

المملكة العربية السعودية وزارة التعليم العالى حامعة حاز ان ة المدنية م الفندس

#### Preface

For the sake of the progressive development in the industry field in the Kingdom of Saudi Arabia, and the continuous development in the Civil engineering field, the **Bachelor of Science in Civil Engineering (BSCE) Program at the College of Engineering in Jazan University** is meticulously redesigned to provide the industry field with scientific and technological qualified cadres. During the redesign of the program and its curriculum, programs of similar ranked engineering institutes, either in the Kingdom of Saudi Arabia or over the world, are reviewed as a term of reference. The developed program involves modifications of some present courses, renewing others, and adding some new courses. This development produces sequential and consistent courses. These courses provide students with the fundamentals of mathematical and scientific subjects upon which engineering subjects depend. Also, students study a broad range of subjects that form the foundation of the civil engineering disciplines for either engineering science or engineering design.

The developed program is prepared to satisfy the university, college, and department requirements. The university requests different topics and highlight different needs, while the college requests involve basic science and other related engineering courses. The department requests include core courses in different civil engineering disciplines. For the sake of quality assessment and academic accreditation, the BSCE program is designed according to both *"The National Commission for Academic Accreditation and Assessment (NCAAA)"* and *"Accreditation Board for Engineering and Technology (ABET), Inc."*.



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة المدنبة قسم الهندسة المدنبة

# **Table of Contents**

Page No. **Preface** 1 Table of Contents 2 1. The Bachelor of Science in Civil Engineering Program 3 1.1 BSCE Program Vision 3 **1.2** BSCE Program Mission 3 4 **1.3** BSCE Program Objectives **1.4 BSCE Program Outcomes** 5 2. The Bachelor of Science in Civil Engineering Program Plan 6 2.1 BSCE Program Plan Requirements 6 2.2 BSCE Program Credit Units-Levels-Requirements 7 2.3 Courses Coding System 8 2.4 BSCE Program Courses 9 2.5 BSCE Program Curriculum 4 3. Bachelor of Science in Civil Engineering Program 24 **Specialist Course Syllabi** References 77



# 1. The Bachelor of Science in Civil Engineering Program

The Bachelor of Science in Civil Engineering (BSCE) Program at the College of Engineering in Jazan University started in the academic year of 1429/ 1430. The program focuses on student success and preparation for productive careers in industry, government, and business as well as graduate study.

#### **1.1 BSCE Program Vision**

The BSCE Program at the College of Engineering in Jazan University will educate engineers who are technically competent, professional in practice, and well-rounded with the skills and abilities to become innovative leaders and entrepreneurs. Graduates will be prepared to think creatively and communicate efficiently with respect to the economic, social, and ethical arenas they encounter throughout the course of their careers.

#### **1.2 BSCE Program Mission**

For the sake of the progressive development in the industrial field in the Kingdom of Saudi Arabia, and the continuous development in the Civil engineering field, the mission of the BSCE Program at the College of Engineering in Jazan University is to deliver an outstanding undergraduate civil engineering program for the students entire the Kingdom of Saudi Arabia. The program will prepare the students for entry into the engineering profession and a path toward professional engineers. It will also prepare students for graduate study in master's engineering programs. It will provide students with a broad technology, science, and social arts background coupled with a strong foundation in engineering theory, concepts, and practical applications.



#### **1.3 BSCE Program Objectives**

The main strategic objectives of the BSCE Program at the College of Engineering in Jazan University are:

- Providing the industry communities at Jazan region in particular and Kingdom of Saudi Arabia in general with qualified graduates in the field of the civil engineering.
- 2- Achieving high quality of worldwide standards in higher education.

Besides the strategic goals, the BSCE Program at the college of engineering in Jazan University satisfies the following important educational objectives for students:

- 1- Real-world experience in the analysis, design, and simulation of civil engineering systems and components, experimentation and testing, manufacturing, and technical services.
- 2- Solid communication skills for effectiveness in the workplace, including the ability to lead and participate in multidisciplinary, multicultural groups and teams.
- 3- Recognition of the ethical, societal, and economic implications of their work.
- 4- Awareness about the importance of lifelong learning for continued professional development and career advancement.
- 5- Provision beneficial services to the national industries and communities via educational, technical, entrepreneurial, and professional activities.
- 6- Preparation to pursue postgraduate studies and scientific research in the field of Civil engineering.

#### BSCE Program



#### **1.4 BSCEProgram Outcomes**

The BSCE Program educational objectives will be measured through the satisfaction of the following NCAAA and ABET student outcomes:

- **Outcome a:** Students shall have an ability to apply knowledge of mathematics, science, and fundamental engineering to civil engineering problems.
- **Outcome b:** Students shall have an ability to design and conduct experiments to study different Civil engineering systems and analyze and interpret data.
- **Outcome c:** Students shall have an ability to design civil components, processes and systems to meet desired realistic constrains such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- **Outcome d**: Students shall have an ability to work effectively in multidisciplinary teams, to solve engineering problems relevant to civil engineering.
- **Outcome e:** Students shall have an ability to identify, formulate, and solve practical civil engineering problems.
- **Outcome f:** Students shall have an understanding of the professional and ethical responsibilities of civil engineers.
- **Outcome g:** Students shall have an ability to communicate effectively in written, oral, and graphical forms, including the use of professional-quality visual aids.
- **Outcome h:** Students shall have an understanding of the impact of Civil engineering on the society, environment, and global economy.
- Outcome i: Students shall have recognition of the need to engage in lifelong learning.
- **Outcome j:** Students shall have an ability to continuously update their knowledge and skills related to contemporary issues.
- **Outcome k:** Students shall have an ability to use modern tools, techniques and skills necessary for practicing civil engineering, including computational tools, and instrumentation.



## 2. The Bachelor of Science in Civil Engineering Program Plan

The studying plan of the BSCE Program at the College of Engineering in Jazan University involves different requirements for the university, the college, and the department, as well as courses which satisfy these requirements. The study plan also includes the credit units for all courses and the distribution of these credit units on the ten studying levels (terms).

#### 2.1 BSCE Program Plan Requirements

The study plan for the civil engineering department is designed to satisfy three main needs. The first one is the university requirement which includes different topics highlighting different needs in the academic and real life. The second is the college requirement involves the basic science courses and other courses related to civil and other engineering fields. The last one is the department requirement which includes the core courses in the civil engineering field with its different disciplines. Table (1) displays a general prospective of the study plan illustrating all requests, courses, credit units, and contact hours for these requirements.



|         | Dequinque ent                    | Courses               | Credit | Units | Contact Hours |
|---------|----------------------------------|-----------------------|--------|-------|---------------|
|         | Requirement                      | Number                | Number | %     | Number        |
|         | University                       | 6                     | 12     | 7.5   | 12            |
|         | English Language                 | 3                     | 15     | 9.38  | 33            |
| ge      | Computer Science                 | 2                     | 6      | 3.75  | 9             |
| College | Mathematics and<br>Basic Science | 11                    | 35     | 21.88 | 41            |
|         | Engineering<br>Courses           | 5                     | 14     | 8.75  | 21            |
| Uni     | versity and College              | 27                    | 82     | 51.25 | 116           |
|         | Doportmont                       | 29 conv.              | 78     | 48.75 | 115           |
|         | Department                       | <mark>26</mark> со-ор | 78     | 48.75 | 106           |
| Total   |                                  | 56 conv.              | 16     | 0     | 231           |
|         | Totai                            | 53 co-op              | 160    |       | 222           |

## Table (1) Requirements, Credit units, and contact hours

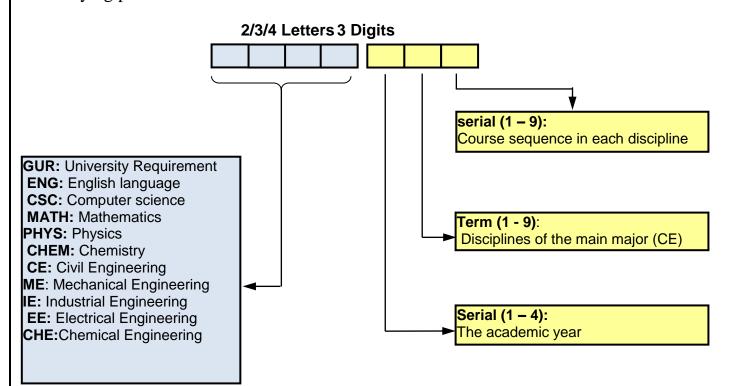
#### 2.2 BSCE Program Credit Units-Levels-Requirements

Table (2) illustrates the distribution of the credit units for the university, college and department requirements on the ten studying levels. This table includes the summer training with zero credit units while the co-op with credit units. This summer training is held at the end of the eighth level. Furthermore, the table shows the distribution of the credit units of the basic science courses starting at the first level and ending at the sixth level.



| Level Req.            | University | College | Department      | Level<br>Sum | Year<br>Sum |
|-----------------------|------------|---------|-----------------|--------------|-------------|
| First                 | 2          | 12      | 0               | 14           | 20          |
| Second                | 2          | 13      | 0               | 15           | 29          |
| Third                 | 2          | 16      | 0               | 18           | 35          |
| Fourth                | 2          | 12      | 3               | 17           | 35          |
| Fifth                 | 2          | б       | 11              | 19           | 37          |
| Sixth                 | 2          | 3       | 13              | 18           | 37          |
| Seventh               | 0          | 3       | 14              | 17           | 34          |
| Eighth (Conventional) | 0          | 5       | 12              | 17           | 54          |
| Eighth (Co-op)        | 0          | 5       | 13              | 18           | 35          |
| Summer Term           | 0          | 0       | Summer Training | 0            | 0           |
|                       | 0          | 0       | Co-op begins    | 0            | 0           |
| Ninth (Conventional)  | 0          | 0       | 13              | 13           | 13          |
| Ninth (Co-op)         | 0          | 0       | 9               | 9            | 9           |
| Tenth (Conventional)  | 0          | 0       | 12              | 12           | 25          |
| Tenth (Co-op)         | 0          | 0       | 15              | 15           | 24          |
| Total                 | 12         | 70      | 78              | ]            | 160         |

#### Table (2) Distribution of the credit units on the plan levels


#### 2.3 Course Coding System

The course code is composed of two to four letters and three digits. The letters indicate the major of the course. The first digit indicates the year, 1, 2, 3, or 4. The second digit between 1 and 9 displays the discipline in the major. Table (3) and Fig. 1 show the disciplines in civil engineering. The third digit is the course sequence in each discipline.



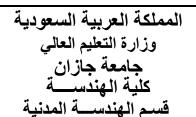
| Table (3) Disciplines of Civil Engineering |                  |  |  |  |  |  |  |
|--------------------------------------------|------------------|--|--|--|--|--|--|
| Disciplines                                | The second Digit |  |  |  |  |  |  |
| Structural                                 | 1,2              |  |  |  |  |  |  |
| Geotechnical                               | 3                |  |  |  |  |  |  |
| Transportation                             | 4                |  |  |  |  |  |  |
| Water Resources                            | 5                |  |  |  |  |  |  |
| Environmental                              | 6                |  |  |  |  |  |  |
| Construction                               | 7                |  |  |  |  |  |  |
| Surveying                                  | 8                |  |  |  |  |  |  |
| Training and Senior Projects               | 9                |  |  |  |  |  |  |

# The following Figure shows the courses coding system that obeyed throughout the studying plan.



This coding system is applied only to the civil engineering core courses, engineering course from other engineering department and taught in the civil engineering departmental courses, and basic science courses belonging to other colleges but the courses are described according the requirements of the Civil engineering department. Other courses are not following this coding system.

