Course Title: Theory of Compilers Course Code: 433 COMP-3 Program: Bachelor in Computer Science Department: Computer Science College: College of Computer Science and Information **Technology** Institution: Jazan University Version: V2 Last Revision Date: 12 September 2021 # Table of Contents: | Content | Page | |---|------| | A. General Information about the course | 3 | | Teaching mode (mark all that apply) Contact Hours (based on the academic semester) | 4 | | B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 | | C. Course Content | 5 | | D. Student Assessment Activities | 7 | | E. Learning Resources and Facilities | 7 | | 1. References and Learning Resources | 7 | | 2. Required Facilities and Equipment | 7 | | F. Assessment of Course Qualit | 8 | | G. Specification Approval Data | 8 | ### A. General information about the course: | Со | Course Identification | | | | | | |--|------------------------------|-----------|---------------|-----------|--------|---------| | 1. | Credit hours: | 3 | | | | | | 2. (| Course type | | | | | | | a. | University □ | College □ | Dep | partment⊠ | Track□ | Others□ | | b. | Required ⊠ | Elective□ | | | | | | 3. Level/year at which this course is offered: | | S | Level 13/Year | 5 | | | | A 4 | 4 Course general Deceription | | | | | | ### 4. Course general Description This course presents an introduction to compilers phases –analysis, synthesis, lexical analysis, regular expressions, finite automata NFA and DFA. Syntax Analysis, context-free grammar, ambiguity, top-down parsing - recursive descent and LL(K), bottom-up parsing, shift reduce parsing, introduction to LR parser, semantic analysis, syntax directed translation, intermediate code generator-three address code, storage organization, heap management, code generation, and code optimization. ### 5. Pre-requirements for this course (if any): None #### 6. Co- requirements for this course (if any): None ### 7. Course Main Objective(s) The main purpose of the course is to provide the foundation for understanding the theory and practice of compilers. Learn programming language translation and compiler design concepts; language recognition, symbol table management, semantic analysis and code generation. - Gain an understanding of how compilers translate source code to machine executable. - Provide the students with a clear overview of how to construct grammar for given programming language. - Convert regular expression to its equivalent finite state machine to accept a specified language - Provide practical programming skills necessary for constructing a compiler. - Understand how compilers manage memory during runtime. - Familiarize students with syntax-directed translation techniques... ## 1. Teaching mode (mark all that apply) | No | Mode of Instruction | Contact Hours | Percentage | |----|---|---------------|------------| | 1. | Traditional classroom | 44 | 80% | | 2. | E-learning | | | | 3. | HybridTraditional classroomE-learning | | | | 4. | Distance learning (Self Learning) | 11 | 20% | ### 2. Contact Hours (based on the academic semester) | No | Activity | Contact Hours | |----|-------------------|---------------| | 1. | Lectures | 22 | | 2. | Laboratory/Studio | 22 | | 3. | Field | | | 4. | Tutorial | | | 5. | Others (specify) | 8 | | | Total | 52 | # B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | Code | Course Learning Outcomes | Code of
CLOs
aligned with
program | Teaching
Strategies | Assessment
Methods | |------|--|--|---|---| | 1.0 | Knowledge and understanding | | | | | 1.1 | Recognize and define the significance of the several phases through which a typical program is compiled. | K1 | Class lectures and lecture notes | Midterm/
Assignment 1 /
Final Exam/Final
Lab | | 1.2 | Describe the purpose of translating to intermediate code based on given code patterns with possible code optimization techniques. | K1 | Class lectures/
lecture notes/
Case studies | Lab/ Assignment
2/ Final Exam | | 1.3 | Discuss current trends of a parser in a compiler and relate the yield of a parse tree to a grammar derivation. | K2 | Class lectures and lecture notes | Midterm/
Assignment 1 /
Final Exam/Final
Lab | | 2.0 | Skills | | | | | Code | Course Learning Outcomes | Code of
CLOs
aligned with
program | Teaching
Strategies | Assessment
Methods | |------|--|--|---|---| | 2.1 | Analyze regular expressions to construct finite automata for accepting or generating a certain language. | S1 | Class lectures/
lecture
notes/Case
studies | Final Exam/
Group
Assignments | | 2.2 | Apply an algorithm for a top-
down or a bottom-up parser
construction; construct a parser
for a small context-free grammar | S4 | Class lectures/
lecture notes/
Case studies /
Brainstorming | Final Exam/
Assignments 1
/Group
Assignments | | 2.3 | Apply syntax directed translation techniques in type checking and intermediate code generation | S4 | Class lectures/
lecture notes | Final Exam/
Group
Assignments /
Final Lab | | 2.4 | Explain various aspects of the run-time environment into which the high-level code is translated | S2 | Class lectures/
lecture notes | Final Exam/
Group
Assignments /
