

Course Specifications

Course Title:	Quantum Chemistry
Course Code:	CHEM 447
Program:	Bachelor in Chemistry
Department:	Chemistry
College:	College of Science
Institution:	Jazan University (JU)

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content5	
D. Teaching and Assessment5	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1.	Credit hours:	3	Workload:	182	ECTS: 6.5		
2.	Course type						
a.	University		College	Depart	tment 🗸	Others	
b.	Req	uired	✓ Electiv	/e			
3.	Level/year at w	hich	this course is o	ffered	: Level 7 / Yea	nr 4	
4.	Pre-requisites f	or th	is course (if any):			
	Math 202						
5.	5. Co-requisites for this course (if any):						
	None						

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45 CH	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	0
3	Tutorial	0
4	Others (specify)	0
	Total	45

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number	Contact (CH)		Credit unit	Year	Level	Pre- requisite
		Lec.	Prac.	(CU)			requisite
Quantum Chemistry	CHEM 447	3	-	3	Fourth Year	seventh Level	Math 202

Course objectives: They are to identify the following.

- learning the nature of the classical mechanics as well as its failure to describe microscopic particles
- learning the historical development of the quantum theory and its postulates
- application of quantum theory for H-atom as an example of simple chemical systems

Syllabus: A-Theoretical contents

classical mechanics – black body radiation and photoelectric effect – Hydrogen electronic spectra – Compton-effect – De Broglie relation and dual nature of microscopic particles- Schrödinger equation- solution of SE for a particle in one (two and three) dimensional box – solution of SE for rigid rotor – solution of SE for harmonic oscillator – solution of SE for H-atom.

2. Course Main Objective

This course aims to give students the basic principles quantum theory and its applications on some chemical systems

3. Course Learning Outcomes

	CLOs		
1	Knowledge and Understanding		
1.1	Demonstrate a broad knowledge and understanding the course topics as, classical mechanics – black body radiation and photoelectric effect – Hydrogen electronic spectra – Compton-effect – De Broglie relation and dual nature of microscopic particles- Schrödinger equation,	K. 1	
1.2	Describe the difference between classical and quantum mechanics, photoelectric effect, the contribution of scientists (Max Planck, Einstein, De Broglie, Heisenberg, Bohr, Balmer, and Schrödinger) to the quantum theory.	K. 2	
2	Skills:		
2.1	Demonstrate the knowledge and numeracy skills in quantum mechanical solution of the rigid rotor and harmonic oscillator and the validity of the Schrödinger equation to model the particle in a box problem	S. 1	
2.4	make effective use of communication, and online technology about quantum chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language.	S.4	

C. Course Content

No	List of Topics	Contact Hours
1	Historical Development of the quantum theory	12
2	Schrödinger equation	6
3	3 Postulates of the theory	
4	4 Evaluation of the quantum theory	
5 Applications of the theory		12
6	Presentation Session	3
	Total	45CH

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding			
1.1	Demonstrate a broad knowledge in the course topics as, classical mechanics – black body radiation and photoelectric effect – Hydrogen electronic spectra – Compton-effect – De Broglie relation and dual nature of microscopic particles-Schrödinger equation,	Lectures, group discussion and assignments	Examinations, tests, quizzes, and assignments	
1.2	Describe the difference between classical and quantum mechanics, photoelectric effect, the contribution of scientists (Max Planck, Einstein, De Broglie, Heisenberg, Bohr, Balmer, and Schrödinger) to the quantum theory.	Lectures, group discussion and assignments	Examinations, tests, quizzes, and assignments	
2.0	Skills			
2.1	Demonstrate the knowledge and numeracy skills in quantum mechanical solution of the rigid rotor and harmonic oscillator and the validity of the Schrödinger equation to model the particle in a box problem	Lectures, Group discussion, Examination and assignments	Examinations, tests, quizzes, and assignments	
2.4	make effective use of communication, and online technology about quantum chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language.	"research activities / project-based learning / Technology- enabled learning "	assignments and reports / projects / seminars / reports	

2. Assessment Tasks for Students

	- Indeposit I would lot be deteried				
#	Assessment task*	Week Due	Percentage of Total Assessment Score		
1	Homework assignment (H.W. 1)	5	5		
2	Mid-term exam (MID. 1)	8	15		
3	Homework assignment (H.W. 2)	11	5		
4	Mid-term exam (MID. 2)	14	15		
5	Presentation Session	14	0		

#	Assessment task*	Week Due	Percentage of Total Assessment Score
6	Final Exam	17	60
	Total		100

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Instructor will be available for academic counseling on daily basis for at 4h/day during office hours.
- The office hours are listed in the instructor time table and delivered to students in the first lecturer in each semester.
- Instructor is available in a WhatsApp group with student.
- E-mail and Telephone number are delivered to student for any help during semesters.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources	
Required Textbooks	 Molecular Quantum Mechanics, Atkins PW, Friedman RS 4th ed. Oxford: Oxford University Press; 2005. Quantum Chemistry: A Unified Approach, David B. Cook, 2nd Edition, imperial College Press; 2012.
Essential References Materials	Non
Electronic Materials	 Faculty - Department of Chemistry - Simon Fraser University (sfu.ca) Chemistry BSc (Hons) - Undergraduate Courses - University of Liverpool Periodic Table of Elements and Chemistry (chemicool.com) The Orbitron: a gallery of atomic orbitals and molecular orbitals (shef.ac.uk) Home Department of Chemistry (queensu.ca) 11.2: Quantum Numbers for Electrons - Chemistry LibreTexts Search - Chemistry LibreTexts
Other Learning Materials	 www.wikipedia.org/ imarefa.org) Courses Chemistry & Biochemistry Academics WPI

2. Facilities Required

Item	Resources
Accommodation	
(Classrooms, laboratories, demonstration	1 Lecture room(s) for groups of 50 students.
rooms/labs, etc.)	

Item	Resources
Technology Resources (AV, data show, Smart Board, software,	Smart board, Data show, Black board, internet
etc.)	
Other Resources	Chemical Models, scientific videos
(Specify, e.g. if specific laboratory	
equipment is required, list requirements or	
attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) <u>Indirect</u>
Extent of achievement of course learning outcomes	Instructor & Course coordinator	Class room evaluation (direct & indirect)
Quality of learning resources	Program coordinator	<u>Indirect</u>
Exam Quality assessment	Assessment committee	<u>Indirect</u>

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council
Reference No.	42 / 35 /102 112
Date	17 /09 /1442 Corresponding to 28 / 04 /2021