

Course Title : Analysis & Design of Algorithms

Course Code :323-COMP-3

Program : Bachelor of Computer Science

Department : Computer Science

College : College of Computer Science & Information Technology

Institution : Jazan University

Version :V2

LastRevision Date:12-SEPTEMBER-2021



# **Table of Contents:**

| Content                                                                                                        | Page |
|----------------------------------------------------------------------------------------------------------------|------|
| A. General Information about the course                                                                        | 3    |
| <ol> <li>Teaching mode(mark all that apply)</li> <li>Contact Hours (based on the academic semester)</li> </ol> | 4    |
| B. Course Learning Outcomes (CLOs), Teaching Strategies and <b>Assessment Methods</b>                          | 4    |
| C. Course Content                                                                                              | 6    |
| D. Student Assessment Activities                                                                               | 7    |
| E. Learning Resources and Facilities                                                                           | 7    |
| 1.References and Learning Resources                                                                            | 7    |
| 2. Required Facilities and Equipment                                                                           | 7    |
| F. Assessment of Course Qualit                                                                                 | 8    |
| G. Specification Approval Data                                                                                 | 8    |



### A. General information about the course:

| Co   | Course Identification |                      |            |             |           |         |
|------|-----------------------|----------------------|------------|-------------|-----------|---------|
| 1. ( | Credit hours:         | 3                    |            |             |           |         |
| 2. ( | Course type           |                      |            |             |           |         |
| a.   | University □          | College □            | Department | $\boxtimes$ | Track□    | Others□ |
| b.   | Required ⊠            | Elective□            |            |             |           |         |
| 3.   | Level/year at whic    | ch this course is of | ffered:    | Level       | 10/Year 4 |         |

#### 4. Course general Description

This course provides to the students a techniques for designing and analyzing algorithms such as brute-force, divide-and-conquer, decrease-and-conquer, Space and Time Trade Off(Boyer Moore Algorithm and Horspool Algorithm); They acquire some understanding on design techniques and algorithms that address an important set of well-defined problems: DFS and BFS shortest-path algorithms (Dijkstra's and Floyd's algorithms); transitive closure (Floyd's algorithm); minimum spanning tree (Prim's and Kruskal's algorithms); topological sort. In addition, the course will provide different complexity characteristics P and NP classes, NPcompleteness and reduction techniques.

- 5. Pre-requirements for this course (if any): 222-COMP-3 (Algorithms & Data Structures-II)
- 6. Co- requirements for this course (if any): None
- 7. Course Main Objective(s)
- 1. Describe the notion of algorithms, fundamental of algorithm solving and data structures.
- 2. Analyze different design strategies of algorithms like divide-and-conquer, decrease-and conquer, Space and Time Trade off etc.
- 3. Demonstrate a familiarity with major algorithms and data structures.





- 4. Apply important algorithmic design paradigms and methods of analysis.
- 5. Explain how to discover the limitation of algorithm power as P, NP and NP-complete problem

## 1. Teaching mode(mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1. | Traditional classroom                                                     | 44            | 80%        |
| 2. | E-learning                                                                |               |            |
| 3. | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4. | Distancelearning                                                          |               |            |
| 5. | Self Learning                                                             | 11            | 20%        |

#### 2. Contact Hours (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures          | 22            |
| 2. | Laboratory/Studio | 22            |
| 3. | Field             |               |
| 4. | Tutorial          |               |
| 5. | Others (specify)  | 8             |
|    | Total             | 52            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning<br>Outcomes                                         | Code of CLOs<br>aligned with<br>program | Teaching Strategies                                                  | Assessment<br>Methods                                  |
|------|---------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|
| 1.0  | Knowledge and understanding                                         |                                         |                                                                      |                                                        |
| 1.1  | Define the basics concepts of algorithmic analysis, data structure, |                                         | <ul><li>Lectures/Prese<br/>ntations</li><li>Media Lectures</li></ul> | <ul><li>Exam 1</li><li>Assignment-</li><li>1</li></ul> |