Final Lab | | 2.5 | Design and implement a code generator based on the given optimized codes. | S3 | Class lectures/
lecture notes | Final Exam/
Group
Assignments /
Final Lab | | 3.0 | Values, autonomy, and respons | sibility | | | | 3.1 | Demonstrate the ability to work in team to review and design automata theory and compiler design concepts | V2 | Small group discussion / Brainstorming/ Class discussion to train students to think independently | Group
Assignments/
Final Exam | | 3.2 | | | | | | | | | | | # C. Course Content | No | List of Topics | Contact Hours | |----|--|---------------| | | Chapter – 1 INTRODUCTION TO COMPILER | | | 1. | a) Language processor, The structure of compiler, Grouping of
phases into passes, compiler construction tools. | | | | | 2T + 2P | |----|--|---------| | 2. | Chapter – 2 LEXICAL ANALYSIS a) Lexical Analysis: The role of Lexical analysis, Regular expressions, b) Finite Automata, From regular expression to automata-conversion of NFA to DFA, c) Construction of an NFA from regular expression. Self-Study: Lexical error and issues | 4T + 4P | | | Chapter – 3 SYNTAX ANALYSIS | 71 1 71 | | 3. | a) The role of parser, Syntax error handling, b) Context free grammar, Ambiguity. c) Parsing- Top Down parsing, First & Follow, LL(1) Grammars. d) Bottom-up parsing, Shift Reduce parsing, Introduction to LR Parser. | | | | Self-Study: LR parser | 4T + 4P | | | Chapter – 4 SYNTAX DIRECTED TRANSLATION | | | 4. | a) Syntax Directed Translation: Syntax Directed Definition. b) Evaluation order of SDD's, c) Construct of syntax tree, Syntax Directed translation schemes | 2T + 2P | | | Chapter-5 INTERMEDIATE CODE GENERATION | | | 5. | a) Three Address Code, Three Address Statements.b) Quadruple, Triples, Indirect triple, Control Flow,Self-Study: Back patching | 3T + 3P | | | Chapter – 6 RUNTIME ENVIRONMENT | | | 6. | a) Storage organization, Stack Allocation of spaces, Heap Management | 2T + 2P | | | Chapter – 7 CODE GENERATION | | | 7. | a) Issues in the design of a code generator, b) Basic Blocks and flow graph, Optimization of basic blocks- c) The DAG representation of Basic blocks
Self-Study: WAP 2.0 security Bluetooth security | 3T + 3P | | | Chapter – 8 CODE OPTIMIZATION | | |----|--|---------| | 8. | a) Principle source of optimization, b) Code optimization techniques. c) Loop Optimization technique Self-Study: Loops in Flow Graph, Introduction to Dataflow Analysis | | | 9. | Lab Exam + Revision | 2T + 2P | | | | | | | Total | 22T+22P | ## **D. Students Assessment Activities** | No | Assessment Activities * | Assessment
timing
(in week no) | Percentage of Total
Assessment Score | |----|--|--------------------------------------|---| | 1. | Midterm Exam | 6th-7th week | 15% | | 2. | Assignment I | 3rd week | 10% | | 3. | Assignment II (Case Study/ Group assignment) | 6th-7th week | 15% | | 4. | Lab Exam + Lab Assignment | As per schedule | 20% | | 5. | Final Theory Exam | As per schedule | 40% | | | | | | ^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.) # E. Learning Resources and Facilities ## 1. References and Learning Resources | Essential References | Introduction to compiler and language design, Douglas Thain,Second Edition, 2020. ISBN 979-8655180260 | | |--------------------------|---|--| | Supportive References | i). Aho, Lam, Sethi, and Ullman, "Compilers: Principles, Techniques, & Tools", Second Edition, Pearson 2013. ISBN 13: 9789332518667. ii). | | | Electronic Materials | http://nptel.ac.in/courses.php?branch=Comp https://www.coursera.org/ http://java.sun.com/docs/books/tutorial/ http://ssw.jku.at/Misc/CC/ | | | Other Learning Materials | Online tutorial | | ## 2. Required Facilities and equipment | Items | Resources | |---|---| | facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | Classroom equipped with projector, whiteboard, and sufficient seating arrangements. Lab with software installed and individual computer terminal for each student. | | Technology equipment (projector, smart board, software) | Whiteboards and projectors for classroom and labs Computer Lab equipped with 30 PCs having J2ME platform in Net beans 7.0 An active internet connection. | | Other equipment (depending on the nature of the specialty) | None | # F. Assessment of Course Quality | Assessment Areas/Issues | Assessor | Assessment Methods | |---|---------------------|---| | Effectiveness of teaching | Students | Indirect (Course evaluation survey form) | | Effectiveness of students assessment | CRC / QAU / HoD | Direct (Course reports / result analysis) | | Quality of learning resources | Track leaders / CRC | Indirect (Review, meetings and star rating with suggestions for further modification and improvements) | | The extent to which CLOs have been achieved | CRC / QAU | Direct (CLO assessment
template further verified
at course coordinator,
Track leader and QAU
level) | | Other | | | **Assessor** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect) # G. Specification Approval Data | COUNCIL
/COMMITTEE | DEPARTMENT COUNCIL | |-----------------------|--------------------| | REFERENCE NO. | | | DATE | 15/10/2022 |