#### **2.4 BSCE Program Courses**


Tables (4), (5), (6) and (7) illustrate the courses, their credit units and weekly contact hours for the university, college, and department. The core courses are classified according to the discipline in the civil engineering. The distribution of the courses includes; 12 credit units for the university requirements, 70 credit units for the college requirements, and 78 credit units as requirements for the civil engineering. The total credit units for the BSCE are 160.

| Discipline   | No.  | Course<br>code | Course Name            | Credit<br>Units | Contact<br>Hours |
|--------------|------|----------------|------------------------|-----------------|------------------|
|              | 1    | SLM 101        | Islamic Culture (1)    | 2               | 2                |
|              | 2    | SLM 102        | Islamic Culture (2)    | 2               | 2                |
| University   | 3    | SLM 103        | Islamic Culture (3)    | 2               | 2                |
| Requirements | 4    | SLM 104        | Islamic Culture (4)    | 2               | 2                |
|              | 5    | ARB 101        | Arabic Language Skills | 2               | 2                |
|              | 6    | ARB 102        | Arabic Editing         | 2               | 2                |
| Total        | 6 Co | urses          |                        | 12 Cred         | lit              |

 Table (4) The University Requirements

#### KINGDOM OF SAUDI ARABIA Ministry of Higher Education Jazan University College of Engineering Civil Engineering Department





| Discipline             | No.         | Course<br>code | Course Name                        | Credit Units | Contact<br>Hours |
|------------------------|-------------|----------------|------------------------------------|--------------|------------------|
|                        | 1           | ENG105         | English Language (1)               | 6            | 15               |
| English                | 2           | ENG106         | English Language (2)               | 6            | 15               |
| Language               | 3           | ENG 357        | Technical Writing                  | 3            | 3                |
|                        | 3 Co        | ourses         |                                    | 15 Credit    |                  |
| Computer               | 1           | CSC101         | Introduction to Computer           | 3            | 4                |
| Science                | 2           | CSC 011        | Programming Language               | 3            | 4                |
|                        | 2 Co        | urses          |                                    | 6 Credit     |                  |
|                        | 1           | MATH 101       | Mathematics                        | 3            | 3                |
|                        | 2           | MATH 211       | Calculus (1)                       | 3            | 3                |
|                        | 3           | MATH 212       | Calculus (2)                       | 3            | 3                |
|                        | 4           | MATH 313       | Calculus (3)                       | 3            | 3                |
| Mathematics            | 5           | MATH 336       | Differential Equations             | 3            | 3                |
| &                      | 6           | MATH 410       | Numerical Methods                  | 3            | 3                |
| Science                | 7           | STAT 354       | Statistics and Probability         | 3            | 3                |
|                        | 8           | CHEM 101       | Chemistry (1)                      | 4            | 5                |
|                        | 9           | CHEM 102       | Chemistry (2)                      | 3            | 4                |
|                        | 10          | PHYS 101       | Physics (1)                        | 4            | 6                |
|                        | 11          | PHYS 102       | Physics (2)                        | 3            | 5                |
|                        | <b>11 C</b> | ourses         |                                    | 35 Credit    |                  |
|                        | 1           | ME131          | Engineering Drawing                | 3            | 6                |
|                        | 2           | ME 132         | Introduction to Engineering Design | 3            | 4                |
| <b>En sin serie s</b>  | 3           | IE 346         | Engineering Economy                | 2            | 2                |
| Engineering<br>Courses | 4           | EE 111         | Fundamental of Electrical          | 3            | 5                |
| Courses                |             |                | Engineering.                       |              |                  |
|                        | 5           | CE111          | Statics                            | 3            | 4                |
|                        | <b>5</b> Co | urses          | 14 Credit                          |              |                  |
| Total                  | 21 C        | ourses         |                                    | 70 Credit    |                  |

#### **Table (5) The College Requirements**



| Discipline     | No.  | Course<br>code   | Course Name                                            | Credit<br>Units | Contact<br>Hours |  |
|----------------|------|------------------|--------------------------------------------------------|-----------------|------------------|--|
| Mechanical     | 1    | ME 133           | Dynamics                                               | 3               | 4                |  |
| witchanical    | 2    | ME 211           | Thermodynamics (1)                                     | 3               | 3                |  |
|                | 2 Co | ourse            |                                                        | 6 Credit        | t                |  |
|                | 1    | CE 212           | Civil Engineering Drawing                              | 2               | 4                |  |
|                | 2    | CE 213           | Strength of Materials                                  | 3               | 5                |  |
|                | 3    | CE 214           | Materials of Construction                              | 3               | 5                |  |
| Structural     | 4    | CE 215           | Structural Analysis (1)                                | 3               | 4                |  |
| Suuctural      | 5    | CE 316           | Design of Steel Structures                             | 3               | 4                |  |
|                | 6    | CE 317           | Reinforced Concrete Design (1)                         | 3               | 4                |  |
|                | 7    | CE 318           | Reinforced Concrete Design (2)                         | 3               | 4                |  |
|                | 7 Co | ourses           |                                                        | 20 Cred         | it               |  |
|                | 1    | CE 231           | Geotechnical Engineering (1)                           | 2               | 3                |  |
| Geotechnical   | 2    | CE 332           | Geotechnical Engineering (2)                           | 3               | 5                |  |
|                | 3    | CE 433           | Foundation Engineering                                 | 3               | 4                |  |
|                | 3 Co | ourses           | 8 Credit                                               | t               |                  |  |
|                | 1    | CE 341           | Transportation Engineering (1)                         | 3               | 4                |  |
| Transportation | 2    | CE 342           | Transportation Engineering (2)                         | 3               | 4                |  |
| Transportation | 3    | CE 443           | Pavement Design                                        | 3               | 4                |  |
|                | 3 Co | ourses           |                                                        | 9 Credit        | t                |  |
| Water          | 1    | CE 251           | Fluid Mechanics                                        | 3               | 5                |  |
| Resources      | 2    | CE 352           | Hydrology and Water Resources                          | 3               | 4                |  |
|                | 2 Co | ourses           | · · · · · ·                                            | 6 Credit        | t                |  |
|                | 1    | CE 261           | Environmental Microbiology                             | 3               | 3                |  |
| Environmental  | 2    | CE 462           | Sanitary Engineering                                   | 3               | 4                |  |
|                | 2 Co | ourses           |                                                        | 6 Credit        |                  |  |
|                | 1    | CE 371           | Construction Engineering                               | 3               | 4                |  |
| Construction   | 2    | CE 472           | Construction Management                                | 3               | 4                |  |
|                |      | ourses           | Construction Management                                | 6 Credit        |                  |  |
|                | 1    | CE 281           | Surveying (1)                                          | 2               | 4                |  |
| Surveying      | 2    | CE 382           | Surveying (2)                                          | 2               | 4                |  |
|                |      | ourses           |                                                        | 4 Credit        |                  |  |
|                | 1    | CE 496           | Summer Training                                        | 0               | _                |  |
| Training &     | 2    | CE 490<br>CE 498 | Senior Design Project (1)                              | 1               | 4                |  |
| Project        | 3    | CE 498<br>CE 499 | Senior Design Project (1)<br>Senior Design Project (2) | 3               | 9                |  |
|                |      | urses            | Senior Design Project (2)                              | 4 Credit        |                  |  |
|                |      | CE 4xx           | Elective (1)                                           |                 |                  |  |
| Elective       | 1    |                  | Elective (1)                                           | 3               | 3                |  |
| Elective       | 2    | CE 4xx           | Elective (2)                                           | 3               | 3                |  |
|                | -    | CE 4xx           | Elective (3)                                           | -               | -                |  |
|                | -    | ourses           |                                                        | 9 Credi         |                  |  |
| Total          | 29 C | lourses          |                                                        | 78 Cred         | 1t               |  |

#### Table (6) Civil Engineering Requirements (Conventional Approach) Based on Disciplines

#### Table (7) Civil Engineering Requirements (Co-op Approach) Based on Disciplines

| Discipline     | No.                    | Course<br>code                                 | Course Name                    | Credit<br>Units | Contact<br>Hours |  |  |
|----------------|------------------------|------------------------------------------------|--------------------------------|-----------------|------------------|--|--|
| Mechanical     | 1                      | ME 133                                         | Dynamics                       | 3               | 4                |  |  |
| Mechanical     | 2                      | ME 211                                         | Thermodynamics (1)             | 3               | 3                |  |  |
|                | 2 Co                   | ourse                                          | 6 Credi                        | t               |                  |  |  |
|                | 1                      | CE 212                                         | Civil Engineering Drawing      | 2               | 4                |  |  |
|                | 2                      | CE 213                                         | Strength of Materials          | 3               | 5                |  |  |
|                | 3                      | CE 214                                         | Materials of Construction      | 3               | 5                |  |  |
| Structural     | 4                      | CE 215                                         | Structural Analysis (1)        | 3               | 4                |  |  |
| Structural     | 5                      | CE 316                                         | Design of Steel Structures     | 3               | 4                |  |  |
|                | 6                      | CE 317                                         | Reinforced Concrete Design (1) | 3               | 4                |  |  |
|                | 7                      | CE 318                                         | Reinforced Concrete Design (2) | 3               | 4                |  |  |
|                | 7 Co                   | urses                                          |                                | <b>20 Cred</b>  | lit              |  |  |
|                | 1                      | CE 231                                         | Geotechnical Engineering (1)   | 2               | 3                |  |  |
| Geotechnical   | 2                      | CE 332                                         | Geotechnical Engineering (2)   | 3               | 5                |  |  |
|                | 3                      | CE 433                                         | Foundation Engineering         | 3               | 4                |  |  |
|                | 3 Co                   | urses                                          | 8 Credi                        | t               |                  |  |  |
|                | 1                      | CE 341                                         | Transportation Engineering (1) | 3               | 4                |  |  |
| Transmontation | 2                      | CE 342                                         | Transportation Engineering (2) | 3               | 4                |  |  |
| Transportation | 3                      | CE 443                                         | Pavement Design                | 3               | 4                |  |  |
|                | 3 Co                   | urses                                          | 9 Credi                        | t               |                  |  |  |
| Water          | 1                      | CE 251                                         | Fluid Mechanics                | 3               | 5                |  |  |
| Resources      | 2                      | CE 352                                         | Hydrology and Water Resources  | 3               | 4                |  |  |
|                | 2 Co                   | urses                                          |                                | 6 Credit        |                  |  |  |
|                | 1                      | CE 261                                         | Environmental Microbiology     | 3               | 3                |  |  |
| Environmental  | 2                      | CE 462                                         | Sanitary Engineering           | 3               | 4                |  |  |
|                | 2 Co                   | ourses                                         |                                | 6 Credit        |                  |  |  |
| a i i          | 1                      | CE 371                                         | Construction Engineering       | 3               | 4                |  |  |
| Construction   | 2                      | CE 472                                         | Construction Management        | 3               | 4                |  |  |
|                | 2 Co                   | urses                                          |                                | 6 Credi         | t                |  |  |
| ~ .            | 1                      | CE 281                                         | Surveying (1)                  | 2               | 4                |  |  |
| Surveying      | 2                      | CE 382                                         | Surveying (2)                  | 2               | 4                |  |  |
|                | 2 CE 382 Surveying (2) |                                                | 4 Credi                        | t               |                  |  |  |
|                | 1                      | CE 497                                         | Со-ор                          | 9               | _                |  |  |
| Training &     | 2                      | CE 498                                         | Senior Design Project (1)      | 1               | 4                |  |  |
| Project        | 3                      | CE 499                                         | Senior Design Project (2)      | 3               | 9                |  |  |
|                | _                      | 3 CE 499 Semor Design Project (2)<br>3 Courses |                                |                 | 13 Credit        |  |  |
| Total          | -                      | ourses                                         |                                | 78 Cred         |                  |  |  |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة المدنية

