

Course Specifications

Course Title:	Surface Chemistry and Catalysis	
Course Code: CHEM343-3		
Program:	Bachelor of Science in Chemistry	
Department:	Chemistry Department	
College:	Faculty of Science	
Institution:	JAZAN UNIVERSITY(JU)-	

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
 Course Description Table of Contents Course Main Objective 	4 4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation6	
H. Specification Approval Data7	

A. Course Identification

1.	Credit hours:	3hrs	Workload:	169	ECTS: 6.0
2.	Course type				
a.	University	College	Departr	nent 🗸	Others
b.	Requ	uired 🗸	Elective		
3.	Level/year at w	hich this cou	rse is offered:		5th level / Year 3
4.	Pre-requisites f	or this cours	se (if any):		
				none	
5.	Co-requisites fo	or this cours	e (if any):		
				none	

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	40	88.88%
2	Blended		
3	E-learning	5	11.12%
4	Distance learning		
5	Other	45	100%

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	45

B. Course Objectives and Learning Outcomes

1. Course Description Course Title Course **Contact Hours** Credit **Pre-** requisite Number unit (CH)Level Year (CU)Lec. Prac. CHEM343-3 3 Third Fifth 3 0 none Surface Chemistry **Course objectives:** They are to identify the following. - Identification of different catalytic process - Identification of catalyst and its role and effect on the chemical reaction - Identification of different catalytic theories. - Identification of gas adsorption on solid surfaces. **Syllabus: A-Theoretical contents** Adsorption and its type, factors affecting on it, Gibbs and Langmuir theory for adsorption and its application on the surface area and calculations concerning with them. Intermediate compounds and adsorption theories. Homogeneous and heterogeneous catalysis, (Enzymes), Colloids, its type ,methods of preparation and its properties, theories for catalysis applications on the chemical process and heterogeneous catalyst. Syllabus: B-Practical contents: none *See attachment 2. Course Main Objective The course is designed to give the students' knowledge about catalytic reactions, catalyst and its different applications, and colloids also studying surface chemistry and adsorption, especially on solid surfaces. **3.** Course Learning Outcomes Aligned

	CLOs	PLOs
1	Knowledge and Understanding Upon completing this course, student will be able to	
1.1	Demonstrate an understanding of the concepts of surface, catalyst, colloidal and its mechanisms and applications (P)	<u>K1</u>
1.2	Describe the essential facts, principles and theories across the modeling isotherm, surface tension laws, theories of catalysis, preparation of colloids. (P)	К2
2	Skills : Upon completing this course, student will be able to	
2.1	Demonstrate an ability in critical thinking, analytical reasoning and solving problems concerning with surface chemistry and adsorption (P)	<i>S1</i>
2.2	use of communication, modern library searching and information technology about chemistry topics (1)	<i>S4</i>

C. Course Content

No List of Topics	Contact Hours
-------------------	------------------

1	Meaning of surface / surface tension, parameters affect s on the surface	5	
2	Criteria for surface phenomenon and spreading of liquid, contact angle, adhesion and cohesion force	8+1 Quiz	
3	Adsorption of gas on solid, isotherm (Freundlich, Langmuir and BET), applications	6	
4	Gibbs equation, spreading of liquids	4+1 Exam	
5	5 Catalysis theories, applications		
	colloids and its applications	5+1 Exam	
	Presentation Session	3	
	General revision	2	
	Total 45		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Demonstrate an understanding of the concepts of surface, catalyst, colloidal and its mechanisms and applications (P)	Lecture Open discussion in class	Oral Fill-in the Blank Quizzes H.W.
1.2	Describe the essential facts, principles and theories across the modeling isotherm, surface tension laws, theories of catalysis, preparation of colloids. (P)	Lecture Group work discussion	Oral Written examination Labeling diagrams
2.0	Skills		
2.1	Demonstrate an ability in critical thinking, analytical reasoning and solving problems concerning with surface chemistry and adsorption (P)	Lectures web-based work Researches	oral/written exam Quizzes H.W.
2.2	use of communication, modern library searching and information technology about chemistry topics (I)	individual research projects, oral presentation	Reports, and seminar presentation

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework assignment (H.W. 1)	2	2
2	Lecture Quizzes (Q1)	5	2
3	Mid-term exams (Mid 1)	8	15
4	Homework assignment (H.W. 2)	10	2
5	Quizzes (Q2)	12	2
6	Mid-term exams (Mid 2)	14	15
7	Seminar/ Presentation Session	14	2
8	Final Exam	17	60
	Total		100

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

Students are grouped into groups of (5-10) students. Each group is assigned to a member of staff who will act as Academic Counselor. Members of staff be available for academic counseling on daily basis for at 4h/day during office hours.

F. Learning Resources and Facilities

1.Learning Resources

Tillearning Resources		
Required Textbooks	 Physical Chemistry, James Keeler 11th .Ed.(2018) J.de Paula & P. Atkins. R. I. Masel, "Principles of Adsorption and Reaction on Solid Surfaces", Wiley Series in Chemical Engineering, Wiley-Interscience, New York, USA, 1996, ISBN 978-0-471-30392-3 	
Essential References Materials	 مبادئ الكيمياء الفيزيائية المطورة الطبعة الثانية، دار المعارف القاهرة ا.د. محسن الصباح ا.د. السيد علي حسن 1999 Handbook of Surface and Colloid Chemistry, Third Edition by K. S. Birdi 20, 2008. Essentials of Physical Chemistry, Arun Bahl, 26th. Ed (2018) B.S. Bahal, G.D. Yuli. 	
Electronic Materials	Some course contents and materials are posted on Black board sites-	
Other Learning Materials	 <u>www.wikipedia.org/</u> <u>https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query=</u> <u>surface+chemistry&type=wiki</u> 	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Lecture room(s) for groups of 40 students.
Technology Resources (AV, data show, Smart Board, software, etc.)	Software programs (Virtual Chemistry Lab, Chem Lab)
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Chemical Models, scientific videos

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching and Assessment	Student	Likert - type Survey (CES) <u>Indirect</u>
Extent of achievement of course learning outcomes	Instructor & Course coordinator	<u>Class room evaluation</u> (direct & indirect)

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Quality of learning resources	Program coordinator	<u>Indirect</u>
Exam Quality assessment	Assessment committee	<u>Indirect</u>

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council	
Reference No.	42 / 35 /102 112	
Date	17 /09 /1442 Corresponding to 28 / 04 /2021	