

## **Course Specifications**

| Course Title:       | General Genetics |
|---------------------|------------------|
| <b>Course Code:</b> | 222 BIO          |
| Program:            | Biology          |
| Department:         | Biology          |
| College:            | Science          |
| Institution:        | Jazan University |











## **Table of Contents**

| A. Course Identification3                                                              |   |
|----------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                           | 3 |
| B. Course Objectives and Learning Outcomes4                                            |   |
| 1. Course Description                                                                  | 4 |
| 2. Course Main Objective                                                               | 4 |
| 3. Course Learning Outcomes                                                            | 5 |
| C. Course Content5                                                                     |   |
| D. Teaching and Assessment6                                                            |   |
| Alignment of Course Learning Outcomes with Teaching Strategies and Assessment  Methods | 6 |
| 2. Assessment Tasks for Students                                                       | 6 |
| E. Student Academic Counseling and Support7                                            |   |
| F. Learning Resources and Facilities7                                                  |   |
| 1.Learning Resources                                                                   | 7 |
| 2. Facilities Required                                                                 | 7 |
| G. Course Quality Evaluation7                                                          |   |
| H. Specification Approval Data7                                                        |   |

## A. Course Identification

| 1. Credit hours: 2 hours                                 |             |  |
|----------------------------------------------------------|-------------|--|
| 2. Course type                                           | <u></u>     |  |
| a. University College Department √                       | Others      |  |
| <b>b.</b> Required $\sqrt{}$ Elective                    | <del></del> |  |
| 3. Level/year at which this course is offered: Four /Two |             |  |
|                                                          |             |  |
| 4. Pre-requisites for this course (if any): Cell Biology |             |  |
|                                                          |             |  |
| 5. Co-requisites for this course (if any): None          |             |  |
| •                                                        |             |  |

**6. Mode of Instruction** (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | 13                   | 86.7%      |
| 2  | Blended               | 2                    | 13.3%      |
| 3  | E-learning            |                      |            |
| 4  | Correspondence        |                      |            |
| 5  | Other                 |                      |            |

**7. Contact Hours** (based on academic semester)

| No | Activity          | <b>Contact Hours</b> |
|----|-------------------|----------------------|
| 1  | Lecture           | 15                   |
| 2  | Laboratory/Studio | 30                   |
| 3  | Tutorial          | -                    |
| 4  | Others (specify)  | -                    |
|    | Total             | 45                   |

#### **B.** Course Objectives and Learning Outcomes

| 1- Course Description |            |                       |     |      |        |                 |                 |           |
|-----------------------|------------|-----------------------|-----|------|--------|-----------------|-----------------|-----------|
| Course Title          | Title    = | Number of Study Hours |     |      | Veen   | Lavel           | Pre-            |           |
|                       |            | Theo.                 | Tut | Lab. | Credit | rear            | Level           | Requisite |
| General<br>Genetics   | 222BIO     | 1                     | -   | 1    | 2      | 2 <sup>nd</sup> | 4 <sup>th</sup> | 211BIO    |

#### (1) Brief Course Description:

- > The general genetics course deals with the general principles in generics.
- ➤ This course describes some of the special topics in genetics like nucleic acids, chromosomes, mutations, Mendelian genetics and non-Mendelian genetics, multiple alleles, and genetic engineering.

#### (2) **Course Objectives:**

#### This course is designed to provide students with the following concepts:

- To relate the structure and function of the DNA molecule.
- To describe normal chromosome number, structure, and behavior in biological cells.
- To understand the cause and effect of alterations in chromosome number and/or structure.
- To study how to identify and classify mutations in DNA.
- To understand the principles and mechanisms of the inheritance of traits from one generation to the next.
- To know the basics of genetic engineering.

#### (3) **Course Contents:**

#### A) Theoretical Part

- 1. Introduction: what is genetics? Development of Genetics
- 2. Chromosomes: Definition, Number, Size and Shape, Structure, Classification, General Properties.
- 3. Chromosomal Aberrations: i- Structural Chromosomal Aberrations (Chromosome Type Aberrations- Chromatid Type Aberrations Translocation- Deletion- Duplication- Inversion-
  - Reciprocal translocation) and ii- Numerical Chromosomal Aberrations (Aneuploidy Euploidy).
- 4. Nucleic acids: Deoxyribonucleic acid (DNA) Ribonucleic acid (RNA) Nucleotide structure DNA structure Types and Function of RNA- Comparison between DNA and RNA
- 5. Genetic Code and Protein Synthesis: Definition of genetic code Start code Stop Code-
  - Steps of protein synthesis.
- 6. Mutations: Definition of mutation Site of mutations Mutation types (Spontaneous mutations- Induced mutations Lethal mutations sublethal mutations point or genetic mutations chromosomal mutations- forward mutations backward mutations mutations
  - Characteristics chemical mutants physical mutants.
- 7. Mendelian Genetics: Mendel first law (law of segregation) Complete dominance Cross test Mendel second law (law of independent assortment).
- 8. Non-Mendelian Genetics: Incomplete dominance Codominance Epistasis Multiple alleles Polymorphism. Ex, inheritance of skin color in short horn sheep.
- 9. Inheritance Related to Sex Linked: Sex chromosomes Sex linked genes Sex inheritance in

