

Course Specifications

Course Title:	Applied Organic Chemistry
Course Code:	CHEM 438
Program:	Bachelor in Chemistry
Department:	Chemistry
College:	College of Science
Institution:	Jazan University (JU)

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4 4
3. Course Learning Outcomes	4
C. Course Content5	
D. Teaching and Assessment5	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data8	

A. Course Identification

1.	Credit hours:	3hrs.	Workload:	176.15	ECTS: 6.3		
2.	Course type						
a.	University	College	Departme	ent \[Others		
b.	Requ	uired √	Elective				
3.	Level/year at w	hich this co	urse is offered:	Level 8,	, Year 4		
4.	Pre-requisites fo	or this cour	se (if any):				
			Non	e			
5.	5. Co-requisites for this course (if any):						
			Non	e			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	27	90 %
2	Blended		
3	E-learning	3	10%
4	Distance learning		
5	Other (Lab.)	30	100%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	30
3	Tutorial	
4	Others (specify)	
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number	Contact Hours (CH)		Credit unit Year	Year	Level	Pre- requisite
		Lec.	Prac.	(CU)			requisite
Applied Organic Chemistry	CHEM 438	2	2	3	4	8	

Course objectives:

at the end of this course the student should be able to:

- 1. Discuss the occurrence, extraction, properties of petroleum and application of fractional distillation, catalytic cracking and catalytic reforming during petroleum processing.
- 2. Describe using equations and flow diagrams, the manufacture of some petrochemicals, namely, ethylene, propylene, synthetic gas, benzene and inorganic petrochemicals.
- 3. identify polymers, their physical properties and different kinds of addition polymerization
- 4. Identify the characteristics of some common polymers and the industrial importance of polymers and their uses in various fields.
- 5. Identify the types of pigments and paints.
- 6. Discuss the classification, synthesis and uses of dyes.

Syllabus: A-Theoretical contents

The course is designed to give the students an idea about the polymer science – definition, classification of polymers, and polymerization by addition (chain reaction) – ionic polymerization (anionic and cationic) – free radical polymerization – polymerization by condensation– (linear polymerization– cross section polymerization). Introduce an idea about petroleum, Petrochemicals and industrial applications of organic chemistry, such as organic polymers and their uses in various fields and the manufacture of dyes and paints.

Syllabus: B-Practical contents

Basic knowledge concerning general Safety Rules, Lab Equipment, Purification of Organic Compounds, synthesis of some polymers, soap, cream, some dyes and examine their properties and their applications.

*See attachment

2. Course Main Objective

The main purpose of Applied organic chemistry course is giving the students basic information about the petroleum, Petrochemicals, Polymers, and Dyes with their classifications, applications and their uses.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	_

	CLOs	Aligned PLOs
	Upon completion of this course student will be able to	
1.1	Demonstrate a broad knowledge and understanding of industrial chemistry, petroleum, petrochemicals, polymer, and dyes. (M)	K1
1.2	Describe the uses and applications of petrochemicals, polymers, and dyes in our life. (M)	K2
2	Skills:	
	Upon completion of this course student will be able to	
2.1	Demonstrate ability in critical thinking, analyzing reaction mechanisms and classifying industrial compounds. (<i>M</i>)	S 1
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instructions, and classical techniques for carrying out experiments in polymers, dyes and petroleum and write a report representing the scientific data.	S2
2.3	Examine and follow proper procedures and regulations for safe handling, use, and disposal of chemicals. (M)	S3
2.4	Make effective use of communication, and online technology about chemistry topics to improve their basic knowledge in writing (report and research) with a good verbal and clear scientific language. (M)	S4
3	Values:	
	Upon completion of this course student will be able to	
3.1	Work as a group leader in cooperation with other colleagues (M)	V1

C. Course Content

No	List of Topics	Contact Hours			
1	Definitions, origin, and composition of crude oil				
2	Characterization and classification of crude oil	2			
3	Basic petroleum refining	4+Quiz			
4	Petrochemicals, classifications, uses and applications	4			
5	Definition, Properties, and classifications of Polymers	2			
6	Addition Polymerization	3			
7	Condensation Polymerization	3			
8	Application of industrial polymers	2			
9	Introduction and Classifications of Dyes	2+quiz			
10	Preparation, uses, and applications of dyes	4			
11	Paints, types, constitutions and applications	2			
12	selected experiments covered the course topics, Polymer synthesis, synthesis of some dyes, Soap manufactureetc.	30			
	Total	60			

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding Upon completion of this course student will be able to		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.1	Demonstrate a broad knowledge and understanding of industrial chemistry, petroleum, petrochemicals, polymer, and dyes. (M)	Lecture	MCQ and Embedded Q in Final exam
1.2	Describe the uses and applications of petrochemicals, polymers, and dyes in our life. (M)	Lecture	Embedded Q Final exam
2.0	Skills Upon completion of this course student will be able to)	
2.1	Demonstrate ability in critical thinking, analyzing reaction mechanisms and classifying industrial compounds. (M)	Lecture Open discussion in class	Embedded Q Final exam
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instructions, and classical techniques for carrying out experiments in polymers, dyes and petroleum and write a report representing the scientific data. (M)	Lab. Work	Lab. report
2.3	Examine and follow proper procedures and regulations for safe handling, use, and disposal of chemicals. (M)	Lab. Work	MCQ in safety
2.4	Make effective use of communication, and online technology about chemistry topics to improve their basic knowledge in writing (report and research) with a good verbal and clear scientific language. (M)	Group work Group discussion	Presentation/Re port rubric Assessment research
3.0	Values Upon completion of this course student will be able to)	
3.1	Work as a group leader in cooperation with other colleagues. (M)	Lab Group work	Presentation/Re port rubric /Assessment

