

Course Specifications

Course Title:	PHOTOCHEMISTRY
Course Code:	CHEM 448
Program:	Bachelor in Chemistry
Department:	Chemistry
College:	College of Science
Institution:	Jazan University (JU)

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content5	
D. Teaching and Assessment5	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1.	Credit hours: 2h Workload: 112 ECTS: 4.0				
2.	Course type				
a.	University College Department Others				
b.	Required 🗸 Elective				
3.	Level/year at which this course is offered: Level 8 / Year 4				
4.	4. Pre-requisites for this course (if any):				
	none				
5.	5. Co-requisites for this course (if any):				
	none				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	27	90%
2	Blended		
3	E-learning	3	10%
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	30

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number	Contact Hours (CH)	Credit unit	Year	Level	Pre- requisite	
		Lec.	Prac.	(CU)			requisite
Photochemistry	CHEM 448	2	0	2	4	8	none

This course aims to give students the basic principles of photochemistry and its chemical and biological applications

Course objectives: They are to identify the following.

- o Laws of photochemistry
- o Experimental methods in photochemistry
- Mechanisms of photochemical reactions
- The applications of photochemistry

Syllabus: A-Theoretical contents

Basic principles of photochemistry: Laws of photochemistry- Beer-lambert law - Fluorescence and phosphorescence- Photochemical reactions and quantum yield- Mechanisms of photochemical reactions- Experimental methods in photochemistry- The applications of photochemistry.

Syllabus: A-Practical contents

none

2. Course Main Objective

This course aims to give students the basic principles of photochemistry and its chemical and biological applications.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding Up on completing this course, student will be able to	
1.1	Demonstrate a broad knowledge in photochemistry topics as, electromagnetic radiation, photochemistry, absorption of light, photochemistry laws and application, quantum yield, electronic and molecular translons, etc (M)	K1
1.2	Describe correctly photochemistry phenomena, essential facts, principles and theories across the nature of light and the photon, Jablonski diagram of energy. Frank-Condon principle, the degeneration of the excited states of the quantum yieldsetc (M)	K2
2	Skills: Up on completing this course, student will be able to	
2.1	Demonstrate the knowledge and skills required to use charts and solve problems in the relations of light and electromagnetic radiation. ,i.e, Beerlambert law, quantum yield, stern -volmer equation etc (M)	S1

CLOs	Aligned PLOs
Use communication and on line technology to prepare a report/poster on selected photochemistry topic (M)	S4

C. Course Content

No	List of Topics	Contact Hours
1	Meaning of photochemistry / photochemical Reactions	4
2	Laws of photochemistry (Grotthurs-Draper law and Stark- Einstein law)	4
3	3 Criteria for photochemical reactions and Frank-Condon principle 4	
4	Jablonski Diagram	3 + 1 Exam
5	Importance of photochemical reactions	2
6	Examples of photochemical reactions (Photo addition - Photosynthesis - Photocleavage - photoreduction)	6
7	Techniques and applications of photochemistry	3+1 Exam
8	Presentation Session	2
	Total	30

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding Upon completion of the course, student will be able to:		
1.1	Demonstrate a broad knowledge in photochemistry topics as, electromagnetic radiation, photochemistry, absorption of light, photochemistry laws and application, quantum yield, electronic and molecular translons, etc (M)	lecturegroup work discussion	oral written examinations Quizzes HW
1.2	Describe correctly photochemistry phenomena, essential facts, principles and theories across the nature of light and the photon, Jablonski diagram of energy. Frank-Condon principle, the degeneration of the excited states of the quantum yieldsetc. (M)	• lecture group work discussion	oral written examinations Quizzes HW
2.0	Skills Upon completion of the course, stu	dent will be able to:	
2.1	Demonstrate the knowledge and skills required to use charts and solve problems in the relations of light and electromagnetic radiation. ,i.e, Beerlambert law, quantum yield, stern volmer equation etc (M)	 lecture group work discussion 	oral written examinations Quizzes HW
2.2	Use communication and on line technology to prepare a report/poster on selected photochemistry topic. (M)	research activities project-based learning Technology-enabled learning	assignments reports / project rubric

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework assignment (H.W. 1)	2	1
2	Lecture Quizzes (Q1)	5	5
3	Mid-term Exam (MID. 1)	8	15
6	Mid-term exam (MID. 2)	14	15
7	Presentation Session	14	4
8	Final EXAM	<i>17</i>	60
	Total Exam		100

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Instructor will be available for academic counseling on daily basis for at 4h/day during office hours.
- The office hours are listed in the instructor time table and delivered to students in the first lecturer in each semester.
- Instructor is available in a WhatsApp group with student.
- E-mail and Telephone number are delivered to student for any help during semesters.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources		
Required Textbooks	Principles and Applications of Photochemistry, R. P. Wayne, 2009, John Wiley & Sons, Ltd, ISBN 978-0-470-01493-6.	
Essential References Materials	 Photochemistry; C. E. Wayne & R. P. Wayne, 1996, OUP primer Photochemistry, Past, Present and Future; Angelo Albini, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-47976-6 	
Electronic Materials	Some course contents and materials are posted on Black board sites	
Other Learning Materials	 https://en.wikipedia.org/wiki/Photochemistry https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/photchem.htm http://photobiology.info/Photochem.html https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Basic_Principles_of_Organic_Chemistry_(Roberts_and_Caserio)/28%3A_Photochemistry https://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html 	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lecture room(s) for groups of 50 students
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart board, Data show, Black board, internet
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	none

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching and Assessment	Student	Likert-type Survey CES) Indirect
Extent of achievement of course learning outcomes	Instructor & Course coordinator	Class room evaluation (direct & indirect
Quality of learning resources	Program coordinator	<u>Indirect</u>
Exam Quality assessment	Assessment committee	<u>Indirect</u>

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council
Reference No.	42 / 35 /102 112
Date	17 /09 /1442 Corresponding to 28 / 04 /2021