

Course Specifications

Course Title:	Methods of instrumental analysis
Course Code:	CHEM 415
Program:	Bachelor in Chemistry
Department:	Chemistry
College:	College of Science
Institution:	Jazan University (JU)

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
Course Learning Outcomes	
C. Course Content5	
D. Teaching and Assessment6	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	6
2. Assessment Tasks for Students	7
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	8
G. Course Quality Evaluation8	
H. Specification Approval Data8	

A. Course Identification

1. Credit hou	rs: 4 h	ours	Workload:	227.5	ECTS: 8.1	
2. Course type	<u> </u>			_		
a. Unive	ersity Co	llege	Department 🗸		Others	
b.	Required 🗸	Elective	e			
3. Level/year	at which thi	s course is of	ffered: 8 th l	evel/4 th ye	ar	
4. Pre-requisi	tes for this o	course (if any)	:			
CHEM 314						
5. Co-requisites for this course (if any):						
	None					

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45CH	100%
1	Lab work	30CH	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	30
3	Tutorial	0
4	Others (specify)	0
	Total	75

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number	Contact (CH)	Hours	Credit unit	Year	Level	Pre- requisite
		Lec.	Prac.	(CU)			
Instrumental Analysis Methods	CHEM 415	3	2	4	4th	8th	CHEM314

Course objectives: They are to identify the following.

- Recognizing the Electromagnetic Radiation.
- Recognizing the Molecular Ultraviolet and Visible Absorption Spectroscopy.
- Recognizing the Infra-Red Spectroscopy, Spectrum of IR and IR Instrumentation.
- Recognizing the Atomic and emission Spectrometry as well as NMR, MS and X-Ray Spectroscopy

Syllabus: A-Theoretical contents

Spectroscopic methods: Introduction to electromagnetic radiation and molecular transitions, UV- and visible radiations and spectrophotometer, Laws of spectral absorption, Fluorimetry, Infra-red spectrometer, Atomic absorption and atomic emission spectrometers, NMR spectrometer, Mass spectrometry, X-ray absorption and fluorescence.

Syllabus: B-Practical contents

- Selected experiments related to instrumental analysis (See attachment)

*See attachment

2. Course Main Objective

This course aims to give students the basic principles of methods of instrumental analysis and their applications

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
	Upon completing this course, student will be able to	
1.1	Demonstrate a broad understanding and knowledge in different topics of the course as, electromagnetic radiation, molecular transitions after absorption of light, electronic transitions, dual nature of light radiations and use of analytical instruments for qualitative and quantitative chemical analysis and in addition the necessary background in Physics and Mathematics. (M)	K.1
1.2	Describe correctly Chemical phenomena using instrumental analysis principles and scientific reasoning (M)	K.2
2	Skills:	S

	CLOs	Aligned PLOs
	upon completion of this course, students are able to:	
2.1	Demonstrate an ability in critical thinking, analytical reasoning and solving problems concerning with instrumental analysis (in measurement and modeling of chemical systems) (M)	S.1
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments in the field of instrumental analysis and to write a report representing the scientific data. (M)	S.2
2.3	Examine his material and lab safety background to Follow proper procedures and regulations for safe handling and use of chemicals. (M)	S.3
2.4	Make effective use of communication, and online technology about course topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language. (M)	S.4
3	Values: Upon completion of this course, students are able to:	
3.1	Work as a group leader in cooperation with other colleagues (M)	V.1

C. Course Content

No	List of Topics	Contact Hours
1	Types of Instrumental Analysis Methods, Selecting an Analytical Method, Performance Characteristics of Instruments (Figures of Merit), Precision, Bias, Accuracy, Sensitivity Selectivity, Detection limit, Linearity, Linear Dynamic Range, Sampling and sample preparation, Applications of Instrumental Methods of analysis and Advantage of instrumental analysis	6
2	Electromagnetic field, Elementary theoretical basis of spectroscopy, Electronic Excitations, Electronic absorption	3
3	Spectroscopy, UV-Vis spectroscopy, Absorption laws, Lambert-Beer Law, Instrumentation Sample Preparation Sample Cleanup	12
4	Mass spectroscopy for qualitative and quantitative analysis and nuclear magnetic resonance for identification of the organic compounds (qualitative analysis)	6
5	Infrared spectroscopy, IR-Radiation, Modes of Vibration, Typical Infrared Absorption Regions, Frequencies of common structural units, Sample Application, Measurement process, Infrared Absorption, Calibration and Background Spectrum, Advantages of IR analysis, Detection and Quantitation, FT-IR Qualitative and Quantitative	3
6	Atomic spectroscopy, Atomic Absorption Spectroscopy (AAS), Atomic Emission Spectroscopy (AES), Steps of Atomic Absorption measurement, Vaporization and Atomization	6
7	Atomic Emission Spectroscopy, Recording and Analysis, Inductively coupled plasma (ICP) and advantages of ICP	3
8	X-Ray Analysis, What is X-Ray?, Generation of X-Rays, Sampling, Identifying and Quantization of Compounds	3
9	Fluorescence Spectroscopy, What is Fluorescence Spectroscopy? Introduction to Fluorescence Spectroscopy, Sampling	3
10	Selected experiments related to instrumental analysis	30
	Total	75

