Course Title: Computer Architecture Course Code: COMP 332 **Program: Bachelor in Computer Science** Department: Computer Science College: College of Computer Science and Information **Technology** Institution: Jazan University Version: V2 Last Revision Date: 26-August-2022 ## Table of Contents: | Content | Page | |---|------| | A. General Information about the course | 3 | | Teaching mode (mark all that apply) Contact Hours (based on the academic semester) | 3 | | B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 | | C. Course Content | 5 | | D. Student Assessment Activities | 7 | | E. Learning Resources and Facilities | 7 | | 1. References and Learning Resources | 7 | | 2. Required Facilities and Equipment | 7 | | F. Assessment of Course Qualit | 8 | | G. Specification Approval Data | 8 | ## A. General information about the course: | Co | urse Identificati | on | | | | | |--|--|--|---|--|---|--| | 1. | Credit hours: | 3 | | | | | | 2. | Course type | | | | | | | a. | University □ | College □ | De | partment⊠ | Track□ | Others□ | | b. | Required ⊠ | Elective□ | | | | | | | Level/year at whered | nich this course | e is | Level 7/ Yea | r 3 | | | 4. | as clearly and computer system integrated circuluse of parallel Computer Organ control unit, reg | poout the structure a completely as poon this course with technology used organization concentration and Major gisters, ALU, and instantion and coordination | ssible,
cover
I to cou
pts. The
r comp
struction | the nature and all aspects of construct computer his course also for conents which in an execution unit. | characteristics of
omputer, from
components, to
cuses on differe
clude processor
It also discusses | of modern-day
the underlying
the increasing
int elements of
, memory, I/O, | | 5. | Pre-requiremen | ts for this cour | se (if | any): None | | | | 6. | Co- requiremen | ts for this cour | se (if | any): None | | | | 7. | Course Main Ob | jective(s) | | | | | | 1. 2. 3. | Describe the both with each | rchitecture and omajor compone to the other and the the program exc | nts of
outsic | a computer an
le world. | d their interco | nnections, | ### 1. Teaching mode (mark all that apply) | No | Mode of Instruction | Contact Hours | Percentage | |----|---|---------------|------------| | 1. | Traditional classroom | 52 | 100 | | 2. | E-learning | | | | 3. | HybridTraditional classroomE-learning | | | | 4. | Distance learning | | | Illustrate various internal architectures and organizations of the processor 4. #### 2. Contact Hours (based on the academic semester) | No | Activity | Contact Hours | |----|--------------------------|---------------| | 1. | Lectures | 22 | | 2. | Laboratory/Studio | 22 | | 3. | Field | | | 4. | Tutorial | | | 5. | Others (Revision + Exam) | 8 | | | Total | 52 | # B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | Code | Course Learning
Outcomes | Code of CLOs aligned with program | Teaching
Strategies | Assessment
Methods | |------|--|-----------------------------------|---|---| | 1.0 | Knowledge and understanding | | | | | 1.1 | Explain the various concepts related with evolution of computers and technologies involved. | K1 | Visual &Verbal [Lectures / Presentations] | Exam 1,
Assignment(s),
Final Exam | | 1.2 | Relate various components, functions and interconnection structure and I/O module techniques of a computer system. | K2 | Visual &Verbal [Lectures / Presentations] | Exam 1, Assignment(s), Final Exam | | | | | | | | 2.0 | Skills | | | | | 2.1 | Analyze various memory storage and access techniques based on various performance criteria. | S1 | Visual &Verbal [Lectures / Presentations] | Exam 1,
Assignment(s),
Final Exam | | 2.2 | Evaluate different page replacement algorithms based on page fault calculations. | S2 | Visual &Verbal [Lectures / Presentations] | Assignment(s),
Final Exam | | 2.3 | Design programs based on various microprocessor concepts in Assembly language. | S3 | Visual &Verbal [Lectures / Presentations] | Internal Lab
Exam, Final Lab
Exam | | Code | Course Learning
Outcomes | Code of CLOs aligned with program | Teaching
Strategies | Assessment
