

Course Specifications

Course Title:	Solution chemistry
Course Code:	CHEM 445
Program:	Bachelor in Chemistry
Department:	Chemistry
College:	College of Science
Institution:	Jazan University (J U)

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
Course Description Table of Contents 2. Course Main Objective	4 4
3. Course Learning Outcomes	4
C. Course Content5	
D. Teaching and Assessment5	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support	
F. Learning Resources and Facilities	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation8	
H. Specification Approval Data8	

A. Course Identification

1.	Credit hours:	3hs	Workload:	167	EC	CTS: 6.0	
2. (Course type						
a.	University	Col	llege De	<u>pa</u> rtme	ent 🗸		Others
b.	Req	uired 🗸	Elective				
3.	Level/year at w	hich thi	s course is offe	red:	Level 7	Year 4	
4.	Pre-requisites f	or this c	ourse (if any):				
	none						
5. Co-requisites for this course (if any):							
	none						

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100 %
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	30
3	Tutorial	
4	Others (specify)	
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number	Contac (CH)	t Hours	unit	Year	Level	Pre- requisite
		Lec.	Prac.	(CU)			requisite
Electrochemistry	CHEM 445	2	1	3	4	7	none

Course Objectives

- ❖ Become acquainted with the theory and assumptions of Debye Hückel.
- **Become acquainted with the electrolytic conductivities and their applications**
- **Second acquainted with the theory of diffusion and transport numbers and implications**
- ❖ Identify Ion Association and the various theories that have addressed ion association.

Syllabus: A-Theoretical contents

- a) The scientific content of the theoretical part:
 - ❖ Debye Hückel theory, Concentration and activity, Electrolytic conductance, Ionic association, Properties of electrolytic conductance, diffusion theory, Transport numbers, Theories of ion association, Bjerrum theory, Brönsted theory, Fuoss theory, Different methods for measurements of ion association.
- b) The scientific content of the practical part:
 - Some selected experiments in the field of chemical kinetics, thermo chemistry and solution chemistry.

Syllabus: A-Practical contents

Experimental work illustrating selected parts of the theoretical content.

2. Course Main Objective

The course is designed to give the students basic information about the Solution chemistry, Debye Huckel theory, conductivity measurements and its application, Transport numbers and Ion association

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding: Upon completion of this course, student will be able to	
1.1	Demonstrate a broad understanding and critical view on principal of solution chemistry, Concepts and terminology of solution topics including; Types of electrolytic solution, conductivity and different theories that treat the conductivity of both strong and weak electrolytes and their applications (M)	K1
1.2	Describe correctly the different phenomena associated with electrolytes conductivity, factors affecting conductivity, application of conductance measurements, Transport number and ion association theories (M)	K2
2	Skills: Upon completion of this course, student will be able to understand	
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and to solving problems related to Debye	S1

	CLOs	Aligned PLOs
	Huckel Theory and conductivities calculations (P)	
2.2	Perform experiments in solution chemistry, record, analyze, interpret the scientific data, and write reports. (M)	<i>S</i> 2
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	S3
2.4	Write a report/ poster on electrochemistry using communication and online technology in a good verbal and clear scientific language. (M)	S4
3	Values:	
3.1	Possess a good interpersonal skill with high ability to work collaboratively as part of a team undertaking a range of different team roles (P)	VI
3.2	Act with integrity and good ethics in chemistry profession and their obligation to society (P)	V2

C. Course Content

No	List of Topics	Contact Hours		
1	Basic concepts of solution chemistry	1		
2	Postulates of Debye – Huckel theory	2		
3	Derivation of Debye Huckel theory	5		
4	Experimental support for the limiting law Solubility of sparingly soluble salt	5		
5	Treatment of conductance data of weak electrolyte	4		
6	Transport properties in electrolyte	4		
7	Ionic velocity and mobility	4		
8	Electrolytic conductance	2		
9	Application of conductance measurements	2		
10	Ionic association	1		
11	Selected topics related to course content	30		
	Total			

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding Upon completion of this course, student will be able to			
1.1	Demonstrate a broad understanding and critical view on principal of solution chemistry, Concepts and terminology of solution topics including; Types of electrolytic solution, conductivity and different theories that treat the conductivity of both strong and weak electrolytes and their applications (M)	lecture / discussion Seminars /presentation	oral and written examinations laboratory reports	

