be able to) | | | 2.1 | Demonstrate critical thinking ability to
differentiate and compare between
biological compounds and different
factors affecting biological and
enzymatic reactions (I) | | Lecture | Objective Q Short answer Q | | 2.2 | Apply their experimental basics and skills
to use laboratory equipment, modern
instructions, and classical techniques to
perform experiments of biochemistry (I) | | Lab. work | Lab report | | 2.3 | Examine and follow proper procedures and regulations for safe handling, use, and disposal of chemicals (P) | | Lab. work | Quiz in safety | | 2.4 | | | | | | 3.0 | Values, autonomy, and responsibili will be able to) | ty ; (Upon comp | letion of the co | urse, student | | 3.1 | | | | | | 3.2 | | | | | # C. Course Content | No | List of Topics | Contact Hours | |----|---|---------------| | 1. | An introduction to bio chemistry and water structure, hydrogen bonds, ionization, pH and buffer solutions. | 2 | | 2. | Carbohydrates, classification, Nomenclature of monosaccharides and their derivatives, isomerism and mutarotation. | 2 | | 3. | Reactions of monosaccharides, disaccharides and poly saccharides. | 2 | | 4. | Amino acids chemistry, classification and reactions. | 2 | | 5. | Peptide formation, protein functions, classification and separation. | 2 | | 6. | Enzymes nomenclature, classification, mechanism, inhibitions and their types. | 2 | | 7. | Lipids identification and classification. Triglycerides functions. Compound lipids (Conjugated and derived). Classification and fatty acids | 2 | | 8. | Chemical properties of fatty acids, rancidity, nucleic acid classification and structure. | 2 | | 9 | Types of nucleic acids, DNA Transcription, RNA translation and protein synthesis. | 2 | | 10 | Metabolism, Glycolysis and Kreb's cycle. | 2 | | 11 | Gluconeogenesis, phosphate pentose shunt and glycogenolysis. | 1 | | 12 | Beta Oxidation and digestion of proteins. | 1 | | 13 | Lab Experiments | 22 | | | Total | | ### **D. Students Assessment Activities** | No | Assessment Activities * | | Assessment timing (in week no) | | centage of Total
sessment Score | |----|-------------------------|----------------------|--------------------------------|----|------------------------------------| | 1. | Homework assignm | ent | 3 - 8 | 4 | (4%) | | 2. | Mid-term exam | | ~7 | 15 | (15%) | | 3. | Lecture Quizzes | | 4 - 10 | 1 | (1 %) | | | | Safety EXAM | 9 | 3 | | | 4 | Practical | Sheet | 11 | 7 | 30% | | | | Final practical exam | | 20 | | | 5 | Final Exam | | 12 | 50 | | | | Total | | 100% | | | ^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.) # E. Learning Resources and Facilities # 1. References and Learning Resources | Essential References | Textbook-of-Biochemistry-For-Medical-Students-6th-Edition.pdf | | | |--------------------------|--|--|--| | Supportive References | Lehninger, principales of biochemistry (sixth edition) by David L. Nelson Michafi M. Cox. W. H. FREEMAN AND COMPANY. New York. 2013 Concise Text of Biochemistry. T.N Pattabiraman, 3rd Ed, 2001. اسس الكيمياء الحيوية. الدكتور عبد المنعم الاعسر , المجلد الاول, المكتبة الإكاديمية 2011 | | | | Electronic Materials | https://www.khanacademy.org/science/biochemistry https://www.biochemistry.org/ https://en.wikipedia.org/wiki/biochemistry https://www.masterorganicchemistry.com/ | | | | Other Learning Materials | https://www.youtube.com/watch?v=cAxJw_W05ZY https://www.chemguide.co.uk/orgmenu.html https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/
intro1.htm | | | # 2. Required Facilities and equipment | Items | Resources | |---|---| | facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | 1 Lecture room(s) for groups of 50 students | | Technology equipment (projector, smart board, software) | Smart board, Data show, Black board, internet | | Other equipment (depending on the nature of the specialty) | none | # F. Assessment of Course Quality | Assessment Areas/Issues | Assessor | Assessment Methods | |---|---------------------------------|---| | Effectiveness of teaching | Student | Likert-type Survey CES) Indirect | | Effectiveness of students assessment | Instructor & Course coordinator | Classroom evaluation (direct & indirect | | Quality of learning resources | Program coordinator | Indirect | | The extent to which CLOs have been achieved | Assessment committee | Indirect | | Other | | | Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect) # G. Specification Approval Data COUNCIL /COMMITTEE REFERENCE NO. DATE ### CHEMS230104 11/1/2023G - 18/06/1444H ### H. Attachments ### 1- Practical Work While specific laboratory experiments vary depending on the instructor and the semester, the following list is representative of the experiments that are used: | Week | EXP, titles | Chemicals and tools | hours | |------|---|--|-------| | 1 | Course Introduction include: -Safety during handling with Chemicals and biological samples. Introduction to the devices used in the laboratory. | Safety tools, and Devices | 2 | | 2-3 | Carbohydrate detection | Molisch's, Barfoed. Reducing tests,
Fehling's, Benedict's, Ammoniacal silver
nitrate, Rapid furfural, furfural, Osazone
formation and Iodine test | 4 | | 4 | Estimation of the content of reducing sugars using Fehling's and Benedict's test | Fehling's and Benedict's reagent; copper(II) sulfate, potassium sodium tartrate, Potassium hydroxide | 2 | | 5 | Estimation of glucose in serum by phenol-sulphuric acid method | Spectrophotometer, ethanol Phenol, Sulfuric acid, Water bath, Tubes with covers, filter paper, Cones | 2 | | _ | | | _ | |----|-------------------------------------|--|---| | 6 | General tests for proteins | Ninhydrin reagent, copper sulfate in a | 2 | | | | strong base, sodium hydroxide solution, | | | | | water bath | | | 7 | Solubility and Precipitation of | heavy metals (e.g., Hg2+, Pb2+, Cu2+), | 1 | | | protein | Alkaloidal reagents (e.g., tannate & | | | | | trichloro acetate), by denaturation (heat | | | | | coagulation test, strong acids, strong | | | | | base) | | | 7 | Color reactions of proteins, Biuret | copper sulfate, sodium hydroxide, | 1 | | | test, Millon's test and Reduced | Millon's reagent, Hopkins-Colé reagent, | | | | sulfur test, Hopkins-Colé test | H2SO4 | | | 8 | Estimation of amino acid | -Using Ninhydrin | 2 | | | | -titration with potassium hydroxide in | | | | | the presence of formaldehyde | | | | | | | | 9 | Properties of fats and oils | Melting point, Crystallization, Viscosity, | 2 | | | | Density, Solubility, Refractive index, The | | | | | Saponification number, iodine number, | | | | | Rancidity | | | 10 | Estimation of triglyceride | 4-chlorophenol, Magnesium aspartate, | 2 | | | | Sodium Azide | | | 11 | Revision on the theoretical part of | | 2 | | | the experiments | | | | 12 | FINAL EXAM | | 2 | #### 2- Blue Print | Course | Bioch | Biochemistry | | | | | | | | |--------|-------|--------------|-----|-----|-----|----|----|----|--| | Name | | | | | | | | | | | Course | CHEM | CHEM-204 | | | | | | | | | Code | | | | | | | | | | | PLOs | K1 | K2 | S1 | S2 | S3 | S4 | V1 | V2 | | | CLOs | 1.1 | 1.2 | 2.1 | 2.2 | 2.3 | | | | | | Marks | 30 | 25 | 15 | 27 | 3 | | | | | | | | | | | | | | | | | Learning Domain | PLOs | CLOs | Assessment
Type | Assessment Tool | No of
Questions | Marks of the
Assessment | Weight of the
Assessment | |---------------------------|------|--------------|--------------------|-------------------------------|--------------------|----------------------------|-----------------------------| | | K1 | 4.4 | Homewo
rk | Objective Q
Short answer Q | 2 | 2 | 2% | | | | (30 | Midterm | Objective Q | 2 | 7 | 7% | | Knowledge & understanding | | M) | Final
Exam | Objective Q
Short answer Q | 2 | 21 | 21% | | | K2 | K2 (25
M) | Homewo
rk | Objective Q
Short answer Q | 2 | 2 | 2% | | | NZ | | Midterm | Objective Q
Short answer Q | 2 | 5 | 5% | | | | | Final
Exam | Objective Q | 2 | 18 | 18% | |--------|-----------|---------------------|----------------------------|-------------------------------|---|-----|------------| | | S1 | | Quiz | Objective Q | 3 | 1 | 1% | | | | 2.1
(15 | Midterm | Objective Q
Short answer Q | 2 | 3 | 3% | | | | M) | Final
Exam | Short answer Q | 3 | 11 | 11% | | Skills | S2 | 2.2
S2 (27
M) | Practical
Sheet | Objective Q
Short answer Q | 7 | 7 | 7 % | | | | | Final
Practical
Exam | 1 task
experiment | | 20 | 20% | | | S3 | 2.3
(3
M) | Safety
EXAM | Objective Q | 6 | 3 | 3% | | TOTAL | | 100 | | | | 100 | 100% |