

Course Specifications

Course Title:	Electrochemistry
Course Code:	CHEM 344
Program:	Bachelor in Chemistry
Department:	Chemistry
College:	College of Science
Institution:	Jazan University (J U)

Table of Contents

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content5	
D. Teaching and Assessment5	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 3hs				
2. Course type	<u></u>			
a. University College Department ✓	Others			
b. Required ✓ Elective	 -			
3. Level/year at which this course is offered: Level 8	Year 3			
4. Pre-requisites for this course (if any):				
241CHEM3				
5. Co-requisites for this course (if any):				
none				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	22	100
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	22
2	Laboratory/Studio	22
3	Tutorial	
4	Others (specify)	
	Total	44

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number	Contact Hours		Credit unit	Year	Level	Pre- requisite
		Lec.	Prac.	(CU)			requisite
Electrochemistry	CHEM 344	2	1	3	3	8	241CHEM3

Course Objectives; They are to identify the following

- 1. Types of conductors
- 2. Classification of electrolytic cells
- 3. Measuring EMF
- 4. Applications of electrochemistry

Syllabus: A-Theoretical contents

Electrolytic conductors, General electrochemistry concepts, Introduction to electrochemistry: electrode potentials, galvanic and electrolytic cells, Nernst equation, Corrosion and corrosion protection, Overview of applications of electrochemistry

Syllabus: A-Practical contents

Experimental work illustrating selected parts of the theoretical content.

2. Course Main Objective

This course aims to give students the basic principles of electrochemistry and its applications

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding: Upon completion of this course, student will be able to	
1.1	Demonstrate a broad understanding and critical view on principal of electrochemistry, Concepts and terminology of electrochemistry topics including; electrolyte solution theories, electrochemical (Galvanic) cell, origin of electrode potential theories, Faraday's law of electrolysis,etc (P)	K1
1.2	Describe correctly the different phenomena associated with electrochemistry i.e.; type of electrodes, cell presentation (notation), cell reactions, electromotive force (P)	K2
2	Skills: Upon completion of this course, student will be able to	
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and to solving problems related to faraday's law and Nernst equation. (P)	SI
2.2	Perform experiments in electrochemistry, record, analyze, interpret the scientific data, and write reports. (P)	S2
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	<i>S3</i>
3	Values:	
3.1	Working as a group leader in cooperation with other colleagues. (P)	<i>V1</i>

C. Course Content

No	List of Topics	
1	Electrolytic and Non-electrolytic conductors	3
2	Oxidation States & Redox Reactions	2
3	Galvanic (electrochemical) Cells	3
4	Cell Potential under Standard Conditions	
5	Gibbs Energy and Redox Reactions	
6	Cell Potential under Nonstandard Conditions and Nernst equation	
7	Batteries & fuel cell	2
8	Corrosion	2
9	Electrolytic cell	2
10	0 Selected experiments related to the course topic 22	
	Total	44

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding Upon completion of this course, student will be able to			
1.1	Demonstrate a broad understanding and critical view on principal of electrochemistry, Concepts and terminology of electrochemistry topics including; electrolyte solution theories, electrochemical (Galvanic) cell, origin of electrode potential theories, Faraday's law of electrolysis,etc (P)	lecture / discussion Seminars /presentation	MCQ	
1.2	Describe correctly the different phenomena associated with electrochemistry i.e.; type of electrodes, cell presentation (notation), cell reactions, electromotive force (P)	lecture / discussion / Seminars /Individual presentation	Q&A	
2.0	Skills Upon completion of this course, student will to	be able to		
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and to solving problems related to faraday's law and Nernst equation. (P)	lecture / discussion / Seminars /Individual presentation	Solving Problems & chart analysis	
2.2	Perform experiments in electrochemistry, record, analyze, interpret the scientific data, and write reports. (P)	Lab work, group work	MCQ, Q&A, lab report rubric	
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	lab demonstrations / hands-on student learning activities	Safety exam	

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
3.0	Values Upon completion of this course, student will	be able to	
3.1	Working as a group leader in cooperation with other colleagues. (P)	lab demonstrations / whole group and small group discussion	Practical group work Rubric

2. Assessment Tasks for Students

#		Assessment task*		Percentage of Total Assessment Score
1	Homev	vork assignment	3-8	2 %
2	Lecture	e Quizzes	5-7	3 %
3	Mid-te	rm exam	6-8	15 %
4		LAB Sheet	15	5 %
5		Safety Exam	11	4%
6	LAB	Final practical exam	11	7 %
7		Lab report	2-10	10 %
8		Group work evaluation	2-10	4%
9	9 Final Exam		12-14	50 %
			Total	100 %

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Instructor will be available for academic counseling on daily basis for at 4h/day during office hours.
- The office hours are listed in the instructor time table and delivered to students in the first lecturer in each semester.
- Instructor is available in a WhatsApp group with student.
- E-mail and Telephone number are delivered to student for any help during semesters.

