

Course Specifications

Course Title:	Electronic Circuits 1
Course Code:	112 CNET - 3
Program:	Bachelor in Computer and Network Engineering
Department:	Computer and Network Engineering
College:	College of Computer Science and Information Technology
Institution:	Jazan University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	6
2. Assessment Tasks for Students	7
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities8	
1.Learning Resources	8
2. Facilities Required	8
G. Course Quality Evaluation8	
H. Specification Approval Data9	

A. Course Identification

1.	Credit hours: 3
2.	Course type
a.	University College Department 🗸 Others
b.	Required Elective
3.	Level/year at which this course is offered: Level -5 / Year -2
4.	Pre-requisites for this course (if any): None
5.	Co-requisites for this course (if any): None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage	
1	Traditional classroom	52	100	
2	Blended			
3	E-learning			
4	Distance learning			
5	Other			

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	22
2	Laboratory/Studio	22
3	Tutorial	
4	Others (specify)	8
	Total	52

B. Course Objectives and Learning Outcomes

1. Course Description

This course introduces fundamentals of electrical and electronics. It introduces the semiconductor diode and its energy level, resistance level, equivalent circuits, Zener diode, light-emitting diode. It covers diode load line analysis and series/parallel configuration. It deals with various application of diode as Half-wave rectifier, Full-wave rectifier, clippers, clampers, Zener diode circuits, voltage multiplier circuits, AND/OR gate using diode. This course also introduces bipolar junction transistor (BJT) construction, operation, configurations and transistor amplification.

2. Course Main Objective

Upon successful completion of the course the students will be able to:

- 1. Describe fundamental electric quantities and components: voltage, current, resistors, inductors and capacitors.
- 2. Classify application circuits utilizing diodes, transistors.
- 3. Identify the differences of Diode, BJT and Amplifiers with VI Characteristics.
- 4. Examine the currents and voltages in resistive circuits using Ohm's law, KCL, KVL, reduction of series and parallel resistances, voltage and current divisions.
- 5. Analyze Diode and Transistor circuits using ideal and linear methods
- 6. Execute experiments to measure and verify Electronic circuits
- 7. An ability to design and conduct experiments, as well as to analyze and interpret data

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	1 Knowledge and Understanding:	
1.1	Describe the fundamentals of electrical components.	K1
1.2	Classify application circuits with all active and passive components.	K1
1.3	Identify the differences between Diode, BJT and Amplifiers with VI	K1
	Characteristics.	
2	2 Skills :	
2.1	Examine the currents and voltages in resistive circuits using Ohm's law, KCL, KVL, reduction of series and parallel resistances, voltage and current divisions.	S1
2.2	Implement Diode and Transistor circuits using ideal and linear methods.	S2
2.3	Execute the output waveforms to measure and verify the electrical circuits.	S 1
3	Values:	
3.1	Perform the experiments and projects with various data to measure the response of electrical circuits.	V1

C. Course Content

No	List of Topics	Contact Hours
1	 Chapter – 1: Electrical Circuit Analysis What is Electronic? What is Electrical? Definition Voltage Current Circuit Components Resistance Ohm's Law Color Coding of Resistor Series and Parallel Circuits Capacitor Inductor Kirchhoff's Laws Kirchhoff's Current Law Kirchhoff's Voltage Law Numerical Examples 	6T + 6P
2	 Chapter – 2: Semiconductor Physics Materials Conductor Insulator Semiconductor Energy Band Diagram of Materials The Silicon/Germanium Atomic Structure Covalent Bonding Intrinsic Semiconductor Material Extrinsic Semiconductor Material 	4T + 4P

	Definition	
	Doping	
	N-Type Semiconductors	
	P-Type Semiconductors	
	Electron versus Hole Flow	
	Majority and minority charge carrier	
	Chapter – 3: Diode	
	Introduction of PN Junction	
	Diode Construction	
	V-I Characteristics	
	Forward Bias Characteristics	4T + 4P
	Circuit configuration	
	Reverse Bias Characteristics	
	Circuit configuration	
3	Breakdown region	
5	Diode equivalent circuits	
	Practical Diode	
	Ideal Diode	
	Zener diode	
	Circuit diagram	
	VI characteristics	
	Light Emitting Diode (LED)	
	Circuit diagram	
	VI characteristics	
	Chapter – 4: Applications of Diode	
	• Rectifier	
	• Definition	
	• Half wave rectifier	
	 Circuit diagram 	
	 Output response 	4T + 4P
	 Peak Inverse Voltage 	
4	• Full wave rectifier	
	 Center-Tapped Transformer Rectifier 	
	Circuit diagram	
	Output response	
	Peak Inverse Voltage	
	• Bridge Rectifier	
	Circuit diagram	
	Output response	
	Peak Inverse Voltage	
	Chapter – 5: Transistors	
	Introduction to Bipolar junction transistor (BJT)	
	> Definition	
	> Types	
~	> Terminals	4T +4P
5	Working of BJT	
1	BJT Configuration	
1	Common Base (CB) Configuration	
1	 Circuit Diagram Instational Characteristics 	
1	Input/output Characteristics	
	Common Emitter (CE) Configuration	