#### 2.5 BSCE Program Curriculum

Following is the BSCE program curriculum of the Civil engineering department. The BSCE is accomplished in five academic years having two levels an academic year. The five academic years involve one preparatory year with no core courses and four years in the civil engineering field. The curriculum presents the credit units and weekly contact hours, either for lectures or for practical work for all courses. The curriculum also presents summer training which starts at the end of the eighth level, and senior project which begins at the ninth level and continues to the end of the tenth level. Also, the program presents the concept of conventional and co-op approaches and the distribution of courses after the seventh level for both approaches. The main difference between the two approaches is that in the conventional approach the students take 9 credits as elective courses while in the co-op approach they cover the 9 credits in 28 weeks of training.

| First I   | First Level |         |      |        |               |                          |                    |  |  |  |
|-----------|-------------|---------|------|--------|---------------|--------------------------|--------------------|--|--|--|
|           |             | ntact H |      | Credit | Prerequisites | Course Name              | <b>Course Code</b> |  |  |  |
| Sum       | Tut         | Lab     | Lec  | Units  | Trerequisites | Course Maine             | Course Coue        |  |  |  |
| 2         |             |         | 2    | 2      |               | Islamic Culture (1)      | SLM 101            |  |  |  |
| 15        |             | 3       | 12   | 6      |               | English Language (1)     | ENG 105            |  |  |  |
| 3         |             |         | 3    | 3      |               | Mathematics              | MATH 101           |  |  |  |
| 4         |             | 2       | 2    | 3      |               | Introduction to Computer | CSC 101            |  |  |  |
| 24        | -           | 5       | 19   | 14     |               | 4 Courses                | Sum                |  |  |  |
| Secon     | d Leve      | 1       |      | -      | -             |                          |                    |  |  |  |
| Wee       | kly Co      | ntact H | ours | Credit | Prerequisites | Course Name              | <b>Course Code</b> |  |  |  |
| Sum       | Tut         | Lab     | Lec  | Units  | Trerequisites | Course Maine             | Course Coue        |  |  |  |
| 2         |             |         | 2    | 2      |               | Islamic Culture (2)      | SLM 102            |  |  |  |
| 15        |             | 3       | 12   | 6      | ENG 105       | English Language (2)     | ENG 106            |  |  |  |
|           |             |         |      |        | ENG 105       |                          |                    |  |  |  |
| 3         |             |         | 3    | 3      | MATH 101      | Calculus (1)             | MATH 211           |  |  |  |
| 5         |             | 2       | 2    | 4      | ENG 105       | Chamister (1)            | CHEM 101           |  |  |  |
| 5         |             | 2       | 3    | 4      |               | Chemistry (1)            | CHEM 101           |  |  |  |
| 25        | -           | 5       | 20   | 15     |               | 4 Courses                | Sum                |  |  |  |
| <b>49</b> | -           | 10      | 39   | 29     |               | 8 Courses                | Total              |  |  |  |

# PREPARATORY YEAR



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة المدنية قسم الهندسة المدنية

# FIRST YEAR

| Third | Third Level |         |      |        |                      |                                          |             |  |  |
|-------|-------------|---------|------|--------|----------------------|------------------------------------------|-------------|--|--|
| Week  | ly Con      | tact Ho | ours | Credit | Prerequisites        | Course Name                              | Course Code |  |  |
| Sum   | Tut         | Lab     | Lec  | Units  | Prerequisites        | Course Name                              | Course Coue |  |  |
| 2     |             |         | 2    | 2      |                      | Arabic Language Skills                   | ARB 101     |  |  |
| 6     | 1           | 2       | 3    | 4      | ENG 105<br>MATH 211  | Physics (1)                              | PHYS 101    |  |  |
| 3     | -           | -       | 3    | 3      | MATH 211             | Calculus (2)                             | MATH 212    |  |  |
| 4     | 2           | -       | 2    | 3      | CHEM 101             | Chemistry (2)                            | CHEM 102    |  |  |
| 6     | -           | 6       | -    | 3      | ENG 106<br>MATH 211  | Engineering Drawing                      | ME 131      |  |  |
| 4     | -           | 2       | 2    | 3      | MATH 211             | Introduction to Engineering Design       | ME 132      |  |  |
| 25    | 3           | 10      | 12   | 18     |                      | 6 Courses                                | Sum         |  |  |
| Fourt | h Leve      | 1       |      |        |                      |                                          |             |  |  |
| Week  |             | tact Ho | urs  | Credit | Prerequisites        | Course Name                              | Course Code |  |  |
| Sum   | Tut         | Lab     | Lec  | Units  | Trerequisites        |                                          | Course Coue |  |  |
| 2     |             |         | 2    | 2      |                      | Islamic culture (3)                      | SLM 103     |  |  |
| 5     | 1           | 2       | 2    | 3      | PHYS 101<br>MATH 211 | Physics (2)                              | PHYS 102    |  |  |
| 3     | -           | -       | 3    | 3      | MATH 212             | Calculus (3)                             | MATH 313    |  |  |
| 5     | 1           | 2       | 2    | 3      | ENG 106<br>PHYS 101  | Fundamental of Electrical<br>Engineering | EE 111      |  |  |
| 4     | 2           | -       | 2    | 3      | ENG 106<br>PHYS 101  | Statics                                  | CE 111      |  |  |
| 4     | 2           | -       | 2    | 3      | MATH 211<br>PHYS 101 | Dynamics                                 | ME 133      |  |  |
| 23    | 6           | 4       | 13   | 17     |                      | 6 Courses                                | Sum         |  |  |
| 48    | 9           | 14      | 25   | 35     |                      | 12 Courses                               | Total       |  |  |



## SECOND YEAR

| Fifth I | Level  |          |          |        |                     |                              |                    |
|---------|--------|----------|----------|--------|---------------------|------------------------------|--------------------|
| Week    | ly Con | tact Ho  | urs      | Credit | Prerequisites       | Course Name                  | <b>Course Code</b> |
| Sum     | Tut    | Lab      | Lec      | Units  | Trerequisites       | Course Maine                 | Course Coue        |
| 2       |        |          | 2        | 2      |                     | Arabic Editing               | ARB 102            |
| 3       | -      | -        | 3        | 3      | MATH 212            | Differential Equations       | MATH 336           |
| 4       | -      | 2        | 2        | 3      | CSC 101<br>MATH 211 | Programming Language         | CSC 011            |
| 4       | -      | 3        | 1        | 2      | ME 131              | Civil Engineering Drawing    | CE 212             |
| 5       | 2      | 1        | 2        | 3      | CE 111              | Strength of Materials        | CE 213             |
| 5       | 1      | 2        | 2        | 3      | PHYS 102            | Fluid Mechanics              | CE 251             |
| 3       | -      | -        | 3        | 3      | PHYS 102            | Thermodynamics (1)           | ME 211             |
| 26      | 3      | 8        | 15       | 19     |                     | 7 Courses                    | Sum                |
| Sixth 2 | Level  | <u>.</u> | <u>-</u> | -      | -                   |                              |                    |
| Week    | ly Con | tact Ho  | urs      | Credit | Duono quisitos      | Course Name                  | Course Code        |
| Sum     | Tut    | Lab      | Lec      | Units  | Prerequisites       | Course Name                  | Course Code        |
| 2       |        |          | 2        | 2      |                     | Islamic culture (4)          | SLM 104            |
| 3       | -      | -        | 3        | 3      | MATH 212            | Statistics and Probability   | STAT 354           |
| 5       | 1      | 2        | 2        | 3      | CE 213              | Materials of Construction    | CE 214             |
| 4       | 2      | -        | 2        | 3      | CE 213              | Structural Analysis (1)      | CE 215             |
| 3       | -      | 1        | 2        | 2      | CE 213              | Geotechnical Engineering (1) | CE 231             |
| 3       | -      | -        | 3        | 3      | CHEM 101            | Environmental Microbiology   | CE 261             |
| 4       | 1      | 2        | 1        | 2      | MATH 212            | Surveying (1)                | CE 281             |
| 24      | 4      | 5        | 15       | 18     |                     | 7 Courses                    | Sum                |
| 50      | 7      | 13       | 30       | 37     |                     | 14 Courses                   | Total              |



# THIRD YEAR

| Seventh | Seventh Level        |     |     |        |                    |                                |             |  |  |  |
|---------|----------------------|-----|-----|--------|--------------------|--------------------------------|-------------|--|--|--|
| Weekly  | Weekly Contact Hours |     |     | Credit | Duonoguigitag      | Course Name                    |             |  |  |  |
| Sum     | Tut                  | Lab | Lec | Units  | Prerequisites      | Course Name                    | Course Code |  |  |  |
| 3       | -                    | -   | 3   | 3      | ME 132<br>MATH 211 | Technical Writing              | ENG 357     |  |  |  |
| 4       | 2                    | -   | 2   | 3      | CE 214<br>CE 215   | Design of Steel Structures.    | CE 316      |  |  |  |
| 4       | 2                    | -   | 2   | 3      | CE 214<br>CE 215   | Reinforced Concrete Design (1) | CE 317      |  |  |  |
| 5       | -                    | 3   | 2   | 3      | CE 231             | Geotechnical Engineering (2)   | CE 332      |  |  |  |
| 4       | -                    | 1   | 3   | 3      | CE 281             | Transportation Engineering (1) | CE 341      |  |  |  |
| 4       | 1                    | 2   | 1   | 2      | CE 281             | Surveying (2)                  | CE 382      |  |  |  |
| 24      | 5                    | 6   | 13  | 17     |                    | 6 Courses                      | Sum         |  |  |  |

# **Conventional Path**

| Eighth | Eighth Level |          |      |        |               |                                  |             |  |  |  |
|--------|--------------|----------|------|--------|---------------|----------------------------------|-------------|--|--|--|
| Wee    | ekly Co      | ntact Ho | ours | Credit | Prerequisites | Course Name                      | Course Code |  |  |  |
| Sum    | Tut          | Lab      | Lec  | Units  | rierequisites | Course Maine                     | Course Coue |  |  |  |
| 3      | -            | -        | 3    | 3      | MATH 313      | Numerical Methods                | MATH 410    |  |  |  |
| 4      | 2            | -        | 2    | 3      | CE 317        | Reinforced Concrete Design (2)   | CE 318      |  |  |  |
| 4      | 2            | -        | 2    | 3      | CE 317        | Construction Engineering         | CE 371      |  |  |  |
| 4      | -            | 1        | 3    | 3      | CE 341        | Transportation Engineering (2)   | CE 342      |  |  |  |
| 4      | -            | 1        | 3    | 3      | CE 251        | Hydrology and Water<br>Resources | CE 352      |  |  |  |
| 2      | -            | -        | 2    | 2      | STAT 354      | Engineering Economics            | IE 346      |  |  |  |
| 21     | 4            | 2        | 15   | 17     |               | 6 Courses                        | Sum         |  |  |  |
| 45     | 9            | 8        | 28   | 34     |               | 12 Courses                       | Total       |  |  |  |

# Summer Term

| Course Code | Course Name     | Prerequisites   | Credit Units |
|-------------|-----------------|-----------------|--------------|
| CE 496      | Summer training | ENG 357         | 0            |
| CL 490      | Summer training | Pass 116 Credit | 0            |