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	Handbook of Electrochemistry, 2007, Cynthia G. Zoski, Elsevier
Essential References Materials	 Electrochemistry, 2nd Edition, P.H. Rieger, Springer, 1993 ISBN: 0412043912,9780412043918 Electrochemistry and Corrosion Science, Nestor Perez, 2016, Springer International Publishing, ISBN: 978-3-319-24845-5,978-3-319-24847-9
Electronic Materials	Some course contents and materials are posted on Black board sites

Other Learning Materials

- https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Sup plemental Modules (Analytical_Chemistry)/Electrochemistry
- https://courses.lumenlearning.com/chemistryformajors/chapter/introduction-to-electrochemistry/
- https://pages.uoregon.edu/tgreenbo/electrolysis10.html
- https://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for group of 25student
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart board, Data show, Black board, Internet
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Conductivity meter, metal electrodes (i.e. Fe, Cu, Al, Sn, Zn, Mg, Pb), Voltameter, Power source, Balance, potentiostate, galvanostate

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods				
Effectiveness of Teaching and	Student	Likert-type Survey (CES)				
Assessment		<u>Indirect</u>				
Extent of achievement of	Instructor & Course coordinator	Class room evaluation				
course learning outcomes	Instructor & Course coordinator	(direct & indirect)				
Quality of learning resources	Program coordinator	<u>Indirect</u>				
Exam Quality assessment	Assessment committee	<u>Indirect</u>				
Effectiveness of Teaching and	Student	Likert-type Survey (CES)				
Assessment		<u>Indirect</u>				

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council CHEMS 2216					
Reference No.	CHEMS 221602					
Date	27/09/2022 G 01/03/1444 H					

Attachment:

1- LAB EXPERMENTS

Week	EXPERMENTAL TITLE	Remarks	
1	Safety and regulations		
1	Determination of cell constant	0.1N KCl, conductivity cell	
2	Determination of equivalent conductance	0.1N KCl, MgSO4, monochloric acid, conductivity cell	None
3	Activity Series	0.1 M Cu(NO ₃) ₂ , 0.1 M Mg(NO ₃) ₂ , 0.1 M HCl, 0.1 M Zn(NO ₃) ₂ , 0.1 M AgNO ₃ , Mg, Cu, Zn	None
4	Electrochemical Cells	0.5M Cu(NO ₃) ₂ , 0.5M Zn(NO ₃) ₂ , 0.5M Pb(NO ₃) ₂ , 0.5M KNO ₃ rods, DC voltmeter or digital multimeter, copper, zinc, lead.	None
5	Galvanic cell creating from environment	Citric acid, Oxalic acid., sheet of copper, sheet of zinc, distilled water, DC voltmeter or digital multimeter, Lemon, Kiwi,	None
6	Simple galvanic cell using pottery vase or any membrane partition	Zn, Pb, Cu, strips, 0.1M CuSO ₄ , 0.1 M Zn(NO ₃) ₂ , 0.1 M Pb(NO ₃) ₂ , 0.1 M FeSO ₄ and 0.1 M KNO ₃ , DC voltmeter or digital multimeter, porous vase	None
7	Investigation of the temperature coefficient Of Galvanic Cell Copper Sulfate (CuSO ₄),Zinc Sulfate (ZnSO ₄), sheet of copper ,sheet of zinc, voltmeter or digital multimeter, thermometer		None
8	Corrosion	Zn Sheets, NaOH, balance	None
9	An Electrolytic Cell: Electrolysis of CuCl2	0.2 M CuCl ₂ . Power supply or 9V batteries	None
10	An Electrolytic Cell: Electroplating	1.0 M CuSO ₄ , a copper strip, iron nail, battery or power source,	None
11		Final exam	
	1		

For unavailable equipments, we use some stimulated experiments through links as:

https://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html

http://introchem.chem.okstate.edu/DCICLA/voltaicCell20.html

2- Blue Print

Course Nam	ne	e ELECTROCHEMISTRY									
Course Code	e	344 CH	EM								
PLOs	PLOs K1		K2	S1	S2	S3		S4		V1	V2
CLOs		1.1	1.2	2.1	2.2	2.3		2.4		3.1	3.2
Marks		15	21	34	22	4				4	
Learning Domain		PLOs	CLOs	Assessment Type	Assessi	nent	No o Que	of stions	the	rks of sessment	Weight of the Assessment
		K1	1.1	Quiz	MCQ	MCQ		2		2	1
			(15M)	Mid term	MCQ	MCO		6		6	3
Knowledge	e &			Final Exam MCQ			11			11	11
understand	ling	K2	1.2	Quiz	Q&A			2	2		1
			(21M)	Mid term	Q&A			5		5	5
				Final Exam Q&				5		5	15
Skills		S1	2.1 (34M)	H.W	Probler	Solving Problems & chart analysis		4		4	2
				Quiz	Solving Probler	Solving Problems & chart analysis		1		1	1
				Mid term	Probler	Solving Problems & chart analysis		2		2	7
				Final Exam	Probler	Solving Problems & chart analysis		6		6	24
		S2	2.2	Practical Sheet				6		6	3
					Q&A	Q&A		2		2	2
				Lab Report	Lab reprubric	Lab report rubric		10		10	10
				Final Lab Exam	1Task experin	nent	1			1	7
		S3	2.3 (4M)	Safety Exam	MCQ			8		8	4
Value		V1	3.1 (4)	Continuous assessment	Group evaluat rubric	evaluation				4	4
TOTAL 100											100