	 Circuit Diagram Input/output Characteristics Common Collector (CC) Configuration Circuit Diagram Input/output Characteristics Regions of operation Active Region Cutoff Region Saturation Region 	
6	Final Exam	4T + 4P
	Total	52

Online Study Topics

- Clipper Circuits
 - Series Clipper Circuits
 - Parallel Clipper Circuits
 - Numerical Examples
- Clamper Circuits
 - Biased Clampers
 - Numerical Examples
- Voltage Multiplier Circuits.
 - Voltage Doubler
 - Voltage Tripler
 - Voltage Quadrupler
- Amplifiers

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
	Describe the fundamentals of electrical components.	LecturesClassroom	Mid-Term Exam Assignment 1
1.1	I I I I I I I I I I I I I I I I I I I	Discussions ➤ Lab Exercises	Final Exam
1.2	Classify application circuits with all active and passive components.	 Lectures Classroom Discussions Lab Exercises 	Mid-Term Exam Assignment 1 Lab Exam Final Exam
1.3	Identify the differences between Diode, BJT and Amplifiers with VI Characteristics.	 Lectures Classroom Discussions Lab Exercises 	Assignment 2 Lab Exam Final Exam
2.0	Skills		
2.1	Examine the currents and voltages in resistive circuits using Ohm's law, KCL, KVL, reduction of series and parallel	 Lectures Classroom Discussions 	Mid-Term Exam Assignment 1 Final Exam

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	resistances, voltage and current divisions.	Lab Exercises	
2.2	Implement Diode and Transistor circuits using ideal and linear methods.	 Lectures Classroom Discussions Lab Exercises 	Mini Project Lab Exam Final Exam Assignment 2
2.3	Execute the output waveforms to measure and verify the electrical circuits.	LecturesLab Exercises	Mini Project Lab Exam Final Exam Assignment 2
3.0	Values		
3.1	Perform the experiments and projects with various data to measure the response of electrical circuits.	 Lectures Classroom Discussions Lab Exercises 	Mini Project Lab Exam

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Assignments / Mini Project	4 th Week	20%
2	Midterm Exam	6 th Week	20%
3	Lab Exam	11 th Week	20%
4	Final Theory Exam	12 th Week	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Department have an arrangement for "Academic Counseling and Support" for each student. The academic advising committee nominates faculty members as "Student Academic Advisor" every semester. These "Academic Advisors" are responsible for student counseling and advising to a group of fix number of students (around 15 students) and maintaining students' files. At the beginning of semester and at time of course registration all students take counseling from Academic Advisor according to his previous grades and coverage of pre-requisite course and follow-up.

Also students with GPA below 2.00 are remained under deep observation and continuous meetings with respective course teachers about their performance are arranged to help and support the students. The course teacher is to be associated with this course provide a proper guidance for students who are looking to focus on their future career based on their intellectual interests, identify better opportunities related to this course and connections in their academic fields.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Electronic Devices (Conventional Current Version),	
	Thomas L. Floyd, 10th Edition, Pearson, 2018, ISBN-13: 978-	
	0134414447, ISBN-10: 9780134414447	
Essential References Materials	 Electronic Principles Albert Malvino and David Bates and Patrick Hoppe,9th Edition, McGraw Hill, 2021, ISBN10: 1259852695, ISBN10: 1259852695 Electronic Devices and Circuit Theory Robert L. Boylestad, Louis Nashelsky, 11th edition, Pearson, 2013, ISBN-13: 9780133109047 	
Electronic Materials	 Blackboard:- <u>https://lms.jazanu.edu.sa/webapps/portal/execute/tabs/tabAction?tab_tab_g</u> <u>roup_id=_1_1</u> http://www.electronics-tutorials.ws/ http://www.pennfosterglobal.com/ http://www.learnabout-electronics.org/ https://en.wikipedia.org/wiki/Encyclopedia 	
Other Learning Materials		

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom equipped with projector and whiteboard and sufficient seating arrangements. Lab with required devices and Kits for each student.
Technology Resources (AV, data show, Smart Board, software, etc.)	Circuit Maker 2.0
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Sufficiency of resources and facilities for students	Students	Course evaluation survey form
Effectiveness of teaching / learning process	Students	Course evaluation survey form
Effectiveness of teaching / learning process	CRC / QAU / HOD	Course reports / result analysis
Quality of learning Resources	Track leaders / CRC	Review meetings and star rating with suggestions for further modification and improvements
Verifying standards of student achievement / evaluation	HOD / committee nominated by HOD	Random re-checking of evaluated answer sheets

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Achievement of course learning outcomes	Course Teachers / QAU	CLO assessment template that is further verified at course coordinator, Track leader and QAU level.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	