

Course Specifications

Course Title:	Chemical Kinetics
Course Code:	CHEM 342
Program:	Bachelor in Chemistry
Department:	Chemistry
College:	College of Science
Institution:	Jazan University (JU)

Table of Contents

A. Course Identification	3	
6. Mode of Instruction (mark all that apply)	3	3
B. Course Objectives and Learning Outcomes	4	
1. Course Description	4	1
2. Course Main Objective	4	1
3. Course Learning Outcomes	4	1
C. Course Content	5	
D. Teaching and Assessment	5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods		5
2. Assessment Tasks for Students	(5
E. Student Academic Counseling and Support	6	
F. Learning Resources and Facilities	7	
1.Learning Resources		7
2. Facilities Required		7
G. Course Quality Evaluation	7	
H. Specification Approval Data 8	8	

A. Course Identification

1.	Credit hours:	3hrs	Workload:	191	ECTS: 6.8	
2.	Course type					
a.	University	College	Departm	ent 🗸	Others	
b.	Requ	uired 🗸	Elective			
3.	Level/year at w	hich this cou	irse is offered:	Level 5	Year3	
4.	Pre-requisites f	or this cours	se (if any):			
	none					
5.	5. Co-requisites for this course (if any):					
	none					

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	30	100%
1	LAB	30	100 /0
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	30
3	Tutorial	
4	Others (specify)	
5	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number	Contact HoursCredit(CH)unitY				Pre- requisite	
		Lec.	Prac.	(<i>CU</i>)			requisite
Chemical Kinetics	CHEM 342	2	2	3	3 rd	5^{th}	none

Course objectives: They are to identify the following:

1. The laws of reaction rate for different chemical reaction,

2.Temperature effect on the reaction rate and Arrhenius equation.

3.Collision theory of unimolecular and bimolecular reaction.

Syllabus: A-Theoretical contents

General concepts of kinetic chemistry; rate of reaction and factors affecting on it , the reaction rate constant, order and Molecularity, pseudo- order reactions, the rate equations and half life period- The derivation of the different rate laws and half life period, zero, 1st, 2nd, and 3rd order reactions- Determination of the order of the reaction; integration, graphical, half- life period, Van,tHoff,s differential and Ostwald isolation method-Rate laws for complex reactions; parallel, consecutive and chain reactions-Temperature effect on reaction rate- Derivation of Arrhenius equation- Determination of the activation energy of the chemical reactions – Effect of the catalyst on the activation energy-Reaction rate theories; Collision theory and Transition state theory.

Syllabus: B- Practical contents

Experimental work illustrating selected parts of the theoretical content.

*See attachment

2. Course Main Objective

This course aims to give the students, knowledge about the principles of kinetic chemistry.

3. Course Learning Outcomes

	CLOs	AlignedP LOs
1	Knowledge and Understanding	
	Upon completion of this course, student will be able to :	
1.1	Demonstrate a broad knowledge and understanding on principal of Kinetic Chemistry, Concepts and terminology of kinetic chemistry topics including; rate of reaction and factors affecting on it, the reaction rate constant and its units, order and Molecularity, pseudo- order reactions, the rate equations, half-life period, complex reactions, activation energy etc(P)	K1
1.2	Describe the different phenomena associated with kinetic chemistry; the different factors that can affect the rate of the chemical reactions, the difference between order and Molecularity, methods of determination of the order of the reaction, Effect of the catalyst on the activation energy, collision theory and transition state theory $etc(P)$	К2
2	Skills :	
	Upon completion of this course, student will be able to:	

2.1	Demonstrate the gained knowledge and skills to solve problems associated with different topics in the course as the reaction rate, the rate constant, half-life period, order of the reaction, the activation energy from applying the Arrhenius equation, Arrhenius factor, collision constant. (P)	<i>S1</i>
2.2	Perform experiments in Kinetic chemistry, record, analyze, interpret the scientific data, and write reports. (P)	<i>S2</i>
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	S3
2.4	Write a report on Kinetic Chemistry using communication and online technology in a good verbal and clear scientific language. (P)	<i>S4</i>
3	Values: Upon completion of this course, student will be able to	
3.1	Working as a group leader in cooperation with other colleagues. (P)	V1

C. Course Content

No	No List of Topics				
1	General concepts of kinetic chemistry.	6			
2	Simple reactions; zero, 1st, 2nd, and 3rd order reactions.	8			
3	Determination of the order of the reaction; integration, graphical, half-life period, Van't Hoff's differential and Ostwald isolation method.	4			
4	Complex reactions; parallel, consecutive and chain reactions.	4			
5	Arrhenius equation	4			
6	Collision theory	2			
7	Transition state theory.	2			
8	Selected experiments related to the course topics	30			
	Total	60			

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods		
1.0	Knowledge and Understanding Upon completion of this course, student will be able to				
1.1	Demonstrate a broad knowledge and understanding on principal of Kinetic Chemistry, Concepts and terminology of kinetic chemistry topics including; rate of reaction and factors affecting on it, the reaction rate constant and its units, order and Molecularity, pseudo- order reactions, the rate equations ,half-life period, complex reactions, activation energy etc(P)	Lectures, Class Discussion	Assignments, oral and written examinations.		
1.2	Describe the different phenomena associated with kinetic chemistry; the different factors that can affect the rate of the chemical reactions, the difference between order and Molecularity, methods of determination of the order of the reaction, Effect of the catalyst on the activation energy, collision theory and transition state theory $etc(P)$	Lectures, Class	Assignments, oral and written examinations		
2.0	Skills Upon completion of this course, student will be a	ble to			

