

Course Specifications

Course Title:	TOPOLOGY
Course Code:	442 Math
Program:	B. Sc. in Mathematics
Department:	Mathematics
College:	Science
Institution:	Jazan University

Table of Contents

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes3	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content4	
D. Teaching and Assessment4	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation7	
H. Specification Approval Data	

A. Course Identification

4. Pre-requisites for this course (if any): 315 Math		
5. Co-requisites for this course (if any): none		
5. Co-requisites for this course (n any). None		
-		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	42
2	Laboratory/Studio	
3	Tutorial	3
4	Others (specify)	
	Total	45

B. Course Objectives and Learning Outcomes

1. Course Description

This course is designed to provide students with topological space - Accumulation points(Limit points) and the derived set- Closed sets and Closure of set - Interior, Exterior and Boundary set - Neighborhoods and Neighborhoods systems - Subspace Topology and relative Topology - Bases and subbases - Continuity and Topological Equivalent - Open and Closed functions - Homeomorphism and Topological properties - Connected and Compact space.

2. Course Main Objective

After finishing the course, the student is expected to be familiar with the following:

- Know the definitions of topology and some concepts of topology
- Recognize between the closure, interior and derived sets
- Write a topology generating by base and subbase
- Prove the equivalent properties of continuity and open, closed functions
- Learn the concepts of neighborhood, compactness and connectedness

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Distinguish mathematical concepts relevant to Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	K1
1.2	Identify structures and features of Mathematics problems in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	K2
1.3	Explain required notations and concepts in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness	К3
2	Skills:	
2.1	Apply aspects relevant to Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness	S1
2.2	Compute rates/quantities and Approximate Solutions in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	S2
2.3	Apply various math rules, techniques and theorems in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	S3
2.4	Solve mathematical problems using critical thinking and problem solving in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	S4
3	Values:	
3.1	Cultivate a mathematical attitude and nurture the interest.	V1
3.2	Realize the importance of responsibilities through different modes of practice, competition and related activities.	V2
3.3	Inculcating values and ethics in thought, expression and deed.	V3

C. Course Content

No	List of Topics	Contact Hours
1	Topological space	6
2	Accumulation points(Limit points)and the derived set, Closed sets and Closure of set.	6
3	Interior, Exterior and Boundary set.	6
4 Neighbourhoods and Neighbourhood systems		6
5	Subspace Topology and relative Topology	5
6	Bases and subbases	5
7	Continuity and Topological Equivalent, Open and Closed functions.	6
8 Homeomorphism and Topological properties, Connected and Compact space		5
	Total	45

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

	Topobing		
Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding	Wicthous	
1.1	Distinguish mathematical concepts relevant to topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	Lectures, Web based work, Classroom discussions.	Written exam (Problem solve, MCQ, true/false, Proof, Short answer), Quizzes, Assignments
1.2	Identify structures and features of Mathematics problems in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	Lectures, Web based work, Classroom discussions.	Written exam (Problem solve, MCQ, true/false, Proof, Short answer), Quizzes, Assignments
1.3	Explain required notations and concepts in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness	Lectures, Web based work, Classroom discussions.	Written exam (Problem solve, MCQ, true/false, Proof, Short answer), Quizzes, Assignments
2.0	Skills		
2.1	Apply aspects relevant to Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness	Lectures, problem solving, web based work, Classroom discussions.	Written exam (Problem solve, MCQ, true/false, Proof, Short answer), Quizzes, Assignments
2.2	Compute rates/quantities and Approximate Solutions in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	Lectures, problem solving, web based work, Classroom discussions.	Written exam (Problem solve, MCQ, true/false, Proof, Short answer), Quizzes, Assignments
2.3	Apply various math rules, techniques and theorems in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	Lectures, problem solving, web based work, Classroom discussions.	Written exam (Problem solve, MCQ, true/false, Proof, Short answer), Quizzes, Assignments
2.4	Solve mathematical problems using critical thinking and problem solving in Topological spaces, Neighbourhood systems, Base and subbase, continuous functions, compactness and connectedness.	Lectures, problem solving, web based work, Classroom discussions.	Written exam (Problem solve, MCQ, true/false, Proof, Short answer), Quizzes, Assignments
3.0	Values		
3.1	Cultivate a mathematical attitude and nurture the interest.	Group work, problem solving, web based work	Assignments
3.2	Realize the importance of responsibilities through different modes of practice, competition and related activities.	Group work, problem solving, web based work	Assignments
3.3	Inculcating values and ethics in thought, expression and	Group work,	Assignments

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	deed.	problem solving, web based work	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework	3	5%
2	First exam.	6	20%
3	Second exam.	12	20%
4	Homework	14	5%
5	Final exam.	16	50%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Each group of students assigned to a member of staff who will be available for help and academic guidance office hours at specific hours on daily basis. At least be available 8 hours per week.

F. Learning Resources and Facilities

1.Learning Resources

1.Dear ining Reso		
Required Textbooks	S. Lipschutz(1965), General Topology, Schaum's Outline Series	
Essential References Materials	 - B. Mendelson(1990), A Introduction to Topology, Dover Publications, Inc., New York. - Paul E.long (1971), A Introduction to General Topology, Charles E Menil Publishing Company. - J. R. Munkres(1977), Topology: A first Course, Prentice- Hall. - C. W. Patty(1993), Foundation of Topology , PWS-Kent Publishing 	
Electronic Materials Web sites dedicated to Topology available on the internet		
Other Learning Materials		

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom, Computer lab.
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show; Smart Board, Mathematics software.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching	Students, Peer and program leader	Indirect (Course Evaluation Survey)- Indirect peer evaluation
Assessment	Students, Program assessment committee	Direct/ Indirect
Extent of achievement of course learning outcomes	Instructor	Direct/Indirect
Quality of learning resources	Students, Faculty members	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Board Of Mathematics Department
Reference No.	12 th Meeting Of The Board Of Mathematics Department 1441-1442
Date	14/6/1442 A. H.; 27/1/2021 A. D.

