

Course Title: Mathematical Physics

Course Code: 252 Phys

Program: Physics

Department: Physics

College: Science

Institution: Jazan University

Version: 2022

Last Revision Date: 30 January 2023





# Table of Contents:

| Content                                                                 | Page   |
|-------------------------------------------------------------------------|--------|
| A. General Information about the course                                 |        |
| Teaching mode     Contact Hours                                         |        |
| B. Course Learning Outcomes, Teaching Strategies and Assessment Methods | 5      |
| C. Course Content                                                       | 5<br>6 |
| D. Student Assessment Activities                                        | 6      |
| E. Learning Resources and Facilities                                    | 6      |
| 1. References and Learning Resources                                    | 6      |
| 2. Required Facilities and Equipment                                    | 7      |
| F. Assessment of Course Quality                                         | 7      |
| G. Specification Approval Data                                          | 7      |



#### A. General information about the course:

| Co                                                                                                                                                                                                                            | Course Identification       |                 |             |        |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|-------------|--------|---------|
| 1.                                                                                                                                                                                                                            | Credit hours:               | 3               |             |        |         |
| 2. (                                                                                                                                                                                                                          | Course type                 |                 |             |        |         |
| a.                                                                                                                                                                                                                            | University $\square$        | College □       | Department⊠ | Track□ | Others□ |
| b.                                                                                                                                                                                                                            | Required ⊠                  | Elective□       |             |        |         |
| 3.                                                                                                                                                                                                                            | Level/year at w             | hich this cours | se is       |        |         |
| off                                                                                                                                                                                                                           | ered: Level 6/Year          | 2               |             |        |         |
| <b>4. Course General Description</b> The objective of this course is to provide the students with the necessary mathematical tools for formulating physics problems. Acquiring these tools is a must for any physics student. |                             |                 |             |        |         |
| 5. Pre-requirements for this course (if any): 201 MATH                                                                                                                                                                        |                             |                 |             |        |         |
| 6. Co- requirements for this course (if any): NIL                                                                                                                                                                             |                             |                 |             |        |         |
| 7. 0                                                                                                                                                                                                                          | 7. Course Main Objective(s) |                 |             |        |         |

This course is designed to:

- Provide students with the fundamental mathematical tools to understand other physics
- Develop their skills in problem solving and formulating physical problems.

Apply the knowledge they acquire in this course to other physics related situations and identify their solutions.

1. Teaching mode (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1. | Traditional classroom                                                     | 30            | 91%        |
| 2. | E-learning                                                                |               |            |
| 3. | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4. | Distance learning                                                         |               |            |
| 5. | Blended                                                                   | 3             | 9%         |

#### 2. Contact Hours (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures          | 30            |
| 2. | Laboratory/Studio |               |
| 3. | Field             |               |
| 4. | Tutorial          | 3             |





| 5. | Others (specify) |    |
|----|------------------|----|
|    | Total            | 33 |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                                                    | Code of<br>CLOs<br>aligned<br>with<br>program | Teaching Strategies                                                                                                                | Assessment Methods                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1.0  | Knowledge and understanding                                                                                                                                 |                                               |                                                                                                                                    |                                                                                                                      |
| 1.1  | <b>Define</b> the complex numbers, Euler formula, matrix operation, determinant, Fourier series and integrals, Gamma, and beta functions.                   | PLO1.1                                        | Lectures, blackboard and visualization, group and interactive guided discussion, Interactive discussion                            | Direct (formative and summative): In class interactive questioning, quizzes, written exams  Indirect:student survey  |
| 1.2  | <b>Describe</b> the required tools and various relevant equations needed to solve a physical problem and the conditions for the validity of such equations. | PLO1.1                                        | Lectures, blackboard<br>and diagram<br>illustration, group<br>discussion,<br>Interactive<br>illustrations-<br>Student contribution | Direct (formative and summative): In class interactive questioning, quizzes, written exams  Indirect: student survey |
| 1.3  | <b>Discuss</b> various concepts in complex numbers, linear algebra, Fourier analysis and gamma and beta functions.                                          | PLO1.2                                        | Lectures, blackboard<br>and diagram<br>illustration, group<br>discussion,<br>Interactive<br>illustrations-<br>Student contribution | Direct (formative and summative): In class interactive questioning, quizzes, written exams  Indirect: student survey |
| 2.0  | Skills                                                                                                                                                      |                                               |                                                                                                                                    |                                                                                                                      |
| 2.1  | <b>Derive</b> the Euler formula, Cramer's rule, Fourier coefficients, and Gamma functions for simple cases.                                                 | PLO2.1                                        | Lectures, blackboard, and visualization, brainstorming, group and interactive discussion, Interactive                              | Direct (formative and summative): In class interactive questioning, quizzes, written exams  Indirect: student survey |