2.1	Demonstrate the gained knowledge and skills to solve problems associated with different topics in the course as the reaction rate, the rate constant, half- life period, order of the reaction, The activation energy from applying the Arrhenius equation, Arrhenius factor, collision constant. (P)	Lectures, Class Discussion	Assignments, oral and written examinations
2.2	Perform experiments in Kinetic chemistry, record, analyze, interpret the scientific data, and write reports. (P)	Lab work, group work	lab report and Lab notebook.
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	lab demonstrations , hands-on student learning activities	Observation of practical skills and Safety exam .
2.4	Write a report on Kinetic Chemistry using communication and online technology in a good verbal and clear scientific language.(P)	research activities, project	Assignments, reports, project and seminar.
3.0	Values Upon completion of this course, student will be a	ble to	
3.1	Working as a group leader in cooperation with other colleagues. (P)	lab demonstrations , whole group and small group discussion	group project reports , Practical assignments and laboratory reports

2. Assessment Tasks for Students

#		Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homewo	ork assignment	2	2 %
2	Lecture	Quizzes	4	3%
3	Mid-tern	n exam	8	15 %
4	Homewo	ork assignment	10	0%
5	Group w	ork presentation	12	0%
6		Quiz in Safety	6	0%
7	LAB	LAB Sheet	15	10%
8		Final practical exam	15	15%
9]	Lab report	15	5%
10	Final Ex	xam	16	50%
			Total	100%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Instructor will be available for academic counseling on daily basis for at 4h/day during office hours.
- The office hours are listed in the instructor time table and delivered to students in the first lecturer in each semester.
- Instructor is available in a Watts App group with student.
- E-mail and Telephone number are delivered to student for any help during semesters.

F. Learning Resources and Facilities

1.Learning Resources

Required	Atkins' Physical Chemistry 11e: Volume 1: Thermodynamics and Kinetics	
Textbooks	Oct 30, 2018	
Essential References Materials	 Chemical Kinetics and Reaction Dynamics, 1st edition, Paul L. Houston, 2006. Chemical Kinetics and Reaction Dynamics, Santosh K. Upadhyay, Springer, 2006, ISBN 1-4020-4546-8 (HB) - ISBN 1-4020-4547-6 (e-book) Principles of Chemical Kinetics, 2nd edition, James E. House, 2007. 	
Electronic Materials	course contents and materials are posted on Black board sites.	
Other Learning	https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&query=kinetic+energy	
Materials	&type=wiki	

2. Facilities Required

Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for group of 25student	
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart board, Data show, Internet 1 Computer laboratory for groups of 25 students	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Water distillation device, Ice maker, water bath and Balance	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods	
Effectiveness of Teaching and	Student	Likert-type Survey (CES) Indirect	
Assessment		<u>Indirect</u>	
Extent of achievement of	Instructor & Course coordinator	Class room evaluation	
course learning outcomes		(direct & indirect)	
Quality of learning resources	Program coordinator	<u>Indirect</u>	
Exam Quality assessment	Assessment committee	<u>Indirect</u>	

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Qualityoflearning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods(Direct, Indirect)

Council / Committee	Chemistry Department Council
Reference No.	42 / 35 /102 112
Date	17 /09 /1442 Corresponding to 28 / 04 /2021

H. Specification Approval Data

No	Title of Experiment	Chemicals	No of Weeks	Contac t Hours	
1	Introduction and lab safety		1	2	
2	Heterocatalytic decomposition of hydrogen peroxide	Manganese dioxide, H ₂ O ₂ , KMNO ₄ , Sulphuric acid,	1	2	
3	Determination of rate constant of acid catalyzed hydrolysis of methyl acetate.	Methyl Acetate, Phenolphthalein, NaOH	1	2	
4	Saponification of ethyl acetate.	Ethyl Acetate, Phenolphthalein, NaOH	1	2	
5	Determination of rate constant of persulphate-iodide reaction	Potassium persulphate Potassium iodide, Sodium thiosulphate and Starch indicator.	1	2	
6	Determination rate constant of hydrogen peroxide decomposition catalyzed by potassium iodide	H2O2, KMnO4, sulphuric acid, Potassium iodide	1	2	
7	Determination of rate constant of iodination of acetone.	Acetone, Iodine solution, sulphuric acid, sodium thiosulphate, Starch indicator and Sodium acetate	1	2	
8	Effect of temperature on the reaction rate of ester	Methyl Acetate, Phenolphthalein, NaOH	1	2	
9	Determination Rate constant and Activation Energy of the reaction between hydrogen peroxide and hydrogen iodide	H ₂ SO ₄ . H ₂ O ₂ , Na ₂ S ₂ O ₃ . 5H ₂ O, starch indicator.	1	2	
10	Autocatalysis: Reaction of potassium permanganate with oxalic acid	manganese (II) sulphate, Oxalic acid, Sulphuric acid, potassium permanganate	1	2	
11	The influence of concentration on the reaction between potassium permanganate and oxalic acid.	Oxalic acid, Potassium permanganate	1	2	
12	Clock Reactions: Reaction order of the sulphite-iodate reaction	Conc.H ₂ SO ₄ - Sodium sulphite Na ₂ SO ₃ - Potassium iodate KIO ₃ – Starch indicator.	1	2	
13	Revision		2	4	
14	Final Exam		1	2	
	total				

Attachment 1:

巍