# FOURTH YEAR

| Ninth | Level  |         |      |        |                                                                     |                           |             |
|-------|--------|---------|------|--------|---------------------------------------------------------------------|---------------------------|-------------|
|       | kly Co | ntact H | ours | Credit | Prerequisites                                                       | Course Name               | Course Code |
| Sum   | Tut    | Lab     | Lec  | Units  | Frerequisites                                                       |                           | Course Coue |
| 4     | 2      | -       | 2    | 3      | CE 317<br>CE 332                                                    | Foundation Engineering    | CE 433      |
| 4     | 1      | 1       | 2    | 3      | CE 342                                                              | Pavement Design           | CE 443      |
| 3     | -      | -       | 3    | 3      | -                                                                   | Elective (1)              | CE 4xx      |
| 3     | -      | -       | 3    | 3      | Co-requisite<br>Elective (1)                                        | Elective (2)              | CE 4xx      |
| 4     | _      | 3       | 1    | 1      | ENG 357<br>CE 261<br>CE 282<br>CE 316<br>CE 317<br>CE 332<br>CE 342 | Senior Design Project (1) | CE 498      |
| 18    | 3      | 4       | 11   | 13     |                                                                     | 5 Courses                 | Sum         |
| Tenth | Level  |         |      |        | •                                                                   | ·                         |             |
|       |        | ntact H | ours | Credit | Deserved at the s                                                   |                           | 0           |
| Sum   | Tut    | Lab     | Lec  | Units  | Prerequisites                                                       | Course Name               | Course Code |
| 4     | 2      | -       | 2    | 3      | CE 261                                                              | Sanitary Engineering      | CE 462      |
| 4     | 2      | -       | 2    | 3      | CE 371                                                              | Construction Management   | CE 472      |
| 3     | -      | -       | 3    | 3      | Elective (2)                                                        | Elective (3)              | CE 4xx      |
| 9     | -      | 9       | -    | 3      | CE 498                                                              | Senior Design Project (2) | CE 499      |
| 20    | 4      | 9       | 7    | 12     |                                                                     | 4 Courses                 | Sum         |
| 38    | 7      | 13      | 18   | 25     |                                                                     | 9 Courses                 | Total       |

#### **Elective Courses**

| We  | ekly C | contac | t Hours | Credit | Prerequisite | Elective (1)                     | CE 4xx |
|-----|--------|--------|---------|--------|--------------|----------------------------------|--------|
| Sum | Tut    | Lab    | Lec     | Units  |              |                                  |        |
| 3   | -      | -      | 3       | 3      | CE 215       | Structural Analysis (2)          | CE 421 |
| 3   | -      | -      | 3       | 3      | CE 332       | Soil Stabilization               | CE 436 |
| 3   | -      | -      | 3       | 3      | CE 342       | CE 342 Pavement Evaluation       |        |
| 3   | -      | -      | 3       | 3      | CE3 352      | Groundwater Engineering          | CE456  |
| 3   | -      | -      | 3       | 3      | CE 352       | Water and Wastewater Treatment   | CE 466 |
| 3   | -      | -      | 3       | 3      | CE 371       | Advanced Methods of Construction | CE 476 |
| 3   | 3      | -      | -       | 3      | CE 382       | Survey measurements adjustment.  | CE 486 |



| W   | eekly (<br>Hou |     | ct  | Credit   | Prerequisite                                    | Elective (2)                                | CE 4xx |
|-----|----------------|-----|-----|----------|-------------------------------------------------|---------------------------------------------|--------|
| Sum | Lab            | Tut | Lec | Units    |                                                 |                                             |        |
| 3   | -              | -   | 3   | 3        | CE 421                                          | Structural Analysis (3)                     | CE 422 |
| 3   | -              | -   | 3   | 3        | CE 421                                          | Advanced R.C. Design                        | CE423  |
| 3   | -              | -   | 3   | 3        | CE 421                                          | Advanced Steel Structures<br>Design         | CE 424 |
| 3   | -              | -   | 3   | 3        | 3 CE 436 Soil Dynamics                          |                                             | CE 437 |
| 3   | -              | -   | 3   | 3        | CE 446                                          | Construction and<br>Maintenance of Highways | CE 447 |
| 3   | -              | -   | 3   | 3        | CE 456                                          | Harbor & Coastal<br>Engineering             | CE 457 |
| 3   | -              | -   | 3   | 3        | CE 466 Water and Wastewater<br>Treatment Plants |                                             | CE 467 |
| 3   | -              | -   | 3   | 3        | CE 476                                          | Construction Planning                       | CE 477 |
| 3   | -              | -   | 3   | 3 CE 486 |                                                 | Geodesy and Geomatics                       | CE 487 |

| N   | /eekly<br>Ho | Conta<br>ours | act | Credit | Prerequisite | Elective (3)                 | CE 4xx |
|-----|--------------|---------------|-----|--------|--------------|------------------------------|--------|
| Lec | Lab          | Tut           | Sum | Units  |              |                              |        |
| 3   | -            | -             | 3   | 3      | CE 421       | Rehabilitation of Structures | CE 425 |
| 3   | -            | -             | 3   | 3      | CE 421       | Structural Dynamics          | CE 426 |
|     | -            | -             | 3   |        | CE 436       | Foundation and Earth         | CE 438 |
|     |              |               |     | 3      | CE 450       | Structures Design            | CE 436 |
| 3   | -            | -             | 3   |        | CE 446       | Traffic Engineering &        | CE 448 |
|     |              |               |     | 3      | CL 440       | Roadway Safety               | CL 440 |
| 3   | -            | -             | 3   |        | CE 456       | Water Resources Planning and | CE 458 |
|     |              |               |     | 3      | CL 430       | Management                   | CL 450 |
| 3   | -            | -             | 3   |        | CE 466       | Municipal Solid Waste        | CE 468 |
|     |              |               |     | 3      |              | Management                   |        |
| 3   | -            | -             | 3   | 3      | CE 486       | Remote Sensing.              | CE 488 |

#### KINGDOM OF SAUDI ARABIA Ministry of Higher Education Jazan University College of Engineering Civil Engineering Department



#### المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة المدنية قسم الهندسة المدنية

# **Co-op Path**

| Eighth | Level   |         |     |        |                                                                     |                                  |             |
|--------|---------|---------|-----|--------|---------------------------------------------------------------------|----------------------------------|-------------|
| Weekl  | y Conta | ct Hour | S   | Credit | Prerequisites                                                       | Course Name                      | Course Code |
| Sum    | Tut     | Lab     | Lec | Units  | rierequisites                                                       | Course Manie                     | Course Coue |
| 3      | -       | -       | 3   | 3      | MATH 313                                                            | Numerical Methods                | MATH 410    |
| 4      | 2       | -       | 2   | 3      | CE 317                                                              | Reinforced Concrete Design (2)   | CE 318      |
| 4      | -       | 1       | 3   | 3      | CE 341                                                              | Transportation Engineering (2)   | CE 342      |
| 4      | -       | 1       | 3   | 3      | CE 251                                                              | Hydrology and Water<br>Resources | CE 352      |
| 4      | 2       | -       | 2   | 3      | CE 317                                                              | Construction Engineering         | CE 371      |
| 4      | -       | 3       | 1   | 1      | ENG 357<br>CE 261<br>CE 282<br>CE 316<br>CE 317<br>CE 332<br>CE 341 | Senior Design Project (1)        | CE 398      |
| 2      | -       | -       | 2   | 2      | STAT 354                                                            | Engineering Economics            | IE 346      |
| 25     | 4       | 5       | 16  | 18     |                                                                     | 7 Courses                        | Sum         |
| 49     | 9       | 11      | 29  | 35     |                                                                     | 13 Courses                       | Total       |

# Summer Term


| <b>Course Code</b> | Course Name | Prerequisites              | Credit Units |
|--------------------|-------------|----------------------------|--------------|
| CE 497             | Со-ор       | ENG 357<br>Pass 116 Credit | 9            |



# FOURTH YEAR

| Ninth Level                        |             |             |  |  |  |
|------------------------------------|-------------|-------------|--|--|--|
| Remark                             | Course Name | Course Code |  |  |  |
| Continuation for the Co-op Program | Со-ор       | CE 497      |  |  |  |

|       | Tenth Level |         |     |        |               |                           |             |  |
|-------|-------------|---------|-----|--------|---------------|---------------------------|-------------|--|
| Weekl | y Cont      | act Hou | ırs | Credit | Prerequisites | Course Name               | Course Code |  |
| Sum   | Tut         | Lab     | Lec | Units  | Freiequisites | Course Name               | Course Coue |  |
| 4     | 2           |         | 2   | 3      | CE 317        | Foundation Engineering    | CE 422      |  |
| 4     | 2           | -       | 2   | 5      | CE 332        | Foundation Engineering    | CE 433      |  |
| 4     | 1           | 1       | 2   | 3      | CE 342        | Pavement Design           | CE 443      |  |
| 4     | 2           | -       | 2   | 3      | CE 261        | Sanitary Engineering      | CE 462      |  |
| 4     | 2           | -       | 2   | 3      | CE 371        | Construction Management   | CE 472      |  |
| 9     | -           | 9       | -   | 3      | CE 498        | Senior Design Project (2) | CE 499      |  |
| 25    | 7           | 10      | 8   | 15     |               | 5 Courses                 | Sum         |  |
| 25    | 7           | 10      | 8   | 24     |               | 6 Courses                 | Total       |  |



The following statistics can be drawn from the BSCE program curriculum. Table (8) shows the distribution of the number of courses, credit units, and weekly contact hours in each level and academic year. Finally, Figure (2) illustrates the prerequisites requirement for the courses.

| 7           | Weekly           | Contact H | ours           | Credi | t Units        | No. of C | Courses |                 |                  |
|-------------|------------------|-----------|----------------|-------|----------------|----------|---------|-----------------|------------------|
| Year<br>Sum | Lev<br>el<br>Sum | Lab.      | Lec. & Tut.    | Year  | Level          | Year     | Level   | Level           | Academic<br>Year |
| 50          | 24<br>26         | 5<br>5    | 19<br>21       | 29    | 14<br>15       | 8        | 4       | 1 2             | Preparatory      |
| 47          | 20<br>25<br>22   | 10<br>4   | 15<br>18       | 35    | 13<br>18<br>17 | 12       | 6<br>6  | <u> </u>        | First            |
| 51          | 27<br>24         | 9<br>5    | 10<br>18<br>19 | 37    | 19<br>18       | 14       | 7       | 5               | Second           |
| 45          | 24<br>21         | 6<br>2    | 18<br>19       | 34    | 17<br>17       | 12       | 6<br>6  | 7<br>8 conv.    | Third            |
| 49          | 25               | 5         | 20             | 35    | 18             | 13       | 7       | 8 co-op         |                  |
|             |                  |           |                | 0     |                |          |         | r Training      |                  |
|             | 18               | 3         | 15             | 9     | 13             |          | 5       | o-op<br>9 conv. |                  |
| 38          | 20               | 9         | 11             | 25    | 13             | 9        | 4       | 10 conv.        | Fourth           |
| 25          | 0                | 0         | 0              | 17    | 0              | 7        | 1       | 9 co-op         |                  |
|             | 25               | 9         | 16             |       | 17             |          | 6       | 10 co-op        |                  |
| 231         |                  | 58        | 173            |       |                |          |         |                 | Total            |
| 222         |                  | 58        | 164            | 160   |                |          |         |                 |                  |
| co-op       |                  | co-op     | Со-ор          |       |                |          |         |                 |                  |

#### Table (8) The Distribution of the Courses

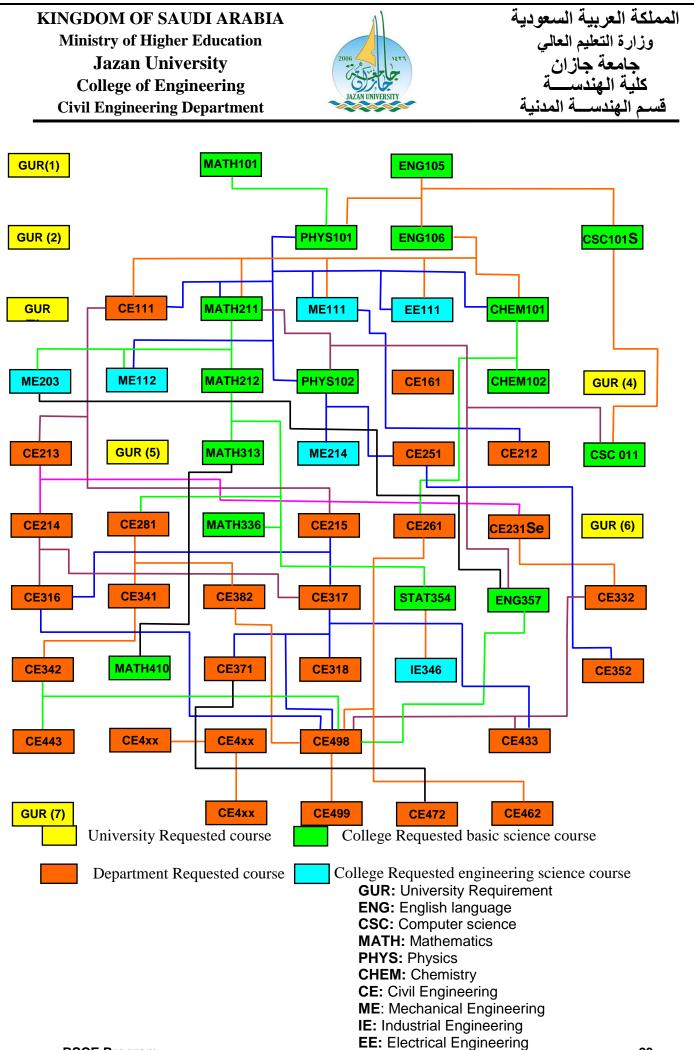





Figure (2) Flow chart for the program

#### 3. Bachelor of Science in Civil Engineering Program Course Syllabi

The course syllabus for the core courses within these disciplines is designed according to the international academic accreditation rules. The course syllabus includes the following items:

- 1- Course code, name, credit units, contact hours, and prerequisites,
- 2- Course description,
- 3- Text book and references,
- 4- Course learning objectives,
- 5- Descriptive course contents, either theoretical or practical,
- 6- Design activities and course projects,
- 7- Teaching procedures and evaluation methods,
- 8- Course outcomes in relation to the course objectives, and
- 9- Course contribution to both engineering science and engineering design.

