

Course Specifications

Course Title:	Electronic Circuits 2	
Course Code:	214 CNET - 3	
Program:	Bachelor in Computer and Network Engineering	
Department:	Computer and Network Engineering	
College:	College of Computer Science and Information Technology	
Institution:	Jazan University	

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	6
2. Assessment Tasks for Students	7
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	8
G. Course Quality Evaluation8	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours: 3		
2. Course type		
a. University College Department 🗸 Others		
b. Required \checkmark Elective		
3. Level/year at which this course is offered: Level -6 / Year -2		
4. Pre-requisites for this course (if any): ELECTRONIC CIRCUITS 1 (112 CNET - 3)		
5. Co-requisites for this course (if any): None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	52	100
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	22
2	Laboratory/Studio	22
3	Tutorial	
4	Others (specify)	8
	Total	52

B. Course Objectives and Learning Outcomes

1. Course Description

This course introduces knowledge of how to design and build simple and smart electronic circuits by proper selection of its external components and ICs. It establishes the definition and the need for Amplification. The main contents are: Introduction to Amplifier, OP-AMP Input Modes and Parameters, Feed Back, basic OP-AMP circuits, Active Filters and Oscillators.

2. Course Main Objective

Upon completion of the course the students will be able to,

- 1. Explain the basic concepts of OP-AMP and its input modes & parameters.
- 2. Describe the external characteristics of OP-AMPs and analyze the operation of linear analog circuits using ideal op-amps
- 3. Design analog active filters given type and customer specifications
- 4. Analyze the use of OP-AMP in different Oscillator applications.
- 5. Apply the input and output wave forms of different OP-AMP circuits.
- 6. Execute experiments to measure and verify Amplifier Circuits.
- 7. An ability to design and conduct experiments, as well as to analyze and interpret data.

3. Course Learning Outcomes

	CLOs		
1	Knowledge and Understanding		
1.1	Explain the basic concepts of OP-AMP and its input modes & parameters.	K1	
1.2	.2 Describe the external characteristics of OP-AMPs and analyze the operation K2		
	of linear analog circuits using ideal op-amps.		
2	2 Skills :		
2.1	Design analog active filters with the required specifications.	S 1	
2.2	2.2 Analyze the use of OP-AMP in different Oscillator applications. S5		
2.3	2.3 Apply the input and output wave forms of different OP-AMP circuits. S2		
3	Values:		
3.1	Perform the experiments in team to execute the behavior of OP-AMP.	V 1	

C. Course Content

No	List of Topics	Contact Hours
1	Chapter – 1: Introduction to Amplifier > Definition > Gain Analysis > Voltage Gain > Current Gain > Power Gain > Numerical Examples Operational Amplifier: > Introduction > Basic OP-AMP representations > OP-AMP terminals > Internal Circuit of OP-AMP > The Ideal OP-AMP > The Ideal OP-AMP > The practical OP-AMP > Internal Block diagram > Basic OP-AMP representations	4T+4P
2	 Differential Amplifier input stage Chapter - 2: OP-AMP Input Modes and Parameters Differential Mode Single ended Mode Inverting Mode Non-Inverting Mode Double Ended Mode Differential Mode Differential Mode Common Mode Parameters of OPAMP Common-Mode Rejection Ratio (CMRR) Input offset voltage Input bias current Input impedance Slew Rate 	4T+4P

	Chapter – 3: Feed Back of OPAMP	
	Importance of feedback	
	Why negative feedback	
	Comparison of OP-AMP with & without feedback	
3	Inverting feedback & Numerical Examples	
	Non inverting feedback & Numerical Examples	4T+4P
3	Control gain with feedback.	41+4 r
	 Voltage Follower 	
	Effect of feedback on OPAMP impedances	
	Effect of Negative Feedback on Bandwidth	
	Closed-Loop Frequency Response	
	Gain-Bandwidth Product	
	Chapter – 4: Basic OPAMP Circuits	
	Summing Amplifiers	
4	Averaging Amplifiers	4T+4P
4	Integrators	41741
	Differentiators	
	Comparators	
	Chapter – 5: Active Filters	
	> Definition:	
	➢ Filter	
	 Active Filter 	
	 Basic Filter Responses 	
	 Filter response characteristics 	
	 Filter types 	
	 Active Low Pass Filters 	
	 The Sallen Key Low pass filter 	
	 Active High pass Filters 	
	 The Sallen Key Low pass filter 	
	 Active Band pass filters 	6T+6P
5	 Two pole band pass filter 	01101
	 Active Band Stop Filter 	
	 State Variable Band Stop Filter 	
	 Critical Frequency and Roll-Off Rate 	
	 Butterworth response 	
	Oscillators	
	> Definition	
	➢ Feedback Oscillators	
	Positive feedback	
	Conditions of Oscillations	
	Resonant Circuit	
	 Start-Up Conditions 	
	-	4TT - 4TD
	Final Exam Total	4T+4P 52
	IVIAI	52