- Humans (Hemophilia Color Blindness)- Sex limited inheritance Sex influenced inheritance
- 10. Inheritance of Blood Groups.: ABO system Rh factor Variation of Rh Factor Genetics of Rh factor
- 11. Genetic Engineering: Development of genetic engineering Tools used in genetic engineering (restriction enzymes – Plasmids – Gel Electrophoresis – DNA Sequencing - Taq polymerase - PCR) - Applications of Genetic Engineering in (Medical Field -Animal Production Field – Agricultural Production Field – Industrial Field – Environmental Field - Security Field) - Genomic Modified Organisms - Hazards of Genetic Engineering.

#### **B) Practical Part:**

This course is designed to reinforce the principles of general genetics. It includes the study of Cell Cycle - Cell Division (Mitosis and Meiosis ) - Mendelian Genetics, Mendel's First Experiments, and First Law, Mendel's Second Experiments, and Second Law - Non Mendelian Genetics, Incomplete dominance, Codominance, Blood groups - Preparation of mitotic (metaphase) chromosomes – karyotype, Arm ratio, centromeric index -Chromosomal abnormalities.

#### (4) Assessment Criteria:

- Periodic Exams and Quizzes: 30 %
- Assignments, and Classroom Activities: 20 %
- Final exam: 50%

#### (5) Course Teaching Strategies:

Lectures, Reports and Essay Assignments, Homework, and Web-based

#### (6) **Text Book:**

علم الخلية والوراثة (2013 م). تأليف د. سعد بن حسين القحطاني. النشر العلمي والمطابع- جامعة الملك سعود-الرياض المملكة العربية السعودية

Cell Biology and Genetics (2013) by Saad H. Al-Qahtani, King Saud University-Riyadh-KSA (in Arabic).

#### (7) Reference Books:

- -Genetics: Analysis and Principles (6th ed.) (2017) by R. J. Brooker. McGraw-Hill **Education, USA.**
- Genetics: A Conceptual Approach (4rd Ed) (2016) by B. A. Pierce. W. H. Freeman and Company. NY, USA.
- Campbell, N., Reece, J., Urry, L., Cain, M., Wasserman, S., Minorsky, P. and **Jackson, R. (2008).** Biology, 8<sup>th</sup> ed. Toronto: Benjamin Cummings. 1267 p عبدالهادى ، عائدة وصفى . (٢٠٠٥). مقدمة في علم الوراثة . ط٢ ، عمان (الأردن): دار الشروق للنشر والتوزيع.

#### 2. Course Main Objective

- Relate the structure and function of the DNA molecule.
- Describe normal chromosome number, structure, and behavior in biological cells, and understand the cause and effect of alterations in chromosome number and/or structure.
- Understand how to identify and classify mutations in DNA.
- Understand the principles and mechanisms of the inheritance of traits from one generation to the next.
- Knowledge of the basics of genetic engineering.

3. Course Learning Outcomes

|     | CLOs                                                                                           | Aligned<br>PLOs |
|-----|------------------------------------------------------------------------------------------------|-----------------|
|     | CLOs                                                                                           | Aligned<br>PLOs |
| 1   | Knowledge and understanding:                                                                   |                 |
| 1.1 | Define all principals, concepts, theories and aspects concerning with genetics                 | K1.1            |
| 1.2 | Compare between different mechanisms, functions, practices and aspects related to genetics     | K2.1            |
| 1.3 | Explain all processes, mechanisms, definitions, theories, mode of actions of genetics.         | K2.2            |
| 1.4 | Interpret by using your knowledge and understanding some of phenomena concerning with genetics | K3.2            |
| 2   | Skills:                                                                                        |                 |
| 2.1 | Apply the theoretical knowledge and understanding in laboratory experiments and techniques     | S1.2            |
| 2.2 | Propose solutions for different complex genetical problems                                     | S3.2            |
| 2.3 | Write a report about any practical or theoretical tasks related to genetics                    | S3.3            |
| 3   | Values:                                                                                        | _               |
| 3.1 | Apply practices of life-long learning in genetics for their professional career                | V1.1            |

## C. Course Content

| No   | List of Topics                                                                                           | Contact<br>Hours |
|------|----------------------------------------------------------------------------------------------------------|------------------|
| 1    | Genetics introduction                                                                                    | 1                |
| 2    | Chromosomes (Definition- Number – Size and shape – Structure)                                            | 1                |
| 3    | Chromosomal aberrations.                                                                                 | 1                |
| 4    | Nucleic acids (DNA structure – RNA)                                                                      | 1                |
| 5    | Mutations                                                                                                | 1                |
| 6    | Mendelian Genetics                                                                                       | 3                |
| 7    | Sex linked inheritance (Sex inheritance in humans—sex limited inheritance - sex influenced inheritance). | 2                |
| 8    | Multiple alleles (inheritance of blood groups – Rhesus factor)                                           | 2                |
| 9    | The relationship between relatives marriage and genetic diseases                                         | 1                |
| 10   | Genetic engineering.                                                                                     | 1                |
| 11   | General revision                                                                                         | 1                |
| Tota | al                                                                                                       | 15               |