Following are the course syllabi for all core courses involved in the BSCE program.



#### **Course Syllabus**

| Course Code   | CE 111             |      |      |      |  |
|---------------|--------------------|------|------|------|--|
| Course Title  | Statics            |      |      |      |  |
| Year / Level  | 1/4                |      |      |      |  |
| Hours         | Credit             | Lec. | Lab. | Tut. |  |
| 110015        | 3 2 - 2            |      |      |      |  |
| Prerequisites | ENG 102 - PHYS 101 |      |      |      |  |

| Course      | Basic concepts and principles of mechanics; algebraic vector                     |
|-------------|----------------------------------------------------------------------------------|
| Description | operations on actionand reaction vectors; equilibrium of particles               |
| -           | in two and three dimensions; definitions of moment and couple;                   |
|             | reduction of system of forces; equilibrium of rigid bodies;                      |
|             | statically determinate structures including beams and trusses;                   |
|             | analysis of internal forces; shear and bending moment diagram                    |
|             | for beams; center of gravity of masses, and centroid of lines,                   |
|             | areas, and volumes; area moment of inertia and radius of                         |
|             | gyration.                                                                        |
| Textbook    | 1. Handout Notes, prepared by the lecturer.                                      |
|             | 2. Hibbeler, R. C., "Engineering Mechanics", Prentic Hall,                       |
|             | 10th edition, 2004.                                                              |
| References  | 1. Beer, Johnston, Eisenberg & Mazurek, "Vector Mechanics                        |
|             | for Engineers", 8th EditionMcGraw Hill, 2006                                     |
| Course      | 1. Identify vectors and scalars and apply the parallelogram                      |
| learning    | laws and use them to add forces and resolve a force into                         |
| Objectives  | two components.                                                                  |
| (C.L.O.)    | 2. Calculate the reactions and the moment using the                              |
|             | equilibrium equations for 2-D. and draw the free body                            |
|             | diagram (F.B.D.) and solve equations of equilibrium for a particle in 2D and 3D. |
|             | 3. Define and calculate the forces in truss members using                        |
|             | method of joints and method of sections and recognize the                        |
|             | zero force members in trusses.                                                   |
|             | 4. Analysis of bodies to evaluate center of gravity of masses,                   |
|             | centroid of lines and areas.                                                     |
|             | 5. Calculate moments of inertia for a single area, and the                       |
|             | utilization of parallel axes theorem to compute centroidal                       |
|             | moments of inertia for composite areas.                                          |



| Descriptive<br>Course Topics  | <ol> <li>General Principles</li> <li>Introduction to basic operations of vector algebra and forces' vectors.</li> </ol> |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                               | 3. Free body diagram representation of a rigid body, and equilibrium analysis of particle(s) in 2D & 3D.                |
|                               | 4. Moment of a force, force-couple systems.                                                                             |
|                               | 5. Equilibrium analysis of rigid bodies in 2D & 3D.                                                                     |
|                               | 6. Structural analysis of plane trusses.                                                                                |
|                               | 7. Analysis of internal actions, and drawing the shear force and bending moment diagrams.                               |
|                               | 8. Geometric analysis of for center of gravity of masses and centroids of single or composite area.                     |
|                               | 9. Computations of moment of inertia for composite areas.                                                               |
| Experimental<br>Work          | Experimental works does not include.                                                                                    |
| Design<br>Activities/Projects | This course does not include design activities or projects.                                                             |

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                         | Program Outcomes<br>(P.O.) |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course<br>learning<br>objective-1            | An ability to apply knowledge of mathematics, science, and engineering to identify vectors.                                                                   | [ a ]                      |
| Course<br>learning<br>objective-2            | An ability to identify, formulate and solve<br>engineering problems using equilibrium<br>equations to calculate reactions, shear forces and<br>moments.       | [ e ]                      |
| Course<br>learning<br>objective-3            | An ability to identify, formulate and solve structural analysis of trusses.                                                                                   | [ e ]                      |
| Course<br>learning<br>objective-4            | An ability to identify, formulate and solve<br>structural engineering problems to evaluate<br>center of gravity of masses and centroid of lines<br>and areas. | [ e ]                      |
| Course<br>learning<br>objective-5            | An ability to identify, formulate and solve<br>structural analysis problems to compute<br>centroidal moments of inertia.                                      | [ e ]                      |

| <b>Course Contribution to</b> | Engineering Science | 100 % |
|-------------------------------|---------------------|-------|
| <b>Professional Branches</b>  | Engineering Design  | 0 %   |



#### Course Syllabus

| Course Code   | CE 212                    |      |      |      |
|---------------|---------------------------|------|------|------|
| Course Title  | Civil Engineering Drawing |      |      |      |
| Year / Level  | 2/5                       |      |      |      |
| Hours         | Credit                    | Lec. | Lab. | Tut. |
| 110015        | 2                         | 1    | 3    | -    |
| Prerequisites | ME 131                    |      |      |      |

| Course<br>Description                     | This course is intended to introduce the fundamentals of civil engineering drawing. Drawing of a structural plan from an architectural plan of R.C. buildings. Drawing of the dimensions and detail of reinforcements for R.C. elements, such as foundations, columns, beams and slabs. Estimating of dimensions before the design stage is included. Drawing of projections and sections of some connections of steel members. Connection of beam-to-column, connection of beam –to-beam, connection of truss members at a gusset plate, connection of bracing members with a column, and connection at the base of column. |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook                                  | Handout Notes, prepared by the instructor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| References                                | <ol> <li>Drawing for Civil Engineering"by J. A. Van Der Westhuizen,<br/>(Paperback - Jan 1, 2000).</li> <li>"Civil Engineering <i>Drawing"</i>, <i>Ahmed Aijaz</i>, Amazon ed.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Course learning<br>Objectives<br>(C.L.O.) | <ol> <li>Understand basics and fundamentals of civil engineering drawing and its skills.</li> <li>Practice the use of hand drawing tools and drawing sheets.</li> <li>Acquirement of the imaginary skills to understand civil engineering drawings.</li> <li>Understand how reinforcements are distributed inside R.C. elements.</li> <li>Recognize details of connections and splices of steel members.</li> <li>Imagining of projections of common sections of steel and their connections.</li> <li>Estimating dimensions of sections and members during preliminary design.</li> </ol>                                   |

#### KINGDOM OF SAUDI ARABIA Ministry of Higher Education Jazan University College of Engineering Civil Engineering Department



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان ä كلية العندس قسم الهندسة المدنية

| Descriptive                |                                                                                                                                   |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| <b>Course Topics</b>       | 1- Introduction to Civil Engineering Drawing.                                                                                     |
|                            | 2- Drawing of the structural plan according to the architectural                                                                  |
|                            | plan.                                                                                                                             |
|                            | 3- Dimensioning and drawing of strip, isolated and raft                                                                           |
|                            | foundations.                                                                                                                      |
|                            | 4- Dimensioning and drawing of R.C. columns. Drawing of reinforcements inside the columns and locations of splices are performed. |
|                            | 5- Dimensioning and drawing of R.C. beams and solid slab with                                                                     |
|                            | the steel reinforcement.                                                                                                          |
|                            | 6- Introduction to steel constructions and drawing of projections                                                                 |
|                            | and sections for common steel sections.                                                                                           |
|                            | 7- Drawing of bolted connection of truss members at the gusset plate.                                                             |
|                            | 8- Drawing of three projections of beam –to- column connection.                                                                   |
|                            | 9- Drawing of three projections of beam –to- beam connection.                                                                     |
|                            | 10- Drawing of connections of bracing members with the                                                                            |
|                            | columns.                                                                                                                          |
|                            | 11- Drawing of connections at the base of steel column.                                                                           |
| Experimental               | This course does not include experimental work.                                                                                   |
| Work                       |                                                                                                                                   |
| Design                     | This course does not include design activities or projects.                                                                       |
| <b>Activities/Projects</b> |                                                                                                                                   |

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                               | Program<br>Outcomes<br>(P.O.) |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------|
| C.L.O. (1)                                   | Understanding of fundamentals of civil engineering drawing.                                         | [ a, i, k ]                   |
| C.L.O. (2)                                   | Acquirement of skills of imagining in reading civil engineering drawings.                           | [ a, k ]                      |
| C.L.O. (3)                                   | Gaining of skills to prepare workshop drawings.                                                     | [ a, k ]                      |
| C.L.O. (4)                                   | Understanding of the distribution of steel reinforcements in R.C. members and positions of splices. | [ a, i ]                      |
| C.L.O. (5)                                   | Recognizing and practicing steel drawings.                                                          | [ a, i, k ]                   |
| C.L.O. (6)                                   | Acquirement of skill of imagining in reading details of steel drawings.                             | [ a, i, k ]                   |
| C.L.O. (7)                                   | Creating of engineering sense to estimate proper<br>dimensions of steel and R.C. sections           | [ a, k ]                      |

| <b>Course Contribution to</b> | Engineering science | 80 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 20 % |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة المدنية قسم الهندسة المدنية

