

Course Title: Nuclear Physics 1

Course Code: 461PHYs

Program: Physics

Department: Physics

College: Science

Institution: Jazan University

Version: Phys2215

Last Revision Date: 06/04/1444 H





# Table of Contents:

| Content                                                                                                         | Page |
|-----------------------------------------------------------------------------------------------------------------|------|
| A. General Information about the course                                                                         |      |
| <ol> <li>Teaching mode (mark all that apply)</li> <li>Contact Hours (based on the academic semester)</li> </ol> |      |
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods                                  |      |
| C. Course Content                                                                                               |      |
|                                                                                                                 |      |
| D. Student Assessment Activities                                                                                |      |
| E. Learning Resources and Facilities                                                                            |      |
| 1. References and Learning Resources                                                                            |      |
| 2. Required Facilities and Equipment                                                                            |      |
| F. Assessment of Course Quality                                                                                 |      |
| G. Specification Approval Data                                                                                  |      |



## A. General information about the course:

| Co         | urse Identificati                                                                                                                                                                                                                                                                                                                    | on                 |              |            |                |            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------|----------------|------------|
| 1.         | Credit hours:                                                                                                                                                                                                                                                                                                                        | 4                  |              |            |                |            |
| 2. (       | Course type                                                                                                                                                                                                                                                                                                                          |                    |              |            |                |            |
| a.         | University $\square$                                                                                                                                                                                                                                                                                                                 | College $\square$  | Departr      | ment⊠      | Track□         | Others□    |
| b.         | Required ⊠                                                                                                                                                                                                                                                                                                                           | Elective□          |              |            |                |            |
|            | Level/year at w<br>ered:                                                                                                                                                                                                                                                                                                             | hich this cours    | se is        | Level 10/Y | ear 4          |            |
| the<br>rea | <b>4. Course general Description</b> This course is to provide knowledge and understanding of the basics of nuclear physics like nuclear properties, nuclear force, nuclear structure, radioactivity, reactions, and power production to enable progression to a postgraduate course or to provide a platform for entering industry. |                    |              |            |                |            |
| 5.         | Pre-requiremer                                                                                                                                                                                                                                                                                                                       | its for this cou   | rse (if an   | y): 352 PH | YS             |            |
| 6.         | Co- requiremen                                                                                                                                                                                                                                                                                                                       | ts for this cour   | rse (if any  | y): NIL    |                |            |
|            | 7. Course Main (                                                                                                                                                                                                                                                                                                                     | Objective(s) Thi   | is course is | designed t | o provide stud | ents with: |
| - Th       | e fundamental of n                                                                                                                                                                                                                                                                                                                   | uclear physics and | d its scale. |            |                |            |

- The basic properties of the nuclear force.
- The structure of the nucleus under different nuclear models.
- The stability of nuclei and their decay.
- The fission process and the basics of the nuclear reactor.
- The fusion process and how intermediate and heavy elements are created in the stars.

#### 1. Teaching mode (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1. | Traditional classroom                                                     | 28            | 85%        |
| 2. | E-learning                                                                | 5             | 15%        |
| 3. | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4. | Distance learning                                                         |               |            |





### 2. Contact Hours (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures          | 30            |
| 2. | Laboratory/Studio |               |
| 3. | Field             |               |
| 4. | Tutorial          |               |
| 5. | Others (specify)  | 3             |
|    | Total             | 33            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                                                                                                                         | Code of CLOs aligned with program | Teaching<br>Strategies | Assessment<br>Methods                                                                                                  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1.0  | Knowledge and unde                                                                                                                                                                                                               | rstanding                         |                        |                                                                                                                        |
| 1.1  | Define: The atomic number Z – the mass number – Isotopes – isobars – isotones - atomic mass unit-The binding energy - the Q-value – half life time-decay constant – cross section – reaction rate – flux                         | PLO1.1                            |                        | Direct (formative and summative): In class interactive questioning, Quizzes, mid-term exams Indirect: student survey   |
| 1.2  | structure, nuclear volume and nuclear density, nuclear angular momentum, nuclear electric quadrupole moment — nuclear force — shell model — liquid drop model — fermi gas model- alpha decay — beta decay — gamma decay — carbon | PLO1.1                            |                        | Direct (formative and summative): In- class interactive questioning, Quizzes, mid- term exams Indirect: student survey |



