

Course Specifications

Course Title:	Digital Logic
Course Code:	111 CNET – 3
Program:	Bachelor in Computer and Network Engineering Bachelor in Computer Science
Department:	Computer and Network Engineering
College:	Computer Science and Information Technology
Institution:	Jazan University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours: 3 Hours			
2. Course type			
a. University College Department ✓ Others			
b. Required ✓ Elective			
3. Level/year at which this course is offered: Level 8 / Year 03			
4. Pre-requisites for this course (if any): None			
5. Co-requisites for this course (if any): None			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	52	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Learning Hours			
Contac	Contact Hours				
1	Lecture	22			
2	Laboratory/Studio	22			
3	Tutorial				
4	Others (specify)	8			
	Total	52			

B. Course Objectives and Learning Outcomes

1. Course Description

This course presents the various binary systems suitable for representing information in digital systems and binary codes are illustrated. It introduces the basic postulates of Boolean algebra and shows the correlation between Boolean expressions and their corresponding logic diagrams. It covers the map method for simplifying Boolean expressions. The map method is also used to simplify digital circuits constructed with AND-OR, NAND and NOR gates. The procedures to develop and conduct appropriate experimentation for the analysis and design of Combinational and Sequential circuits with Verilog. It deals with various sequential circuit components such as registers, shift registers and counters with memory circuits.

2. Course Main Objectives:

- Explain the concept of digital system with various number systems.
- Describe the Boolean expressions with Boolean Algebra Theorems.
- Simplify the map methods to reduce the Boolean Functions.
- Design of Hardware Description Languages such as Verilog.
- Design and apply the applications of Combinational and Sequential circuits.
- Analyze and design of Memory elements.

<u>3. Course Learning Outcomes</u>

	CLOs		
1	Knowledge and Understanding		
1.1	Explain the digital system and their usage in computing engineering and latest trends.	K3	
1.2	Identify number systems and their conversion with coding schemes.	K2	
1.3	Describe Boolean expressions and their simplification using axiomatic properties and K-Map.	K2	
2	Skills :		
2.1	Design the Boolean function from basic logic gates, universal logic gates and truth tables using latest tools.	S3	
2.2	Apply the design of Combinational and Sequential circuit and their use in applications.	S2	
2.3	Analyze the design with Verilog and working of Registers and their and construction using sequential circuits.	S5	
3	Values:		
3.1	Conduct the projects and experiments with digital circuit kits of combinational and sequential logic and also design them with Verilog.	V1	

C. Course Content

No	List of Topics	Contact Hours
1	 Chapter 1: Digital Systems and Binary Numbers Digital Systems Binary Numbers Number-Base Conversions Octal and Hexadecimal Numbers Complements of Numbers Signed Binary Numbers Binary Codes – BCD, Gray Codes and ASCII Binary Storage and Registers Binary Logic 	
2	 Chapter 2: Boolean Algebra and Logic Gates Introduction Basic Definitions Axiomatic Definition of Boolean Algebra Basic Theorems and Properties of Boolean Algebra Boolean Functions Canonical and Standard Forms Other Logic Operations Digital Logic Gates 	4T+4P
3	 Chapter 3: Gate Level Minimization Introduction The Map Method Four-Variable K-Map Product-of-Sums Simplification NAND and NOR Implementation 	5T+4P

	Exclusive-OR Function – Parity generator	
	Hardware Description Language – Introduction	
	Chapter 4: Combinational Logic	
	• Introduction	
	Combinational Circuits	
4	Binary Adder-Subtractor	5T - CD
4	• Decoders	5T+6P
	• Encoders	
	Multiplexers	
	Verilog Model	
	Chapter 5: Synchronous Sequential Logic	
	• Introduction	
	Sequential Circuits	
	• Storage Elements: Latches	
	• Storage Elements: Flip-Flops	
5	• State Equation, State Table and State Diagram of Sequential	4T+4P
	Circuit.	
	• Registers	
	Shift Registers	
	Ripple Counters – BCD Ripple Counter	
	Synchronous Counters	
6	Final Exam	4T+4P
	Total	52