#### **Course Syllabus**

| Course Code   | CE 213                |      |      |      |
|---------------|-----------------------|------|------|------|
| Course Title  | Strength of Materials |      |      |      |
| Year / Level  | 2 / 5                 |      |      |      |
| Hours         | Credit                | Lec. | Lab. | Tut. |
| Hours         | 3                     | 2    | 1    | 2    |
| Prerequisites | CE 111                |      |      |      |

| Course<br>Description | Review of basic principles of statics. Review of properties of<br>plane sections. Simple stress and strain and their relations.<br>Bending stresses in beams. Torsion of circular members. Normal<br>force, Shear force and bending moment diagrams for beams and<br>frames. Relation between load, shear force and bending moment.<br>Deflection of beams, buckling in columns, Laboratory<br>experiments. |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook              | <ol> <li>Handout Notes, prepared by the lecturer.</li> <li>Beer, F.P, Johnston, E.R., and DeWof, J.T., "Mechanics of<br/>Materials", 4th edition, Mc Graw Hill, 2006.</li> </ol>                                                                                                                                                                                                                            |
| References            | 1. William Nash, Merle Potter, "Strength of Materials", Schaum's Outline Series , Fifth Edition, McGraw Hill Professional, 2010                                                                                                                                                                                                                                                                             |
| Course                | 1. Determine the internal resultant loadings including axial, shear,                                                                                                                                                                                                                                                                                                                                        |
| learning              | bending and torsion and draw their distribution diagrams.                                                                                                                                                                                                                                                                                                                                                   |
| Objectives            | 2. Evaluate stress and strain due to individual and combined                                                                                                                                                                                                                                                                                                                                                |
| (C.L.O.)              | loads.                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | 3. Determine the state of stress of transformed sections and calculate principal normal and shear stresses and determine their planes mathematically and graphically (using Mohr's circle).                                                                                                                                                                                                                 |
|                       | 4. Determine shear stresses and shear flow due to transverse                                                                                                                                                                                                                                                                                                                                                |
|                       | loads.                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | 5. Calculate beam deflection.                                                                                                                                                                                                                                                                                                                                                                               |
|                       | 6. Study the behavior of columns under buckling.                                                                                                                                                                                                                                                                                                                                                            |



| Descriptive<br>Course Topics  | <ol> <li>Introduction and Overview of Statics</li> <li>Stress &amp; Strain Axial Loading</li> </ol> |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
|                               | 12. Analysis of Beams for Bending                                                                   |  |  |
|                               | 13. Pure Bending, Asymmetric Bending, Eccentric Axial load                                          |  |  |
|                               | 14. Torsion, Shearing Stresses in Beams.                                                            |  |  |
|                               | 15. Transformation of Stresses &Strains to different planes mathematically and graphically.         |  |  |
|                               | 16. Deflections of Beams.                                                                           |  |  |
|                               | 17. Buckling in columns.                                                                            |  |  |
| Experimental                  | Experimental works include: (Tension Test, Torsion Test,                                            |  |  |
| Work                          | Poisson's Ration and Modulus of Elasticity, Flexural Stress                                         |  |  |
|                               | Distribution Test.)                                                                                 |  |  |
| Design<br>Activities/Projects | This course does not include design activities or projects.                                         |  |  |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                                          | Program Outcomes<br>(P.O.) |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course learning<br>objective-1            | An ability to apply knowledge of<br>mathematics, science, and engineering and<br>an ability to identify, formulate and solve<br>engineering problems to determine the<br>internal forces.                      | [ a,e]                     |
| Course learning<br>objective-2            | An ability to identify, formulate and solve<br>engineering problems to calculate the<br>stress and strain due to various load.                                                                                 | [ e ]                      |
| Course learning<br>objective-3            | An ability to apply knowledge of<br>mathematics, science, and engineering and<br>an ability to identify, formulate and solve<br>engineering problems to solve and<br>transform the stress in different planes. | [ a,e ]                    |
| Course learning<br>objective-4            | An ability to identify, formulate and solve<br>structural engineering problems to<br>determine the shear flow in beams.                                                                                        | [ e ]                      |
| Course learning<br>objective-5            | An ability to identify, formulate and solve<br>structural engineering problems to<br>calculate deflection.                                                                                                     | [ e ]                      |
| Course learning<br>objective-6            | An ability to identify, formulate and solve<br>structural engineering problems to study<br>the behavior of columns under buckling.                                                                             | [ e ]                      |



|                        | Course Contribution to                                                                                                                                                                                                                                                   | Engineering science                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 %                                                                                   |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                        | <b>Professional Branches</b>                                                                                                                                                                                                                                             | Engineering design                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 %                                                                                   |
|                        | Course Code<br>Course Title                                                                                                                                                                                                                                              | ourse Syllabus<br>CE214<br>Materials of constructio                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |
|                        | Year / Level                                                                                                                                                                                                                                                             | 2 / 6                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |
|                        | Hours –                                                                                                                                                                                                                                                                  | CreditLec.Lab.322                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tut.<br>1                                                                              |
|                        | Prerequisites                                                                                                                                                                                                                                                            | CE 213                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |
| Course<br>Description  | <ul> <li>in construction. After the of structural, physical material and product mechanical and non-Common construction explored.</li> <li>Students have the opport as well as construction Furthermore, material structural building constudents will gain a</li> </ul> | This course provides an introductory overview of the various materials used<br>in construction. After receiving an introduction into fundamental principles<br>of structural, physical and long-term performance, students learn about<br>material and product manufacturing techniques and how they relate to<br>mechanical and non-mechanical properties of the various materials.<br>Common construction methods are introduced and building details are |                                                                                        |
| Textbook<br>References | Construction Engineers 1. Onouye, Kane, and Building C will be the re                                                                                                                                                                                                    | and Zaniewski John P. M.<br>s", 2nd edition, Pearson and<br>"Statics and Strength of M<br>onstruction". Pearson Educa<br>quired text for BCT 530                                                                                                                                                                                                                                                                                                            | Printice Hall, USA, 2006.<br>Materials for Architecture<br>ation, Prentice Hall – This |
|                        | Engineers". Ad<br>3. Simmons, Olin                                                                                                                                                                                                                                       | onstruction".<br>niewski, "Materials for<br>dison Wesley – A more tech<br>, "Construction – Principles<br>ns – This is less a textboo                                                                                                                                                                                                                                                                                                                       | nnical materials book.<br>, Materials and Methods".                                    |

#### KINGDOM OF SAUDI ARABIA Ministry of Higher Education Jazan University College of Engineering Civil Engineering Department



|                                           | <ul> <li>reference for "later in life".</li> <li>4. Ramsey, Sleeper "Architectural Graphic Standards – Student Edition". J. Wiley &amp; Sons – A great detail reference for any architectural planning. Get one as a desk reference!</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course learning<br>Objectives<br>(C.L.O.) | <ol> <li>Describe manufacturing process, types, and utilization of metals (steel<br/>and aluminum), aggregate, Portland cement, Asphalt, masonry, wood,<br/>and plastics.</li> <li>Interpret materials of construction concepts such as behavior, by<br/>identifying physical, chemical, and mechanical properties of metals (steel<br/>and aluminum),<br/>aggregates, fresh and hardened concrete, Asphalt, masonry, wood, and<br/>plastics</li> <li>Determine weight - volume relations, and grain size distribution of<br/>combined aggregate (Blending of aggregate),</li> <li>List factors affecting durability of Portland cement concrete.</li> <li>Design of Portland cement concrete and hot asphalt HMA mixtures.</li> <li>Practice long life learning through locating sources of information and<br/>reporting the results and recognizing contemporary issues related to<br/>construction materials.</li> </ol> |
| Descriptive Cours<br>Topics               | <ol> <li>Overview of Materials and Building/Structural Types (Historic,<br/>Current)</li> <li>Factors Affecting Choice of Materials and Structural Form</li> <li>Fundamentals – Mechanical Properties (strength, structural<br/>performance)</li> <li>Fundamentals – Non-Mechanical Properties (physical<br/>properties, durability)</li> <li>Individual Building Materials (Manufacturing, Properties,<br/>Comparative Behavior, Applications in Construction): Steel,<br/>Non-ferrous metals, Concrete, Stone, Brick, Glass, Plastics,<br/>Composites</li> <li>Relation between Materials and their Applications in Buildings<br/>/ Case Studies / Structural and Non-Structural Applications<br/>(Residential, Commercial, Special Construction)</li> </ol>                                                                                                                                                               |
| Experimental Wor                          | <ul> <li>k 1)Tests on Cements</li> <li>Specific Gravity, Fineness, Standard Consistency, Soundness,<br/>Setting times, Compressive strength of mortar cubes</li> <li>2) Tests on Aggregates- Gradation, Modulus, Bulking of Sand, water<br/>absorption</li> <li>3) Tests on Concrete <ul> <li>a) Fresh Concrete: Workability Tests, Setting time, Mix</li> <li>Design by IS guide lines</li> <li>b) Hardened Concrete: Compressive and Tensile strengths, effect</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      |



|                               | <ul><li>Specimens</li><li>5) Tests on Bricks and Tiles</li><li>Water absorption, compressive strength and flexural strength</li></ul> |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Design<br>Activities/Projects | This course does not include design activities or projects.                                                                           |

| Course learning<br>Objectives (C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                                                                                      | Program Outcomes<br>(P.O.) |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course learning<br>objective-1         | 1- Describe manufacturing process, types, and<br>utilization of metals (steel and aluminum),<br>aggregate, Portland cement, Asphalt,<br>masonry, wood, and plastics.                                                                                       | [ a, b, d ]                |
| Course learning<br>objective-2         | 2. Interpret materials of construction concepts<br>such as behavior, by identifying physical,<br>chemical, and mechanical properties of<br>metals (steel and aluminum),aggregates,<br>fresh and hardened concrete, Asphalt,<br>masonry, wood, and plastics | [c, d ]                    |
| Course learning<br>objective-3         | 3. Determine weight - volume relations, and grain size distribution of combined aggregate (Blending of aggregate).                                                                                                                                         | [ b, d ]                   |
| Course learning<br>objective-4         | 4. List factors affecting durability of Portland cement concrete.                                                                                                                                                                                          | [ a, I ]                   |
| Course learning<br>objective-5         | 5. Design of Portland cement concrete and hot asphalt HMA mixtures.                                                                                                                                                                                        | [ a, b, i ]                |
| Course learning<br>objective-6         | 6. Practice long life learning through locating sources of information and reporting the results and recognizing contemporary issues related to construction materials.                                                                                    | [ a, d, i ]                |

| Course Contribution to       | Engineering science | 80 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 20 % |



#### **Course Syllabus**

| Course Code   | CE 215                |      |      |      |
|---------------|-----------------------|------|------|------|
| Course Title  | Structural Analysis I |      |      |      |
| Year / Level  | 2/6                   |      |      |      |
| Hours         | Credit                | Lec. | Lab. | Tut. |
| 110015        | 3                     | 2    | -    | 2    |
| Prerequisites | CE 213                |      |      |      |

| Course<br>Description | Analysis of statically determinate structures (trusses, beams, frames and arches). Determination of forces in structural members (axial force, shear force and bending moment). Draw the influence lines and find maximum forces in simple beams due to the moving loads. Finding the deflection in simple beams, by using moment area method, conjugate beam method and double integration method.                                                                                                                                       |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Textbook              | <ol> <li>Handout Notes, prepared by the lecturer.</li> <li>Hibbeler R.C.; "Structural Analysis", Eight Edition.,<br/>Prentice Hall, 2012.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                      |  |
| References            | <ol> <li>AslamKassimali, "Structural Analysis", 4<sup>th</sup> edition,<br/>Cengage Learning, 2011.</li> <li>MegsonT.H.G. "Structural and Stress Analysis",<br/>Butterworth-Heinemann, 2000.</li> </ol>                                                                                                                                                                                                                                                                                                                                   |  |
| Course learning       | 1. Review basics of structural analysis include types of structures,                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Objectives            | types of loads and types of supports and joints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (C.L.O.)              | 2. Understand the deformations of structures under action of                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                       | <ul> <li>loading.</li> <li>3. Identify stable, unstable determinate structures and introduce the equations of equilibrium for analyze and calculate the internal forces in the statically determinate structures and draw diagrams of shearing force, normal force and bending moment distributions in beams and frames.</li> <li>4. Estimate slope and deflection for various load cases in cantilever and simply supported beams.</li> <li>5. Introduce influence lines for reactions and internal forces under moving load.</li> </ul> |  |
| Descriptive           | 1. Basic concepts of structural analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Course Topics         | Revision of Pre-requisite course topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                       | 2. Analysis of Statically Determinate Structures<br>Analysis of Trusses, Beams and Frames, Arches and Cables                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                       | 3. Deflections of Beams and Frames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                       | Differential equation for elastic curve and its solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                       | Moment area method. Conjugate beam method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                       | 4. Influence Lines for Statically Determinate Structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                       | Influence lines for reaction, shear and bending moment in beams. Use of influence lines to determine the maximum                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                       | beams. Use of influence lines to determine the maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| SCE Program           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |



|                               | values under given moving load.                             |
|-------------------------------|-------------------------------------------------------------|
| Experimental<br>Work          | This course does not include experimental work.             |
| Design<br>Activities/Projects | This course does not include design activities or projects. |

| Course<br>learning<br>Objectives              | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                                                                                                                                                                                               | Program Outcomes<br>(P.O.) |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| (C.L.O.)<br>Course<br>learning<br>objective-1 | <ol> <li>Classify various determinate structures.</li> <li>Classify types and source of loads.</li> <li>Recognize various types of support, their restrains and degree of freedom.</li> <li>Differentiate between stable-unstable and determinate-indeterminate structures.</li> </ol>                                                                              | [a]                        |
| Course<br>learning<br>objective-2             | Formulate Load-shear-moment relationship.                                                                                                                                                                                                                                                                                                                           | [e]                        |
| Course<br>learning<br>objective-3             | <ol> <li>Apply concept of equilibrium using<br/>equations of equilibrium for the analysis<br/>determinate truss for the estimation of axial<br/>forces.</li> <li>Apply concept of equilibrium using<br/>equations of equilibrium for the analysis of<br/>determinate beams, frames, and arches and<br/>draw shear force and bending moment<br/>diagrams.</li> </ol> | [a,e]                      |
| Course<br>learning<br>objective-4             | Estimate slope and deflection for various load cases in cantilever and simply supported beams.                                                                                                                                                                                                                                                                      | [e]                        |
| Course<br>learning<br>objective-5             | Draw influence line for reactions; shear force<br>and bending moment for determinate beams.                                                                                                                                                                                                                                                                         | [e]                        |

| <b>Course Contribution to</b> | Engineering science | 75 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 25 % |