Online Study Topics

- Comparators
 - Zero-Level Detection
 - Nonzero-Level Detection
 - Effects of Input Noise on Comparator Operation
 - Reducing Noise Effects with Hysteresis
 - Output Bounding
 - Oscillator Types
 - Oscillators with RC Feedback Circuits
 - Oscillators with LC Feedback Circuits
 - Crystal-Controlled Oscillators
 - Relaxation Oscillators
 - ➤ The 555 Timer

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Explain the basic concepts of OP-AMP and its input modes & parameters.	LecturesClassroom discussions	 Assignment 1 Mid-Term Exam Final Exam
1.2	Describe the external characteristics of OP-AMPs and analyze the operation of linear analog circuits using ideal op-amps.	 Lectures Classroom discussions 	 Assignment 1 Mid-Term Exam Final Exam
2.0	Skills		
2.1	Design analog active filters with the required specifications.	LecturesClassroom discussions	Assignment 2Final Exam
2.2	Analyze the use of OP-AMP in different Oscillator applications.	 Lectures Classroom discussions Lab 	 Final Exam Assignment 2 Lab Exam
2.3	Apply the input and output wave forms of different OP-AMP circuits.	 Lectures/Workshops Classroom discussions Lab Exercises 	 Final Exam Mini Project Mid-Term Exam Assignment 2 Lab Exam
3.0	Values		
3.1	Perform the experiments in team to execute the behavior of OP-AMP.	LecturesClassroom discussions	Mini ProjectLab Exam.

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Assignments / Mini Project	4 th Week	20%
2	Midterm Exam	6 th Week	20%
3	Lab Exam	11 th Week	20%
4	Final Theory Exam	12 th Week	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

Department have an arrangement for "Academic Counseling and Support" for each student. The academic advising committee nominates faculty members as "Student Academic Advisor" every semester. These "Academic Advisors" are responsible for student counseling and advising to a group of fix number of students (around 15 students) and maintaining students' files. At the beginning of semester and at time of course registration all students take counseling from Academic Advisor according to his previous grades and coverage of pre-requisite course and follow-up.

Also students with GPA below 2.00 are remained under deep observation and continuous meetings with respective course teachers about their performance are arranged to help and support the students. The course teacher is to be associated with this course provide a proper guidance for students who are looking to focus on their future career based on their intellectual interests, identify better opportunities related to this course and connections in their academic fields.

1.Learning Resources	
Required Textbooks	• Electronic Devices (Electron Flow Version), Thomas L Floyd, 10th edition, Pearson, 2018, ISBN-13: 9780137556755
Essential References Materials	• Electronic Principles, Albert Malvino and David Bates and Patrick Hoppe,9th Edition, McGraw Hill, 2021, ISBN10: 1259852695, ISBN10: 1259852695
Electronic Materials	 https://sdl.edu.sa/SDLPortal/en/Publishers.aspx. https://circuitdigest.com/electronic-circuits https://www.engineersgarage.com/electronic-circuits www.discovercircuits.com/list.htm
Other Learning Materials	

F. Learning Resources and Facilities

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom equipped with projector and whiteboard and sufficient seating arrangements. Lab with required devices and Kits for each student.
Technology Resources (AV, data show, Smart Board, software, etc.)	Circuit Maker 2.0
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Sufficiency of resources and facilities for students	Students	Course evaluation survey form
Effectiveness of teaching / learning process	Students	Course evaluation survey form
Effectiveness of teaching / learning process	CRC / QAU / HOD	Course reports / result analysis
Quality of learning Resources	Track leaders / CRC	Review meetings and star rating with suggestions for further modification and improvements
Verifying standards of student achievement / evaluation	HOD / committee nominated by HOD	Random re-checking of evaluated answer sheets
Achievement of course learning outcomes	Course Teachers / QAU	coordinator, Track leader and QAU level.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	