

Course Specifications

Course Title:	Chemistry of Transition Elements
Course Code:	CHEM 322-4
Program:	Bachelor of Science in Chemistry
Department:	Chemistry
College:	College of Science
Institution:	Jazan University (JU)

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content5	
D. Teaching and Assessment5	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data7	

A. Course Identification

1. Credit h	ours: 4 l	nrs Workload	1: 230.5	ECTS: 8.2	
2. Course t	ype				
a. U	niversity	College	Department $\sqrt{}$		Others
b.	Required	√ Elective	;		
3. Level/ye	ear at which	this course is of	fered: L5,	Year 3	
4. Pre-requ	uisites for th	is course (if any):	}		
CHEM 221-4					
5. Co-requisites for this course (if any):					
			None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom& lab	45 +30	100
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	30
3	Tutorial	-
4	Others (specify)	-
	Total	75

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number		t Hours (H) Prac.	Credit unit (CU)	Year	Level	Pre- requisite
Chemistry of Transition Elements	CHEM 322-4	3	2	4	$3^{ m rd}$	5 th	CHEM 221-4

Course objectives: They are to identify the following.

- 1. Recognizing the transition elements.
- 2. Recognizing the properties of these elements.
- 3. Recognizing the bond theories of the complexes.
- 4. Using the molecular orbital theory.

Syllabus: A-Theoretical contents

Chemistry of transition elements – General properties of transition elements – Alloys – Molecular spectrum – Magnetic properties – Chemical equilibrium – Introduction to theories which describe the electronic bonding of the complexes.

Syllabus: B-Practical contents

Selected experiments related to preparing and studying of double salts and complexes. *See attachment

2. Course Main Objective

This course aims to study the transition elements (d-block elements) and recognize their chemical and physical properties, and their various uses.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Demonstrate abroad knowledge and understanding on the properties, extraction and uses of the transition elements (d-block elements). (P)	K.1
1.2	Describe the theories dealing with the formation of transition element complexes, magnetic properties, color, etc. (P)	K.2
2	Skills:	
2.1	Demonstrate the knowledge and skills required to solve problems in interpreting the properties and measurements of transition elements compounds. (P)	S.1
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments to prepare and analyze of transition elements' compounds and to write a report representing the scientific data. (P)	S.2
2.3	Examine his material and lab safety background to follow proper procedures and regulations for safe handling and use of chemicals. (I)	S.3
2.4	Make effective use of communication, and online technology about transition elements topics in order to improve their basic knowledge in writing with a good verbal and clear scientific language. (I)	S.4
3	Values:	
3.1	Work as a group member or a leader in cooperation with other colleagues. (1)	C.1

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to the Transition elements and their general properties.	12
2	Introduction to the different theories explaining the formation of complexes.	9
3	Properties and uses of the scandium group's elements.Properties, extraction and uses of the titanium group's elements.	3
4	4 Properties and uses of the chromium group's elements.	
5	Properties and uses of the manganese group's elements.	3
6	Properties and uses of the Iron group's elements.	3
7	Properties and uses of the cobalt group's elements.	3
8	Properties and uses of the nickel group's elements.	3
9	Properties and uses of the copper group's elements.	3
10	Properties and uses of the zinc group's elements.	3
	Selected Experiments related to course topics.	30
	Total	75

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Demonstrate abroad knowledge on the properties, extraction and uses of the transition elements (d-block elements). (P)	Lecture Open discussion in class	MCQ Short answer Q Fill-in the Blank
1.2	Describe the theories dealing with the formation of transition element complexes, magnetic properties, color, etc. (P)	Lecture Open discussion in class	MCQ Short answer Q Fill-in the Blank
2.0	Skills		
2.1	Demonstrate the knowledge and skills required to solve problems in interpreting the properties and measurements of transition elements compounds. (P)	Lecture Open discussion in class Web-based work	MCQ Short answer Q Fill-in the Blank
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments to prepare and analyze of transition elements' compounds and to write a report representing the scientific data. (P)	Lab work Group work	MCQ Short answer Q Practical Exam
2.3	Examine his material and lab safety background to follow proper procedures and regulations for safe handling and use of chemicals. (I)	Group work Lab work	MCQ in safety
2.4	make effective use of communication, and online technology about transition elements topics in order to improve their basic knowledge in writing with	ppt. Presentations Group discussion	Presentation