#### **Course Syllabus**

| Course Code   | CE 316                     |      |      |      |
|---------------|----------------------------|------|------|------|
| Course Title  | Design of Steel Structures |      |      |      |
| Year / Level  | 3 / 7                      |      |      |      |
| Hours         | Credit                     | Lec. | Lab. | Tut. |
| 110015        | 3                          | 2    | -    | 2    |
| Prerequisites | CE 214 - CE 215            |      |      |      |

| Course<br>Description                     | Types and properties of structural steel. An introduction to the design using allowable stress design method, (A.S.D). Analysis of steel structures under different cases of loading (D.L, L.L and W.L) and determination of the design forces. Design of tension and compression members and axially loaded columns. Design of bolted and welded connections. Drawing of details of the bolted and connections at different sections. Analysis and design of flexural elements, floor and roof beams. Use of software for design of elements.                                                                                                                        |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook                                  | "Lectures in The Design of Steel Structures", prepared by the instructor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| References                                | <ol> <li>ASIC Manual of Steel Construction.</li> <li>Salmon and Johnson "Steel Structures – Design and Behavior", Harper<br/>and Row publishers, Copies 1971 – 1989.</li> <li>"Structural Steel Design", (4th Edition) by Jack C. Mc Cormac,<br/>(Hardcover - Jun 8, 2007).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                |
| Course learning<br>Objectives<br>(C.L.O.) | <ol> <li>Understand concepts and assumptions of the allowable stress design method, (A.S.D) used in the design of steel structures.</li> <li>Analyze tension and compression steel members.</li> <li>Design oftension and compression steel members.</li> <li>Analyze flexural members at different cases of loadings.</li> <li>Design offlexural steel members.</li> <li>Estimate the proper sections in the preliminary design in order to obtain an economic cost.</li> <li>Design ofbolted and welded connections.</li> <li>Develop workshopdrawings of sections and connections with all details.</li> <li>Apply computer applications in the design.</li> </ol> |



| Descriptive<br>Course Topics  | <ol> <li>Properties of structural steel, Introduction to (A.S.D) method and<br/>Common steel sections.</li> <li>Loads on buildings.</li> <li>Drawing of Layout of an industrial Building with roof and Column<br/>bracing.</li> <li>Analysis of Steel Truss subjects to Different Cases of Loading and<br/>Calculation of the Design Forces.</li> <li>Design of Tension Members.</li> <li>Design of Compression Members.</li> <li>Design of Bolted Connections Subject to Shear Forces.</li> <li>Design of details of the connections.</li> <li>Drawing of details of the connections.</li> </ol> |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental<br>Work          | 11- Design of Roof Beams, (Purlins).This course does not include any experimental work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Design<br>Activities/Projects | This course doesn't include projects. Lectures, Assignments and Home works in design of steel structures prepare students to be able to perform the capstone project.                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                    | Program Outcomes<br>(P.O.) |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|
| <b>C.L.O.</b> (1)                         | Understanding of philosophy of the methods of design.                                                    | [ a, c ]                   |
| C.L.O. (2)                                | An ability to formulate and solve engineering problems.                                                  | [ a, e ]                   |
| C.L.O. (3)                                | An ability to design tension and compression<br>members manually and using computer<br>applications.     | [ a, c, k ]                |
| C.L.O. (4)                                | An ability to analyze flexural element.                                                                  | [ a, e ]                   |
| C.L.O. (5)                                | An ability to design of flexural members.                                                                | [ a, c, k ]                |
| C.L.O. (6)                                | Acquirement of the engineering sense in selecting safe and economic sections before stage of the design. | [ c, k ]                   |
| <b>C.L.O.</b> (7)                         | An ability to design bolted and welded connections.                                                      | [ a, c, k ]                |
| C.L.O. (8)                                | Acquirement of skills to prepare technical drawings.                                                     | [ c, k ]                   |
| C.L.O. (9)                                | An ability to design using new techniques                                                                | [ a, c, e, k ]             |

| <b>Course Contribution to</b> | Engineering science | 20 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 80 % |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة المدنية قسم الهندسة المدنية

| Course Code   | CIE 317                        |       |      |      |
|---------------|--------------------------------|-------|------|------|
| Course Title  | Reinforced Concrete Design (1) |       |      |      |
| Year / Level  |                                | 3 / 7 | 1    |      |
| Hours         | Credit                         | Lec.  | Lab. | Tut. |
| 110015        | 3                              | 2     | -    | 2    |
| Prerequisites | CE 214 - CE 215                |       |      |      |

| Course<br>Description                     | This course is intended to introduce the fundamentals of<br>reinforced concrete design. The course involves the study of<br>the properties of concrete and reinforcing steel, mechanics and<br>behavior of reinforced concrete, flexure, shear and bond,<br>ultimate strength method of design for beams: rectangular,<br>doubly reinforced, and tee, continuous beams, one-way and<br>two-way solid slabs, working stress design method,<br>development length, splices, and curtailment of reinforcement,<br>design of tied and spiral short columns subjected to axial |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | compression force only. Finally the course includes computer<br>applications and engineering drawings of reinforced concrete<br>details.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Textbook                                  | <ol> <li>ACI DESIGN HANDBOOK, Design of Structural<br/>Reinforced Concrete Elements in Accordance with ACI 318M-<br/>05, ACI SP-17M(09), American Concrete Institute.</li> <li>DESIGN AIDS, prepared by the instructor in accordance<br/>with the Saudi Building Code (Concrete Structures<br/>Requirements, SBC 304 and Concrete Structures Commentary,<br/>SBC 304C).</li> </ol>                                                                                                                                                                                        |
| References                                | <ol> <li>Hasson, M. N., "Structural Concrete- Theory and Design",<br/>3rd Edition, ADDISONWesley, 2005.</li> <li>Saudi Building Code, Concrete Structures Requirements,<br/>SBC 304.</li> <li>Saudi Building Code (Concrete Structures commentary,<br/>SBC 304C.</li> <li>Saudi Building Code, Loads and Forces Requirements, SBC<br/>301.</li> </ol>                                                                                                                                                                                                                     |
| Course learning<br>Objectives<br>(C.L.O.) | <ol> <li>Identify the fundamentals of reinforced concrete design.</li> <li>Classify between different types of concrete elements based<br/>on internal applied force or moment.</li> <li>Design of beams, solid slabs, and short columns.</li> <li>Prepare detailed design and workshop drawings to be<br/>execute in the field.</li> <li>Create small programs or spread sheets for analysis and<br/>design of concrete sections and elements.</li> </ol>                                                                                                                |



| Descriptive         | 1- Introduction and revision, materials and properties of    |
|---------------------|--------------------------------------------------------------|
| Course Topics       | concrete                                                     |
| Course ropics       |                                                              |
|                     | and reinforcing bars.                                        |
|                     | 2- Analysis and design of singly reinforced concrete beams,  |
|                     | ACI and SBC safety code provisions.                          |
|                     | 3- Analysis and Design of doubly reinforced concrete beams.  |
|                     | 4- Analysis and design of T and L reinforced concrete beams. |
|                     | 5- Ultimate strength analysis and design for shear and       |
|                     | diagonal                                                     |
|                     | tension, design of web reinforcement.                        |
|                     | 6- Analysis and Design of continuous beam for flexure using  |
|                     | ACI and SBC moment coefficients method.                      |
|                     | 7- Analysis and design of Reinforced Concrete solid one-way  |
|                     | slabs.                                                       |
|                     | 8- Analysis and design of Reinforced Concrete solid two-way  |
|                     | slabs.                                                       |
|                     | 9- Ultimate strength analysis and design for bond, anchorage |
|                     | length,                                                      |
|                     | development length, and splices of Reinforcement.            |
|                     | 10- Analysis and design of tied short columns subjected to   |
|                     | axial compression force only.                                |
|                     | 11- Analysis and design of spiral short columns subjected to |
|                     | axial compression force only.                                |
|                     | 12- Design spread sheets for analysis and design of concrete |
|                     | sections and elements.                                       |
|                     | 13- Semester Project                                         |
| Experimental        | This course does not include experimental work.              |
| Work                | -                                                            |
| Design              | A project of design a complete reinforced concrete floor     |
| Activities/Projects | including design of all one way and two way solid slabs,     |
|                     | design of beams for flexure and shear, and design of the     |
|                     | columns of the building.                                     |
|                     |                                                              |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                                                                                                                                                                                    | Program Outcomes<br>(P.O.) |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course learning objective-1               | <ol> <li>1- Introduction and revision.</li> <li>2- Materials and properties of concrete<br/>and reinforcing bars.</li> </ol>                                                                                                                                                                                                                             | [ a, e ]                   |
| Course learning<br>objective-2            | <ol> <li>Analysis and design of singly<br/>reinforced concrete beams, ACI and<br/>SBC safety code provisions.</li> <li>Analysis and Design of doubly<br/>reinforced concrete beams.</li> <li>Analysis and design of T and L<br/>reinforced concrete beams.</li> <li>Ultimate strength analysis and<br/>design for shear and diagonal tension,</li> </ol> | [ c, i, k ]                |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة قسم الهندسة المدنية

|                 | design of web reinforcement.           |                   |
|-----------------|----------------------------------------|-------------------|
| Course learning | 1- Analysis and Design of continuous   | [ c, i, k ]       |
| objective-3     | beam for flexure using ACI and SBC     |                   |
|                 | moment coefficients method.            |                   |
|                 | 2- Analysis and design of Reinforced   |                   |
|                 | Concrete solid one-way slabs.          |                   |
|                 | 3- Analysis and design of Reinforced   |                   |
|                 | Concrete solid two-way slabs.          |                   |
|                 | 4- Analysis and design of tied short   |                   |
|                 | columns subjected to axial             |                   |
|                 | compression force only.                |                   |
|                 | 5- Analysis and design of spiral short |                   |
|                 | columns subjected to axial             |                   |
|                 | compression force only.                |                   |
| Course learning | 1- Ultimate strength analysis and      | [ a, i, k ]       |
| objective-4     | design for bond, anchorage length,     |                   |
|                 | development length, and splices of     |                   |
|                 | Reinforcement.                         |                   |
|                 | 2- Drawings details for all            |                   |
|                 | assignments and project                | r 113             |
| Course learning | Preparing and design spread sheets for | [ a, c, e, i, k ] |
| objective-5     | analysis and design of concrete        |                   |
|                 | sections and elements.                 |                   |