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods		
1.2	Describe correctly the different phenomena associated with electrolytes conductivity, factors affecting conductivity, application of conductance measurements, Transport number and ion association theories (M)	lecture / discussion / Seminars /Individual presentation	oral and written examinations laboratory reports		
2.0	Skills Upon completion of this course, stude	nt will be able to			
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and to solving problems related to Debye Huckel Theory and conductivities calculations (P)	lecture / discussion / Seminars /Individual presentation	oral and written examinations laboratory reports		
2.2	Perform experiments in solution chemistry, record, analyze, interpret the scientific data, and write reports. (M)	Lab work, group work	lab report/ Lab notebook.		
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	lab demonstrations / hands-on student learning activities	Observation of practical skills / Safety exam / Practical assignments and laboratory reports		
2.4	Write a report/ poster on electrochemistry using communication and online technology in a good verbal and clear scientific language. (M)	research activities / project- based learning / Technology-enabled learning	assignments and reports / project / seminar / report		
3.0	Values Upon completion of this course, student will be able to				
3.1	Possess a good interpersonal skill with high ability to work collaboratively as part of a team undertaking a range of different team roles	lab demonstrations /hands-on student learning activities / whole group and small group discussion / project-based learning / Internship in industry	group project reports / Practical assignments and laboratory reports		
3.2	Act with integrity and good ethics in chemistry profession and their obligation to society	research activities / project-based learning / Technology-enabled learning / group work discussion	Viva voce interviews assessment methods		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
---	------------------	----------	---

1	Homework assignment	2	1 %
2	Mid-term exam	6	15 %
3	Presentation (S4)	12	2
4	Group work report (V1)	10	2
5	Ethics rules examination in research (V2)	10	3
6	Quiz in Safety (S3)	9	2
7	LAB final Sheet	15	5 %
8	Lab reports	During semester	10 %
9	Final practical exam	15	10 %
10	Final Exam	16	50 %
		Total	100 %

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Instructor will be available for academic counseling on daily basis for at 4h/day during office hours.
- The office hours are listed in the instructor time table and delivered to students in the first lecturer in each semester.
- Instructor is available in a WhatsApp group with student.
- E-mail and Telephone number are delivered to student for any help during semesters.

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	An Introduction to Aqueous Electrolyte Solutions, by Margaret Robson Wright Formerly of St Andrews University, UK. Willy 2007.	
Essential References Materials	An Introduction to Aqueous Electrolyte Solutions, by Margaret Robson Wright Formerly of St Andrews University, UK. Willy 2007.	
Electronic Materials	Some course contents and materials are posted on Black board sites	
Other Learning Materials • https://chem.libretexts.org/Special:Search?qid=&fpicth=&query=electrolyte+solution&type=wiki. • https://chem.libretexts.org/Special:Search?qid=&fpicth=&query=electrolyte+solution&type=wiki. • https://chem.libretexts.org/Special:Search?qid=&fpicth=&query=electrolyte+solution&type=wiki. • http://www.wikipedia.org/ • http://www.wpi.edu/Academics/Depts/Chemistry/Courses/Green.		

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for group of 25student
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart board, Data show, Black board, Internet

Item	Resources
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Conductivity meter, pH meter, Power source, Balance, viscometers and density bottles.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods		
Effectiveness of Teaching and	Student	Likert-type Survey (CES)		
Assessment		<u>Indirect</u>		
Extent of achievement of	Instructor & Course coordinator	Class room evaluation		
course learning outcomes	Instructor & Course coordinator	(direct & indirect)		
Quality of learning resources	Program coordinator	<u>Indirect</u>		
Exam Quality assessment	Assessment committee	<u>Indirect</u>		
Effectiveness of Teaching and	Student	Likert-type Survey (CES)		
Assessment		<u>Indirect</u>		

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council
Reference No.	42 / 35 /102 112
Date	17 /09 /1442 Corresponding to 28 / 04 /2021

Attachment:

LAB EXPERMENTS

Week	EXPERMENTAL TITLE	Chemicals and Apparatus used	Remarks
1	Safety and regulations		
2	Revision on Determination	Acids ,bases ,conductivity cell and	None
	of cell constant	conductivity meter	
3	Revision on Determination	HCl, conductivity cell and	None
	of equivalent conductance	conductivity meter	
	of strong electrolyte		
4	Revision on Determination	Acetic acid, conductivity cell and	None
	of equivalent conductance	conductivity meter	
	of weak electrolyte		
5	Validation of Debye	HCl, NaOH, conductivity cell and	None
	Huckel theory using Ionic	conductivity meter	
	strength Calculations		
6	Experimental validation of	HCOOH, Acetic acid, NH ₄ OH,	None
	Kohlrausch's Law for weak	conductivity cell and conductivity	
	electrolytes	meter	
7	Experimental validation of	KCl, NaCl, NaOH, conductivity cell	None
	Kohlrausch's Law for	and conductivity meter	
	strong electrolytes		
8	Experimental Validation of	Acetic acid, conductivity cell and	None
	Ostwald's dilution law	conductivity meter	
9	Determination of ionization	HCl, NH₄Cl, HCOOH, CH₃COOH,	None
	constant of some selected	H ₂ SO ₄ , conductivity cell and	
	electrolytes	conductivity meter	

For unavailable equipments, we use some stimulated experiments through links as:

https://pages.uoregon.edu/tgreenbo/voltaicCellEMF.html

http://introchem.okstate.edu/DCICLA/voltaicCell20.html