Onlir	Online Study Topics:	
•	Block diagram of Digital Computer	
•	Integrated Circuits and Digital Logic Families	
•	Don't care conditions – K Map	
•	Other Two Level Implementations	
	Universal Shift Register	

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Explain the digital system and their usage in computing science.	 Lectures Classroom Discussion 	Midterm Exam Final Exam Assignment-1
1.2	Identify number systems and their conversion with coding schemes.	 Lectures Classroom Discussion 	Midterm Exam Final Exam Assignment-1

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.3	Describe Boolean expressions and their simplification using axiomatic properties and K-Map.	 Lectures Classroom Discussion 	Midterm Exam Final Exam Assignment -1
2.0	Skills		
2.1	Design the Boolean function from basic logic gates, universal logic gates and truth tables.	 Lectures Lab Classroom Discussion 	Midterm Exam Final Exam Assignment-2 Lab Exam
2.2	Apply the design of Combinational and Sequential circuit and their use in applications.	 Lectures Lab Classroom Discussion 	Final Exam Assignment-2 Mini-Project Lab Exam
2.3	Analyze the design with Verilog and working of Registers and their and construction using sequential circuits.	 Lectures Classroom Discussion 	Final Exam Mini-Project Assignment-2
3.0	Values		
3.1	Conduct the projects and experiments with digital circuit kits of combinational and sequential logic and also design them with Verilog.	Lab Exercises	Lab Exam Mini-Project

2. Assessment Tasks for Students

:	#	Assessment task*	Week Due	Percentage of Total Assessment Score
	1	Assignments / Mini Project	4 th Week	20%
	2	Midterm Exam	6 th Week	20%
	3	Lab Exam	11 th Week	20%
	4	Final Theory Exam	12 th Week	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Department have an arrangement for "Academic Counseling and Support" for each student by the department. The Department Coordinator nominates faculty members for "**Student Academic Advisory Committee**" every semester. These "**Academic Advisors**" are responsible for student counseling and advising to a group of fix number of students (around 10-15 students) and maintaining students' files. At the beginning of semester and at time of course registration all students take counseling from Academic Advisor according to his previous grades and coverage of pre-requisite course and follow-up.

In addition, students with GPA below than 2.00 are remained under deep observation and continuous meetings with respective course teachers about their performance are arranged to help and support the students. The course teacher is to be associated with this course provide a proper guidance for

students who are looking to focus on their future career based on their intellectual interests, identify better opportunities related to this course and connections in their academic fields.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	M. Morris Mano and Michael D. Ciletti ," Digital Design with an introduction to HDL,VHDL and System Verilog", Prentice Hall, Pearson Education International, 6 th Edition, 2018. ISBN: 9780132774208	
Essential References Materials	Ronald J, Tocci, Neal S. Widmer, and Gregory L. Moss, "Digital Systems: Principles and Applications", Prentice Hall, 10th edition, 2016, ISBN 0-13-111120-5.	
Electronic Materials	 JazanUniversity: <u>http://www.jazanu.edu.sa/sites/en/Pages/Default.aspx</u> Black Board: <u>https://lms.jazanu.edu.sa/webapps/blackboard/execute/courseM</u> <u>ain?course_id=_26807_1&task=true&src</u> 	
Other Learning Materials		

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	One lecture room equipped with projector. (maximum 30 students at a time)
Technology Resources (AV, data show, Smart Board, software, etc.)	Verilog Simulator – verilator 4.030
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	One specialized hardware lab fully equipped with various Hardware Kits Such as Trainer Kit and Experiment Module Kits with Connecting Wires accessories.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Eval	uation Meth	ods
Sufficiency of resources and facilities for students	Students	Course form	evaluation	survey
Effectiveness of teaching / learning process	Students	Course form	evaluation	survey

Evaluation Areas/Issues	Evaluators	Evaluation Methods	
Effectiveness of teaching / learning process	HOD/QAU	Course reports / result analysis	
Quality of learning Resources	Track leaders	Review meetings and star rating with suggestions for further modification and improvements	
Verifying standards of student achievement / evaluation	HOD / committee nominated by HOD	Random re-checking of evaluated answer sheets	
Achievement of course learning outcomes	Course Teachers and Course coordinators / QAU	CLO assessment template that is further verified at course coordinator, Track leader and QAU level.	

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	