## **D.** Teaching and Assessment

# 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes    | <b>Teaching Strategies</b> | <b>Assessment Methods</b> |
|------|-----------------------------|----------------------------|---------------------------|
| 1.0  | Knowledge and Understanding |                            |                           |

| Code | Course Learning Outcomes                                                                       | Teaching Strategies         | Assessment Methods                            |
|------|------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|
| 1.1  | Define all principals, concepts, theories and aspects concerning with genetics                 | Lectures – Group discussion | Final theory exam – Midterm theory exam       |
| 1.2  | Compare between different mechanisms, functions, practices and aspects related to genetics     | Lectures                    | Final theory exam –<br>Midterm theory<br>exam |
| 1.3  | Explain all processes, mechanisms, definitions, theories, mode of actions of genetics.         | Lectures                    | Final theory exam                             |
| 1.4  | Interpret by using your knowledge and understanding some of phenomena concerning with genetics | Lectures                    | Final theory exam                             |
| 2.0  | Skills                                                                                         | ·                           |                                               |
| 2.1  | Apply the theoretical knowledge and understanding in laboratory experiments and techniques     | Lectures – Lab work         | Practical final exam                          |
| 2.2  | Propose solutions for different complex genetical problems                                     | Lectures                    | Final theory exam-                            |
| 2.3  | Write a report about any practical or theoretical tasks related to genetics.                   | Lectures – Lab work         | Practical and theory quizzes                  |
| 3.0  | Values                                                                                         |                             |                                               |
| 3.1  | Apply practices of life-long learning in genetics for their professional career                | Lectures – Lab work         | Homework, presentation. (practical +theory)   |

## 2. Assessment Tasks for Students

| # | Assessment task*                     | Week Due | Percentage of Total<br>Assessment Score |
|---|--------------------------------------|----------|-----------------------------------------|
| 1 | Theoretical quiz 1                   | 3        | 5                                       |
| 2 | Written assignment or research assay | 4        | 5                                       |
| 3 | Midterm exam                         | 7        | 10                                      |
| 4 | Practical mid term exam              | 9        | 10                                      |
| 5 | Theoretical quiz 2                   | 11       | 5                                       |
| 6 | Final practical exam                 | 13       | 15                                      |
| 7 | Final exam                           | 15       | 50                                      |

<sup>\*</sup>Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

## E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

10 Office hours/faculty/week

## F. Learning Resources and Facilities

#### 1.Learning Resources

|                    | علم الخلية والوراثة (2013 م). تأليف د. سعد بن حسين القحطاني. النشر العلمي والمطابع- |
|--------------------|-------------------------------------------------------------------------------------|
| Required Textbooks | جامعة الملك سعود الرياض المملكة العربية السعودية                                    |
|                    | Cell Biology and Genetics (2013) by Saad H. Al-Qahtani, King Saud                   |
|                    | University-Riyadh- KSA                                                              |

| Essential References<br>Materials | Genetics: Analysis and Principles (6th ed.) (2017) by R. J. Brooker. McGraw-Hill Education, USA.  - Genetics: A Conceptual Approach (4rd Ed) (2016) by B. A. Pierce. W. H. Freeman and Company. NY, USA. |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electronic Materials              | https://www.marefa.org/الوراثة                                                                                                                                                                           |
| Other Learning<br>Materials       |                                                                                                                                                                                                          |

2. Facilities Required

| Item                 | Resources                                                                         |
|----------------------|-----------------------------------------------------------------------------------|
| Accommodation        | 1 Lecture room(s) for groups of 25students. 1 Laboratory for group of 15 students |
| Technology Resources | AV, data show, Smart Board                                                        |
| Other Resources      | Light microscopes, glassware, chemicals, consumables                              |

## **G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues                        | Evaluators        | Evaluation Methods           |
|---------------------------------------------------|-------------------|------------------------------|
| Effectiveness of teaching                         | Students, Faculty | Direct (Questionnaire)       |
| Effectiveness of assessment                       | Peer Reviewer     | Direct (Cross Check marking) |
| Extent of achievement of course learning outcomes | Program Leader    | Indirect (QA Committee)      |
| Quality of learning resources                     | QA. Committee     | Indirect (Benchmarking)      |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

**Evaluators** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

**Assessment Methods** (Direct, Indirect)

## **H. Specification Approval Data**

| Council / Committee | Consultant Committee/ Board of Biology Department |
|---------------------|---------------------------------------------------|
| Reference No.       |                                                   |
| Date                |                                                   |