2. Assessment Tasks for Students

#	Asse	ssment task*	Week Due	Percentage of Total Assessment Score
1	Homework assignme	ent	3	1 (1 %)
2	Lecture Quizzes		4	1 (1 %)
3	Mid-term exam		6	15 (15 %)
4	Homework assignme	ent	8	1 (1%)
5	Lecture Quizzes		10	1 (1%)
6	Homework assignme	ent	12	1 (1%)
7	Oral presentation		13	0
8	Group project		14	0
9	safety Quiz		10	0
	E:14:1	Sheet	15	5 (5%)
10	Final practical	Lab report	15	10 (10%)
	exam	Final Experiment	15	15 (15%)
11	Final Exam		16	50 (50%)
	Fina	al (total)		100

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- The instructor will be available for academic counseling on daily basis for 4h/day during office hours.
- The office hours are listed in the instructor time table and delivered to the students in the first lecture each semester.
- The instructor is available in the WhatsApp group and BB with the students.
- E-mail and Telephone number are delivered to the students for any help throughout the semester.

F. Learning Resources and Facilities

1.Learning Resources

Tibeat ming Resources	Learning Resources			
Required Textbooks	Industrial Organic Chemicals by Harold A. Wittcoff, Bryan G. Reuben and Jeffery S. Plotkin, 2012 ISBN: 0470537434 کتاب الصناعات البترولية والبتروكيماوية تأليف أ. د سالم بن سليم الذياب کيمياء و تقنية البوليمرات بواسطة أ. د. سالم سليم الذياب			
Essential References Materials				
Electronic Materials	 https://en.wikipedia.org/wiki/Chemical_industry http://www.rsc.org/learn-chemistry https://www.khanacademy.org/science/organic-chemistry https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/introl.htm https://chem.libretexts.org/ 			
Other Learning Materials	none			

2. Facilities Required

a racinites required				
Item	Resources			
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 1 Lecture room(s) for groups of 50 students. 1 Laboratory for a group of 25 student 			
Technology Resources (AV, data show, Smart Board, software, etc.)	 1 Computer laboratories for groups of 25 students Accelrys Material Studio Software. 			
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Glassware, chemicals, V/UV spectrophotometer, IR, Mass spectrometry and scientific videos			

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
The effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) <u>Indirect</u>

Evaluation Areas/Issues	Evaluators	Evaluation Methods
The extent of achievement of course learning outcomes	Instructor & Course coordinator	<u>Classroom evaluation</u> (direct & indirect)
Quality of learning resources	Program coordinator	<u>Indirect</u>
Exam Quality assessment	Assessment committee	<u>Indirect</u>

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council	
Reference No.	42 / 35 /102 112	
Date	17 /09 /1442 Corresponding to 28 / 04 /2021	

Laboratory Experiments

While specific laboratory experiments vary depending on the instructor and the semester, the following list is representative of the experiments that are used:

No	Title of Experiment	Tools, Chemicals, and equipment Needed in Experiments	No of Weeks	Contact Hours	Total Credit hours
1	Phenol formaldehyde resin	Glacial acetic acid, 40% formaldehyde solution, Phenol, conc. HCl. Glass rod, beakers, funnel, heater and filter paper, analytical balance, FTIR.	2	4	
2	Urea- Formaldehyde Resins	Urea, Formaldehyde, 35-40 % neutral solution, Oxalic acid, saturated solution. Concentrated ammonia solution Conc. HCl. Flame, Beakers, Test Tubes, Filter papers, Funnels, filtration system, analytical balance	1	2	
3	Determination of Saponification Value	Fat, Oil, Fatty acids, Standard N/2 HCl, Alc. KOH and phenolphthalein. Round bottom flask, burette, pipette, water condenser, water bath, analytical balance.	1	2	
4	DETERMINATION OF PURITY ANILINE SALTS	Aniline hydrochloride, Aniline sulfate, Standard 0.1N HCl, and phenolphthalein. burette, pipette, conical flasks and dropper, analytical balance	1	2	15 h
5	Determination of the Equivalent Weight of a Carboxylic Acid	Barium hydroxide solution 0.05N, phenolphthalein, carboxylic acids Burette, pipette, conical flasks and dropper, analytical balance	1	2	
6	Preparation of para-Red and Dyeing	4-Nitroaniline,2-naphthol, HCl, Sodium Nitrite, Sodium Hydroxide Beakers, Dropper, Magnetic stirrer, Thermometer, Ice-Bath, Filtration system, Ethanol, Fibers sample, analytical balance, FTIR	2	4	
7	Preparation of Soap	Oil, Fat, Sodium hydroxide, Sodium Chloride, Ethanol. Water-bath, thermometer, magnetic stirrer, filtration system, Roundbottomed flask, analytical balance	1	2	
9	Synthesis of Biodiesel and studying its properties	Oil, Fat, Potassium hydroxide, Sodium Chloride, Calcium chloride anhydrous, Acetic acid. Water-bath, Separating funnel, Conical flask, analytical balance	2	4	

10	Creams	oils, fats, Borax, Mineral oil, water and waxes. Beakers, Water-bath, magnetic stirrer, Thermometer, Filter papers, analytical balance	1	2	
11	Preparation of glyptal resin.	phthalic anhydride anhydrous sodium acetate ethylene glycol glycerol analytical balance 2 large test tubes (20- x 150-mm) 1-mL graduated pipette Bunsen burner ring stand 2 utility clamps (not rubber coated clamps) FTIR (optional) melting point apparatus (optional) small test tubes or spot plate (optional) assorted solvents such as water, alcohol, acetone,	1	2	
12	Presentation/Report rubric /Assessment	Theoretical	2	4	