| Code | Course Learning Outcomes                                                                                                                           | Code of<br>CLOs<br>aligned<br>with<br>program | Teaching Strategies  illustration – Problem based                                                                                                    | Assessment Methods                                                                                                                    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 2.2  | <b>Solve</b> problems related to complex numbers, linear algebraic equations, Fourier Series, and some special functions.                          | PLO2.2                                        | learning Lectures, blackboard, and visualization, brainstorming, group and interactive discussion, Interactive illustration — Problem based learning | Direct (formative and summative): In class interactive questioning, quizzes, written exams  Indirect:student survey                   |
| 2.3  | <b>Develop</b> communication and critical thinking competencies during interactive discussions, group assignments, essays or web-based activities. | PLO2.3                                        | Lectures, blackboard, and visualization, brainstorming, group and interactive discussion, Interactive illustration – Problem based learning          | Direct (formative and summative): In class interactive questioning, quizzes, written exams  Indirect: student survey                  |
| 3.0  | Values, autonomy, and responsibility                                                                                                               |                                               |                                                                                                                                                      |                                                                                                                                       |
| 3.1  | <b>Develop</b> abilities of teamwork, bear individual responsibilities on assigned tasks                                                           | PLO3.1                                        | Interactive and<br>Group discussion,<br>expository and<br>discovery teaching                                                                         | Direct (formative and<br>summative): In class<br>interactive<br>questioning, quizzes,<br>written exams<br>Indirect: student<br>survey |





#### C. Course Content

| No | List of Topics                                                                                                                                                                                                                                                                  | Contact Hours |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. | <b>Complex numbers</b> : Complex plane, Complex algebra, Complex conjugate and absolute value of complex numbers, Complex equations, Graphs and physical applications of complex numbers, Elementary functions of complex numbers, and Exponential and trigonometric functions. | 9             |
| 2. | <b>Linear Algebra</b> : The fundamental operation of matrices, Relation between matrices and linear equations, Cramer's rule, Vectors, lines and planes, Linear combination, linear functions and linear operators, Eigenvalue and eigenvector of transformations.              | 9             |
| 3  | <b>Fourier series and Fourier integrals</b> : Periodic and non-periodic functions, Average value of a function, Fourier series, Complex form of Fourier series, Even and odd functions, Fourier transforms and Laplace transforms.                                              | 9             |
| 4  | <b>Special functions</b> : The factorial function, The Gamma function and recursion relation. The Beta function and relation between the Gamma and Beta functions.                                                                                                              | 6             |
|    | Total                                                                                                                                                                                                                                                                           | 33            |

## **D. Students Assessment Activities**

| No | Assessment Activities *                                                 | Assessment timing (in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------------------------------------------------------|--------------------------------|-----------------------------------------|
| 1. | Assignment 1                                                            | 3                              | <b>2.5</b> (2.5%)                       |
| 2. | Assignment 2                                                            | 4                              | <b>2.5</b> (2.5%)                       |
| 3. | Quiz I                                                                  | 5                              | <b>5</b> (5%)                           |
| 4  | Mid-term exam                                                           | 6                              | <b>20</b> (20%)                         |
| 5  | Others (Group work, Essay, Attendance, class discussion participations) |                                | 10 (10%)                                |
| 6  | Assignment 3                                                            | 8                              | <b>2.5 (</b> 2.5% <b>)</b>              |
| 7  | Quiz II                                                                 | 10                             | <b>5</b> (5%)                           |
| 8  | Assignment 4                                                            | 11                             | <b>2.5</b> (2.5%)                       |
| 9  | Final Exam                                                              | 13                             | <b>50</b> (50%)                         |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)





## E. Learning Resources and Facilities

#### 1. References and Learning Resources

| Essential References     | G Arfken, H Weber and F Harris Mathematical Methods for Physicists,<br>Academic Press (2013).<br>C Wong Introduction to Mathematical Physics, Oxford University Press<br>(1991) |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | Mary L. Boas Mathematical Methods in the Physical Sciences; 3rd edition, John Wiley& Sons, USA, (2006).                                                                         |
| Electronic Materials     | http://mathworld.wolfram.com/Sine.html                                                                                                                                          |
| Other Learning Materials |                                                                                                                                                                                 |

#### 2. Required Facilities and equipment

| Items                                                                           | Resources                      |
|---------------------------------------------------------------------------------|--------------------------------|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | COMPUTER ROOM                  |
| Technology equipment (Projector, smart board, software)                         | SOFTWARES, MATHEMATICA, MATLAB |
| Other equipment (Depending on the nature of the specialty)                      | None                           |

#### F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor                               | Assessment Methods                       |  |
|---------------------------------------------|----------------------------------------|------------------------------------------|--|
| Effectiveness of teaching                   | Students, Peer, and program leader     | Indirect (CES)- Indirect peer evaluation |  |
| Effectiveness of student's assessment       | Program assessment committee, students | Direct/ Indirect                         |  |
| Quality of learning resources               | Instructor                             | Direct/Indirect                          |  |
| The extent to which CLOs have been achieved | Students, Faculty members              | Indirect                                 |  |
| Other                                       |                                        |                                          |  |

**Assessor** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)





# G. Specification Approval Data

| COUNCIL<br>/COMMITTEE | DEPARTMENT BOARD |
|-----------------------|------------------|
| REFERENCE NO.         | PHYS2304         |
| DATE                  | 28/2/2023        |