| Code | Course Learning<br>Outcomes                                                                                            | Code of CLOs<br>aligned with<br>program | Teaching Strategies                                                                                               | Assessment<br>Methods                                                                                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | asymptotic notations and efficiency classes.                                                                           | K1                                      |                                                                                                                   | • Final Theory Exam                                                                                                                                              |
| 1.2  | Describe the fundamentals of algorithmic design paradigms.                                                             | K1                                      | <ul><li>Lectures/Prese ntations</li><li>Media Lectures</li></ul>                                                  | <ul><li>Exam -1</li><li>Assignment-1</li><li>Final Theory Exam</li></ul>                                                                                         |
| 2.0  | Skills                                                                                                                 |                                         |                                                                                                                   |                                                                                                                                                                  |
| 2.1  | Analyze the appropriate algorithm design techniques for solving problems.                                              | S1                                      | <ul><li>Lectures /Presentations</li><li>Media Lectures Tutorials</li></ul>                                        | <ul> <li>Assignment <ul><li>1</li></ul> </li> <li>Group <ul><li>Assignment</li></ul> </li> <li>Final Theory <ul><li>Exam</li></ul> </li> <li>Final Lab</li></ul> |
| 2.2  | Implement and Evaluate<br>the existing algorithms<br>for a wide variety of<br>problems.                                | <b>S</b> 3                              | <ul> <li>Lectures /Presentations</li> <li>Media Lectures</li> <li>Tutorials</li> <li>Lab Demonstration</li> </ul> | <ul> <li>Group         Assignment</li> <li>Final Theory         Exam</li> <li>Final Lab         Exam</li> </ul>                                                  |
| 2.3  | Distinguish the concept of P and NP Complete Problems.                                                                 | S2                                      | <ul><li>Lectures<br/>/Presentations</li><li>Media Lectures</li></ul>                                              | <ul><li> Group<br/>Assignment</li><li> Final Theory<br/>Exam</li></ul>                                                                                           |
| 2.4  | Apply the algorithm<br>design Strategies like<br>Horspool's Algorithm-<br>Boyer Moore Algorithm<br>for a given problem | S2                                      | <ul><li>Lectures/Prese ntations</li><li>Media Lectures</li></ul>                                                  | <ul><li> Group<br/>Assignment</li><li> Final Theory</li><li> Final Lab</li></ul>                                                                                 |
| 3.0  | Values, autonomy, and resp                                                                                             | onsibility                              |                                                                                                                   |                                                                                                                                                                  |



| Code | Course Learning<br>Outcomes                                                                                                    | Code of CLOs<br>aligned with<br>program | Teaching Strategies   | Assessment<br>Methods |
|------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|-----------------------|
| 3.1  | Demonstrate the ability to work as a team member for analyzing, developing and evaluating an algorithm for the given problems. | V2                                      | • Group<br>Discussion | • Group<br>Assignment |

## C. Course Content

| No | List of Topics                                                                                                                                                                                                                                                         | Contact Hours |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. | Introduction: Notion of Algorithm, Fundamentals of Algorithmic Problem Solving, Exercises                                                                                                                                                                              | 2T+2P         |
| 2. | Fundamentals of the Analysis of Algorithm Efficiency: Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non-recursive Algorithms, Mathematical Analysis of Recursive Algorithms, Exercises                               | 4T+4P         |
| 3. | Brute Force & Exhaustive Search: Selection Sort and Bubble Sort, Sequential Search & Brute-Force String Matching, Closest-Pair problem and Convex-Hull Problems. self-study Topic(s): Exhaustive Search, Knapsack Problem, Travel Salesman Problem ,Assignment Problem | 2T+2P         |
| 4. | Decrease-and-Conquer:<br>Variation in decrease and Conquer, Insertion Sort, Topological<br>Sorting, Decrease-by-a-Constant-Factor Algorithms, Binary Search,<br>Exercises                                                                                              | 2T+2P         |
| 5. | Divide-and-Conquer: Divide & Conquer Technique, Master Theorem Merge Sort, Quick Sort, Exercises.  Transform and Conquer technique. self-study Topic(s): Gaussian Elimination, Horner Rule, Exercises                                                                  | 2T+2P         |