|      | Course Leaveire                                                                                                                           |                                   | Tanahina                | A                                                                                                                                  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Code | Course Learning Outcomes                                                                                                                  | Code of CLOs aligned with program | Teaching<br>Strategies  | Assessment<br>Methods                                                                                                              |
|      | dating – compound<br>nucleus – nuclear<br>reactor                                                                                         | with program                      | Chategies               | Wethous                                                                                                                            |
| 1.3  | Discuss excited states<br>and stability, nuclear<br>reaction, nuclear<br>fission, nuclear<br>fusion.`                                     | PLO1.2                            | Lectures,<br>discussion | Direct (formative and summative): In class interactive questioning, Quizzes, midterm exams and final exam Indirect: student survey |
| 2.0  | Skills                                                                                                                                    |                                   |                         |                                                                                                                                    |
| 2.1  | Calculate binding energy and mass defect, atomic weight, nuclear force, nuclear density, angular momentum, Q-value, nuclear energy        | PLO2.2                            | Lectures,<br>discussion | Direct (formative and summative): In class interactive questioning, Quizzes, mid-                                                  |
| 2.2  | <b>Solve</b> the problems related with radioactive decay                                                                                  | PLO2.1                            | Lectures,<br>discussion | term exams<br>and final exams                                                                                                      |
| 2.3  | <b>Evaluate</b> liquid drop model, shell model, nuclear force and exchange force                                                          | PLO2.1                            | Lectures,<br>discussion | Indirect:<br>student survey                                                                                                        |
| 2.4  | Develop communication and critical thinking competencies during interactive discussion, group assignments, essays or web-based activities | PLO2.4                            | Lectures,<br>discussion | Direct (formative and summative): In class interactive questioning, Quizzes, midterm exams Indirect: student survey                |



| Code | Course Learning<br>Outcomes                                                                          | Code of CLOs aligned with program | Teaching<br>Strategies                                                                  | Assessment<br>Methods                                                                                             |
|------|------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 3.0  | Values, autonomy, ar                                                                                 | nd responsibility                 |                                                                                         |                                                                                                                   |
| 3.1  | Show effective collaboration and bear individual responsibility during group work and/or assignments | PLO3.1                            | Individual and group practices-<br>Brain storming – free related small web-based topics | Direct (formative and summative):     Case study- reports project work     presentation  Indirect: student survey |
| 3.2  |                                                                                                      |                                   |                                                                                         |                                                                                                                   |
|      |                                                                                                      |                                   |                                                                                         |                                                                                                                   |

## C. Course Content

| No | List of Topics                                                                                                                                                                                                                                | Contact Hours |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. | <b>Nuclear Properties:</b> Nuclear scale, units, size and density, quadrupole moment, Notation, isotopes, the nuclear chart (Nuclear landscape), how to write a nuclear reaction, Binding Energy BE, Q-value.                                 | 8             |
| 2. | <b>Nuclear forces:</b> exchange force, proton potential well and neutron potential wells, nuclear force.                                                                                                                                      | 6             |
| 3  | <b>Nuclear models:</b> Fermi gas model, Liquid drop model, Shell model, deformation.                                                                                                                                                          | 6             |
| 4  | <b>Radioactivity:</b> Types of radiation, - Alpha , - Beta+ , Beta-, - Gamma, Electron capture, decay chains, Uses of Radioactivity, Radioactivity decay law, Half-life, life time, nuclear dating, Carbon, Rock dating                       | 7             |
| 5  | <b>Nuclear reactions:</b> The conservation laws, types of reaction, Elastic, Inelastic, Transfer, Compound, Fission, why fission happens, spontaneous, induced (controlled), nuclear reactor., Fusion, p-p cycle, CNO cycle, nucleosynthesis. | 6             |
|    | Total                                                                                                                                                                                                                                         | 33            |





#### D. Students As

#### sessment Activities

| No | Assessment Activities *                                  | Assessment timing (in week no) | Percentage of Total<br>Assessment Score |
|----|----------------------------------------------------------|--------------------------------|-----------------------------------------|
| 1. | Mid-term Exam                                            | 6                              | 20(20%)                                 |
| 2. | Course work activities (H.W, Quizzes, other assignments) | distributed                    | 30(30%)                                 |
| 3. | Final Exam                                               | 12                             | 50                                      |
|    |                                                          |                                |                                         |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

## E. Learning Resources and Facilities

## 1. References and Learning Resources

| Essential References     | Introductory Nuclear Physics, Krane K.S. Wiley, New York, (1987).             |
|--------------------------|-------------------------------------------------------------------------------|
| Supportive References    | Nuclear and Particle Physics, Williams W.S.C Clarendon Press, Oxford, (1991). |
| Electronic Materials     | http://hyperphysics.phy-astr.gsu.edu                                          |
| Other Learning Materials |                                                                               |

## 2. Required Facilities and equipment

| Items                                                                           | Resources                                               |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------|--|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | 1 Lecture room(s) for groups of 50 students.            |  |
| Technology equipment (Projector, smart board, software)                         | 1 Computer laboratories each for groups of 25 students. |  |
| Other equipment (Depending on the nature of the specialty)                      |                                                         |  |





## F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor                               | Assessment Methods                       |
|---------------------------------------------|----------------------------------------|------------------------------------------|
| Effectiveness of teaching                   | Students, Peer, and program leader     | Indirect (CES)- Indirect peer evaluation |
| Effectiveness of students assessment        | Students, Program assessment committee | Direct/ Indirect                         |
| Quality of learning resources               | Students, Faculty members              | Indirect                                 |
| The extent to which CLOs have been achieved | Instructor                             | Direct/Indirect                          |
| Other                                       |                                        |                                          |

**Assessor** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

## G. Specification Approval Data

| COUNCIL<br>/COMMITTEE | DEPARTMENT BOARD |
|-----------------------|------------------|
| REFERENCE NO.         | PHYS2304         |
| DATE                  | 28/2/2023        |