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	a good verbal and clear scientific language. (1)		
3.0	Values		
3.1	Work as a group member or leader in cooperation with other colleagues. (1)	Lab work Group discussion Research group	Practical assignments Laboratory reports Web based research

2. Assessment Tasks for Students

#	Assessment task*		Week Due	Percentage of Total Assessment Score
1	Lecture Quizzes		5, 8	3
2	Homework assignment		10	2
3	Mid-term exam		12	15
4	Quiz in safety	12	0	
5	ppt. Presentation	12	0	
6		Lab report/Notebook	13	5
7	Practical work	Sheet	14	10
8		Final Experiment	14	15
9	Final Exam	16	50	

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

The instructor will be available for academic counseling on daily basis for 2h/day during office hours.

F. Learning Resources and Facilities

1.Learning Resources

Deguined Toutheeles	1- Concise Inorganic Chemistry, J. D. Lee, 5TH ED, Wiley India Pvt. Limited, 2008.
Required Textbooks	2- العناصر الانتقالية الأساسية وكيمياء التناسق، د. حسين محمد عبدالفتاح، د. سمير أبو القاسم عبداللطيف، الطبعة الثانية، دار -النشر الدولي 2012
Essential References Materials 1- Inorganic Chemistry: Principles of Structure and Reactivity, Okhi. Medhi, James E. Huheey, Richard L. Keiter, Ellen A. Keiter, 4th Pearson Education Singapore Pte Ltd., 2006. 2- Advanced Inorganic Chemistry, Author: Cotton Wilkinson Mun Bochmann, 6th Edition, Wiley India Pvt Ltd., 2012.	
Electronic Materials	 https://www.chemguide.co.uk/inorganic/transition/features.html https://www.britannica.com/science/transition-metal/Discovery-of-the-transition-metals#ref81115
Other Learning Materials	 https://en.wikipedia.org/wiki/Transition_metal https://chemistry1science.blogspot.com/p/blog-page_31.html

2. Facilities Required

Item	em Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lecture room for groups of 50 students. 1 Laboratory for group of 25 students	
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show, smart Board, ChemDraw, power point and ActivInspire.	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	 Porcelain crucibles Goosh crucibles Water Jet Pump Magnetic susceptibility balance UV-Vis Spectrophotometer 	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods	
Effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) Indirect	
Extent of achievement of course learning outcomes	Instructor & Course coordinator	Class room evaluation (direct & indirect)	
Quality of learning resources	Program coordinator	Indirect	
Exam Quality assessment	Assessment committee	Indirect	

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council	
Reference No.	42 / 35 /102 112	
Date	17 /09 /1442 Corresponding to 28 / 04 /2021	

* Practical contents

	ractical contents	Tools, Chemicals, and equipment Needed	
No	Title of Experiment	in Experiments	Remarks
1	Gen		
2	Preparation of nickel ammonium sulphate	Glassware - Nickel(II)sulphate hexa- hydrate - Ammonium sulphate.	
3	Determination of nickel as the dimethylglyoximate	Glassware -1 % alcoholic solution of dimethylglyoxime - HCl (1:1) - Ammonia solution (1:1)	
4	Determination of sulphate as barium sulphate	Glassware - Barium chloride solution (5%) - Concentrated hydrochloric acid.	
5	Calculating of the empirical and the chemical formula of the double salt		
6	Preparation of copper ammonium sulphate	Glassware - Copper(II)sulphate penta- hydrate. Ammonium sulphate and Acetone.	
7	Determination of copper iodometrically	Glassware - (0.1 N) sodium thiosulphate. Potassium iodide (solid). Starch solution.	
8	Determination of sulphate as barium sulphate	Glassware -Barium chloride solution (5%) - Concentrated hydrochloric acid.	
9	Calculating of the empirical and the chemical formula of the double salt		
10- 13	Synthesis and characterization of potassium trisoxalatochromate(III) trihydrate	Glassware -Potassium dichromate- Potassium oxalate monohydrate- Oxalic acid dehydrate- Sodium hydroxide- Sulphuric acid- Potassium permanganate- Silver nitrate- Oxalic acid- Ammonoium persulphate- Potassium iodide-Starch solution-Sodium thiosulphate	
14-	Preparation of cis and trans- dichloro bis (ethylenediamine) cobalt (III) chloride	Glassware -Cobalt(II) chloride hexahydrate Ethylenediamine-Hydrochloric acid- Ethylalcohol-Diethylether	
15	FINAL EXAM		