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	S Course Learning Outcomes	Teaching Strategies	Assessment Methods		
	Knowledge and Understanding	Touching Strategies	1100000		
1.0	Upon completing this course, student	will be able to			
1.1	Demonstrate a broad understanding and knowledge in different topics of the course as, electromagnetic radiation, molecular transitions after absorption of light, electronic transitions, dual nature of light radiations and use of analytical instruments for qualitative and quantitative chemical analysis and in addition the necessary background in Physics and Mathematics.	lecture / discussion /individual presentation	oral and written examinations (Scheduled /presentations		
1.2	Describe correctly Chemical phenomena using instrumental analysis principles and scientific reasoning	lecture / discussion /individual presentation	oral and written examinations (Scheduled /presentations		
2.0	Skills				
2.1	Demonstrate an ability in critical thinking, analytical reasoning and solving problems concerning with instrumental analysis (in measurement and modeling of chemical systems)		Problem-solving exercises / oral and written examinations (Scheduled /presentations		
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments in the field of instrumental analysis and to write a report representing the scientific data.	lab demonstrations / whole group and small group discussion /	Practical assignments and laboratory reports		
2.3	Examine his material and lab safety background to Follow proper procedures and regulations for safe handling and use of chemicals.	lab demonstrations	Observation of practical skills / Safety exam / Practical assignments and laboratory reports		
2.4	Make effective use of communication, and online technology about chemistry topics in order to improve their basic knowledge in writing (report and paper/ poster) with a good verbal and clear scientific language.	research activities	assignments and reports / seminar / report		
3.0	Values Upon completing this course, student v	will be able to			

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
3.1	Work as a group leader in cooperation with other colleagues	lab demonstrations / whole group and small group discussion	Practical assignments and laboratory reports /
3.2			

2. Assessment Tasks for Students

#		Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homew	vork assignment	2	1
2	Lecture	e Quizzes	4	3
3	Mid-te	rm exam	6	15
4	Homew	vork assignment	8	1
6	LAB	Final practical exam	15	25
7]	Practical sheet	15	5
8	Quiz in	safety	15	0
9	9 Presentation		13	0
10	Final Exam		16	50
11	Total			100

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

 $\label{lem:lembers} \mbox{ Members of staff be available for academic counseling on daily basis for at 4h/day during office hours$

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources	
Required Textbooks	- د. سلامة أحمد خميس محمد (المطيافيات بين النظرية و التطبيق) جامعة المجمعة الطبعة الأولى - 143)2010 الأولى - 143)2010 - Douglas A. Skoog, F James Holler and Stanley R. Crouch, Principles of instrumental analysis, (2016) 7th edition Thomson Brooks/Cole.
Essential References Materials	ـ د. إبراهيم الزامل(التحليل الآلي) ـ دار الخريجي- الطبعة الثالثة 1998
Electronic Materials	None
Other Learning Materials	Websites on the internet that are relevant to the topics of the course https://learnchemistry12.com/2018/02/modern-chemical-analysis-book.html <a chem.libretexts.org="" courses"="" href="https://chem.libretexts.org/Bookshelves/Analytical Chemistry/Supplemental Modules (Analytical Chemistry)/Instrumental Analysis https://chem.libretexts.org/Courses https://chem.libretexts.org/Courses

2. Facilities Required

Item	Resources			
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for 25 students			
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart board, Data show, Black board, internet			
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Glass wares, chemicals, Vis./UV-spectrophotometer			

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) <u>Indirect</u>
Extent of achievement of course learning outcomes	Instructor & Course coordinator	Class room evaluation (direct & indirect)
Quality of learning resources	Program coordinator	<u>Indirect</u>
Exam Quality assessment	Assessment committee	<u>Indirect</u>

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council
Reference No.	42 / 35 /102 112
Date	17 /09 /1442 Corresponding to 28 / 04 /2021

Attachment: Experimental part

Course Name: Methods of instrumental analysis

Course Code: Chem-415

Year and Level: 4th year / 8th Level

No	Title of Experiment	Tools, Chemicals, and equipment Needed in Experiments	No of Weeks	Contact Hours
1	Safety measures	-	1	2
2	Some calculations and introduction for spectroscopy	None	1	2
3	Determination of chromium chloride (colored compound) concentration using UV-Vis. Spectrophotometer	Conical flasks, chromium chloride, distilled water UV-Vis. Spectrophotometer	1	2
4	Determination of potassium nitrate (colorless compound) concentration using UV-Vis. Spectrophotometer	Conical flasks, potassium nitrate, distilled water UV-Vis. Spectrophotometer	1	2
5	Spectrophotometric determination of paracetamol in tablets	Conical flasks, paracetamol bulk powder, Panadol tablets, distilled water, methanol, UV-Vis. Spectrophotometer	1	2
6	Spectrophotometric determination of paracetamol in tablets	Conical flasks, paracetamol bulk powder, Panadol tablets, distilled water, methanol, UV-Vis. Spectrophotometer	1	2
7	Spectrophotometric determination of metronidazole in tablets	Conical flasks, metronidazole bulk powder, Anazole tablets, distilled water, methanol, UV- Vis. Spectrophotometer	1	2
9	Spectrophotometric determination of metronidazole in tablets	Conical flasks, metronidazole bulk powder, Anazole tablets, distilled water, methanol, UV- Vis. Spectrophotometer	1	2
10	Spectrofluorimetric determination of eosin yellow dye	Conical flasks, eosin yellow dye, distilled water Spectrofluorimeter	1	2
11	Spectrofluorimetric determination of eosin yellow dye	Conical flasks, eosin yellow dye, distilled water Spectrofluorimeter	1	2
12	IR- identification of benzoic acid	Benzoic acid, potassium bromide, acetone, IR- spectrometer	1	2
13	Determination of metals concentration using atomic absorption spectrometer	Nickel standard solutions, water samples containing nickel, nitric acid, distilled water, atomic absorption spectrometer	1	2

14	Determination of metals concentration using flame spectrometer	Nickel standard solutions, water samples containing nickel, nitric acid, distilled water, flame spectrometer	1	2
<i>15</i>	Final exam		1	2