| 6. | Space and Time Trade off:<br>Input enhancement in String matching, Horspool's Algorithm, Shift<br>table Algorithm, Horspool matching algorithm, Boyer-Moore<br>Algorithm, Exercises                                  | 4T+4P     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 7. | Dynamic Programming:  Dynamic Programming Technique, Warshall's and Floyd's  Algorithms, Exercises                                                                                                                   | 2T+2P     |
| 8. | Greedy Techniques: Prim's Algorithm, , Huffman Trees and Codes, Exercises self-study Topic(s): Kruskal's Algorithm Limitations of Algorithm Power: Decision Tree, Decision trees for Sorting, P, NP, and NP-complete |           |
|    | Total                                                                                                                                                                                                                | 22T + 22P |

## **D. Students Assessment Activities**

| No | Assessment Activities * | Assessment timing (in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|--------------------------------|-----------------------------------------|
| 1. | Assignment-1            | 3 <sup>rd</sup> Week           | 10%                                     |
| 2. | Mid Exam                | 7 <sup>th</sup> Week           | 15%                                     |
| 3. | Group Assignment        | 9 <sup>th</sup> Week           | 15%                                     |
| 4. | Lab Assignment          | 9 <sup>th</sup> Week           | 10%                                     |
| 5. | Final Lab Exam          | 11 <sup>th</sup> Week          | 10%                                     |
| 6. | Final Theory Exam       | As per schedule                | 40%                                     |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

# **E.** Learning Resources and Facilities

# 1.References and Learning Resources

| Essential References  | Introduction to Algorithms, MIT Press, Third Edition, Thomas H. Cormen, Charles E Leiserson, and Ronald Rivest ,2009, ISBN13: 978-0262033848                                                                                          |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Supportive References |                                                                                                                                                                                                                                       |  |
| Electronic Materials  | <ul> <li>https://www.javatpoint.com/daa-tutorial</li> <li>https://www.academia.edu/38287655/Design_and_analysis_of_algorithms_tutorial</li> <li>https://www.tutorialspoint.com/design_and_analysis_of_algorithms/index.htm</li> </ul> |  |





https://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-046j-design-and-analysis-ofalgorithms-spring-2015/

Other Learning Materials Online Tutorials

#### 2. Required Facilities and equipment

| Items                                                                           | Resources                                                                                                                                                           |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | Classroom equipped with projector, whiteboard, and sufficient seating arrangements.  Lab with software installed and individual computer terminal for each student. |
| Technology equipment (projector, smart board, software)                         | Whiteboards and projectors for classroom and lab Following software for lab work: NetBeans IDE 8.2                                                                  |
| Other equipment (depending on the nature of the specialty)                      | None                                                                                                                                                                |

## F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor            | Assessment Methods                                                                                    |
|---------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------|
| Effectiveness of teaching                   | Students            | Indirect (Course evaluation survey form)                                                              |
| Effectiveness of students assessment        | CRC / QAU / HoD     | Direct (Course reports / result analysis)                                                             |
| Quality of learning resources               | Track leaders / CRC | Indirect(Review, meetings and star rating with suggestions for further modification and improvements) |
| The extent to which CLOs have been achieved | CRC / QAU           | Direct(CLO assessment template further verified at course coordinator, Track leader and QAU level)    |
| Other                                       |                     |                                                                                                       |

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods(Direct, Indirect)

# **G. Specification Approval Data**

COUNCIL /COMMITTEE

**DEPARTMENT COUNCIL** 





| REFERENCE NO. |            |
|---------------|------------|
| DATE          | 28-12-2022 |