Methods | |------|--|-----------------------------------|---|-----------------------| | 3.0 | Values, autonomy, ar | nd responsibility | | | | 3.1 | Demonstrate the ability to work as a team member and take responsibility for successful completion of group assignment on recent trends of subject area. | V2 | Visual &Verbal [Lectures / Presentations] | Group
Assignment | | 3.2 | | | | | | | | | | | ## C. Course Content | No | List of Topics | Contact Hours | |----|--|---------------| | 1. | Chapter1-Introduction to Computer Organization & Architecture Introduction to computer Organization and Architecture Structure and function Structural components of computer History and generations of computers Moore's Law and consequences of it. General and Expanded structure of computers IAS Memory formats and structure of IAS computer | 4T + 4P | | 2. | Chapter 2-Computer functions and interconnections Computer components Instruction fetch and execute Interrupts Multiple Interrupts Interrupt Instruction Cycle Interconnection building Bus Interconnection | 4T + 4P | | 3. | Chapter 3 -Cache memory Computer Memory System Characteristics of memory system Memory hierarchy Characteristics of memory hierarchy Cache memory principles | 2T + 2P | | | Elements of cache design Cache memory Mapping Replacement algorithms | | |----|---|---------| | 4. | Chapter-4- Internal memory Semiconductor main memory Main Memory Cell Organization Semiconductor memory types RAM DRAM and SRAM ROM Types of ROM | 3T + 3P | | 5. | Chapter 5-External memory Magnetic disc Data organization and formatting Disk performances Raid Different RAID levels RAID comparison Optical storages | 4T + 4P | | 6. | Chapter 6- Input-output Peripheral devices Input-Output Technique Programmed I/O Interrupt driven I/O Direct memory access DMA Operation I/O modules | 3T + 3P | | 7. | Revision and Exam discussion | 2T+2P | | 8. | Lab Exam + Final Exam | 2T+2P | | | Total | 52 | #### **D. Students Assessment Activities** | No | Assessment Activities * | Assessment
timing
(in week no) | Percentage of Total
Assessment Score | |----|---------------------------------|--------------------------------------|---| | 1. | Assignment-1 | 3rd -4th week | 10% | | 2. | Mid Exam | 5th-6th week | 15% | | 3. | Assignment-2 (Group Assignment) | 6th -7th week | 10% | | 4. | Quiz | 9th week | 5% | | 5. | Final Lab Exam + Lab Assignment | As per schedule | 20% | | 6. | Final Theory Exam | As per schedule | 40% | | | Total | | 100% | ^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.) ## E. Learning Resources and Facilities #### 1. References and Learning Resources | Essential References | William Stallings, "Computer Organization and Architecture-
Designing for Performance", Pearson Publication, 9th edition,
2012, ISBN-13: 978-0132936330 | |--------------------------|---| | Supportive References | M. Morris R. Mano, "Computer System Architecture", Pearson Publication, 3 rd edition, 1992, ISBN-13: 978-0131755635 | | Electronic Materials | http://williamstallings.com/ComputerOrganization/ | | Other Learning Materials | Emulator emu8086 | ## 2. Required Facilities and equipment | Items | Resources | |---|---| | facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | Classroom and Lab equipped with workstation Computers and Seating Capacity for 30-40 students along with projectors. | | Technology equipment (projector, smart board, software) | The practical should be placed in a lab with the following requirements: • Computer connected to projector. • 30-40workstations • emu8086 software | | Other equipment (depending on the nature of the specialty) | | ## F. Assessment of Course Quality | | • | | |---|---------------------|---| | Assessment Areas/Issues | Assessor | Assessment Methods | | Effectiveness of teaching | Students | Course evaluation survey form | | Effectiveness of students assessment | TL/HOD | Classroom monitoring | | Quality of learning resources | Track leaders / CRC | Review meetings and star
rating with suggestions for
further modification and
improvements | | The extent to which CLOs have been achieved | | | | Other | | | **Assessor** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect) ## G. Specification Approval Data | COUNCIL
/COMMITTEE | Department Council | |-----------------------|--------------------| | REFERENCE NO. | | | DATE | 26-08-2022 |