| Course Contribution to       | Engineering science | 50 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 50 % |



| Course Code   | CE 318                         |       |      |      |
|---------------|--------------------------------|-------|------|------|
| Course Title  | Reinforced Concrete Design (2) |       |      |      |
| Year / Level  | 3 / 8                          |       |      |      |
| Hours         | Credit                         | Lec.  | Lab. | Tut. |
| 110015        | 3                              | 2     | -    | 2    |
| Prerequisites |                                | CE 31 | 17   |      |

| Descriptionreinforced concrete design. The course involves the study of<br>one-way and two-way ribbed slabs, flat slabs and stairways. It<br>also covers design for torsion and sections subjected to normal<br>force and bending moments. The course involves also the<br>design of braced or unbraced slender columns. Finally the<br>course includes computer applications and engineering drawing<br>of reinforced concrete details.Textbook1- ACI DESIGN HANDBOOK, Design of Structural<br>Reinforced Concrete Elements in Accordance with ACI 318M-<br>05, ACI SP-17M(09), American Concrete Institute.<br>2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long | Course      | This course is intended to complete the fundamentals of       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------|
| one-way and two-way ribbed slabs, flat slabs and stairways. It also covers design for torsion and sections subjected to normal force and bending moments. The course involves also the design of braced or unbraced slender columns. Finally the course includes computer applications and engineering drawing of reinforced concrete details.         Textbook       1- ACI DESIGN HANDBOOK, Design of Structural Reinforced Concrete Elements in Accordance with ACI 318M-05, ACI SP-17M(09), American Concrete Institute.         2- DESIGN AIDS, prepared by the instructor in accordance with the Saudi Building Code (Concrete Structures Requirements, SBC 3042).         References       1- Hasson, M. N., "Structural Concrete Theory and Design", 3rd Edition, ADDISONWesley, 2005.         2- Saudi Building Code, Concrete Structures Requirements, SBC 304.         3- Saudi Building Code, Loads and Forces Requirements, SBC 304.         3- Saudi Building Code, Loads and Forces Requirements, SBC 301.         Course learning Objectives (C.L.O.)       1- Identify the fundamentals of design of torsion, punching shear, and sections subjected to bending moments and normal forces.         2- Classify between different types of concrete elements based on internal applied force or moment.       3- Design of stairs, flat slabs, hollow block slabs, and long                                                       |             |                                                               |
| also covers design for torsion and sections subjected to normal<br>force and bending moments. The course involves also the<br>design of braced or unbraced slender columns. Finally the<br>course includes computer applications and engineering drawing<br>of reinforced concrete details.Textbook1- ACI DESIGN HANDBOOK, Design of Structural<br>Reinforced Concrete Elements in Accordance with ACI 318M-<br>05, ACI SP-17M(09), American Concrete Institute.<br>2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code (Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                            | Description | •                                                             |
| force and bending moments. The course involves also the<br>design of braced or unbraced slender columns. Finally the<br>course includes computer applications and engineering drawing<br>of reinforced concrete details.Textbook1- ACI DESIGN HANDBOOK, Design of Structural<br>Reinforced Concrete Elements in Accordance with ACI 318M-<br>05, ACI SP-17M(09), American Concrete Institute.<br>2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                               |             |                                                               |
| design of braced or unbraced slender columns. Finally the<br>course includes computer applications and engineering drawing<br>of reinforced concrete details.Textbook1- ACI DESIGN HANDBOOK, Design of Structural<br>Reinforced Concrete Elements in Accordance with ACI 318M-<br>05, ACI SP-17M(09), American Concrete Institute.<br>2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                          |             |                                                               |
| course includes computer applications and engineering drawing<br>of reinforced concrete details.Textbook1- ACI DESIGN HANDBOOK, Design of Structural<br>Reinforced Concrete Elements in Accordance with ACI 318M-<br>05, ACI SP-17M(09), American Concrete Institute.<br>2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code (Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                       |             |                                                               |
| of reinforced concrete details.Textbook1- ACI DESIGN HANDBOOK, Design of Structural<br>Reinforced Concrete Elements in Accordance with ACI 318M-<br>05, ACI SP-17M(09), American Concrete Institute.<br>2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code (Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304.<br>3- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                         |             | •                                                             |
| Textbook1- ACI DESIGN HANDBOOK, Design of Structural<br>Reinforced Concrete Elements in Accordance with ACI 318M-<br>05, ACI SP-17M(09), American Concrete Institute.<br>2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304.<br>3- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                               |
| Reinforced Concrete Elements in Accordance with ACI 318M-<br>05, ACI SP-17M(09), American Concrete Institute.<br>2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304.<br>3- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                | Taythaalt   |                                                               |
| 05, ACI SP-17M(09), American Concrete Institute.<br>2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304.<br>3- Saudi Building Code, Loads and Forces Requirements, SBC 304.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC 304.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                             | Textbook    |                                                               |
| 2- DESIGN AIDS, prepared by the instructor in accordance<br>with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                               |
| with the Saudi Building Code (Concrete Structures<br>Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                               |
| Requirements, SBC 304 and Concrete Structures Commentary,<br>SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                               |
| SBC 304C).References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | •                                                             |
| References1- Hasson, M. N., "Structural Concrete- Theory and Design",<br>3rd Edition, ADDISONWesley, 2005.<br>2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.<br>3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.<br>4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 1                                                             |
| 3rd Edition, ADDISONWesley, 2005.2- Saudi Building Code, Concrete Structures Requirements,<br>SBC 304.3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.2- Classify between different types of concrete elements based<br>on internal applied force or moment.3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | ,                                                             |
| <ul> <li>2- Saudi Building Code, Concrete Structures Requirements,<br/>SBC 304.</li> <li>3- Saudi Building Code (Concrete Structures commentary,<br/>SBC 304C.</li> <li>4- Saudi Building Code, Loads and Forces Requirements, SBC<br/>301.</li> <li>Course learning<br/>Objectives<br/>(C.L.O.)</li> <li>1- Identify the fundamentals of design of torsion, punching<br/>shear, and sections subjected to bending moments and normal<br/>forces.</li> <li>2- Classify between different types of concrete elements based<br/>on internal applied force or moment.</li> <li>3- Design of stairs, flat slabs, hollow block slabs, and long</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | References  |                                                               |
| SBC 304.3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                               |
| 3- Saudi Building Code (Concrete Structures commentary,<br>SBC 304C.4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                               |
| SBC 304C.4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                               |
| 4- Saudi Building Code, Loads and Forces Requirements, SBC<br>301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                               |
| 301.Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                               |
| Course learning<br>Objectives<br>(C.L.O.)1- Identify the fundamentals of design of torsion, punching<br>shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                               |
| Objectives<br>(C.L.O.)shear, and sections subjected to bending moments and normal<br>forces.<br>2- Classify between different types of concrete elements based<br>on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                               |
| <ul> <li>(C.L.O.) forces.</li> <li>2- Classify between different types of concrete elements based on internal applied force or moment.</li> <li>3- Design of stairs, flat slabs, hollow block slabs, and long</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U           |                                                               |
| <ul> <li>2- Classify between different types of concrete elements based on internal applied force or moment.</li> <li>3- Design of stairs, flat slabs, hollow block slabs, and long</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5           | 5 C                                                           |
| on internal applied force or moment.<br>3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C.L.O.)    |                                                               |
| 3- Design of stairs, flat slabs, hollow block slabs, and long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 3- Design of stairs, flat slabs, hollow block slabs, and long |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | columns.                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 4- Prepare detailed design and workshop drawings to be        |
| execute in the field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                               |
| 5- Create small programs or spread sheets for analysis and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 5- Create small programs or spread sheets for analysis and    |
| design of concrete sections and elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | design of concrete sections and elements.                     |



| Descriptive         | 1- Analysis and design of reinforced concrete one-way ribbed      |
|---------------------|-------------------------------------------------------------------|
| Course Topics       | slabs.                                                            |
| 1                   | 2- Analysis and design of reinforced concrete two-way ribbed      |
|                     | slabs.                                                            |
|                     | 3- Analysis and design of reinforced concrete Flat slabs.         |
|                     | 4- Check of one way and two way (punching) shear in flat          |
|                     | slabs.                                                            |
|                     | 5- Analysis and design for torsion moment and shear force.        |
|                     | 6- Analysis and design of cantilever stairs.                      |
|                     | 7- Analysis and design of slab type stairs.                       |
|                     | 8- Design of sections subjected to normal forces and bending      |
|                     | moments                                                           |
|                     | 9- Design of sections subjected to normal forces and double       |
|                     | bending moments.                                                  |
|                     | 10- Determination if the column is short or slender and the       |
|                     | building is braced or not.                                        |
|                     | 11- Analysis and design of braced slender columns.                |
|                     | 12- Analysis and design of unbraced slender columns.              |
|                     | 13- Design spread sheets for analysis and design of concrete      |
|                     | sections and elements.                                            |
|                     | 14- Semester Project                                              |
| Experimental        | This course does not include experimental work.                   |
| Work                |                                                                   |
| Design              | A project of design a complete reinforced concrete building       |
| Activities/Projects | including design of all kinds of special slabs, design of stairs, |
|                     | and design of the columns.                                        |



| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Program Outcomes<br>(P.O.) |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course learning<br>objective-1            | <ol> <li>Check of one way and two way<br/>(punching) shear in flat slabs.</li> <li>Analysis and design for torsion<br/>moment and shear force.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                             | [ a, e ]                   |
| Course learning<br>objective-2            | <ol> <li>Design of sections subjected to<br/>normal forces and bending moments</li> <li>Design of sections subjected to<br/>normal forces and double bending<br/>moments.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                  | [ c, i, k ]                |
| Course learning<br>objective-3            | <ol> <li>Analysis and design of reinforced<br/>concrete one-way ribbed slabs.</li> <li>Analysis and design of reinforced<br/>concrete two-way ribbed slabs.</li> <li>Analysis and design of reinforced<br/>concrete Flat slabs.</li> <li>Analysis and design of cantilever<br/>stairs.</li> <li>Analysis and design of slab type<br/>stairs.</li> <li>Determination if the column is short<br/>or slender and the building is braced or<br/>not.</li> <li>Analysis and design of braced<br/>slender columns.</li> <li>Analysis and design of unbraced<br/>slender columns.</li> </ol> | [ c, i, k ]                |
| Course learning<br>objective-4            | Preparing project shop drawings for all<br>concrete elements in plans and cross<br>sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [ a, i, k ]                |
| Course learning<br>objective-5            | Preparing and design spread sheets for<br>analysis and design of concrete sections<br>and elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [ a, c, e, i, k ]          |

| Course Contribution to       | Engineering science | 50 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 50 % |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان ä كلية المندس قسم الهندسة المدنية

| Course Code   | CE 231                       |      |      |      |
|---------------|------------------------------|------|------|------|
| Course Title  | Geotechnical Engineering (1) |      |      |      |
| Year / Level  | 2 / 6                        |      |      |      |
| Hours         | Credit                       | Lec. | Lab. | Tut. |
| 110015        | 2                            | 2    | 1    | -    |
| Prerequisites | CE 213                       |      |      |      |

| Course          | This course is intended to introduce the fundamentals of soil engineering.   |
|-----------------|------------------------------------------------------------------------------|
| Description     | The course involves the study introduction to geotechnical Engineering;      |
|                 | Concepts and fundamentals of soil classification and physical properties.    |
|                 | Studying permeability of groundwater in soil. Studying stresses in soil,     |
|                 | studying stresses in soil and settlement of soil due to excessive loads.     |
| Textbook        | 1- Principles of Geotechnical Engineering", by BRAJA M. DAS, FIFTH           |
|                 | EDITION.                                                                     |
|                 | 2- Fundamentals of Soil Mechanics", by Amr Radwan, 2007.                     |
|                 | 3- Handout Notes, prepared by the instructor.                                |
| References      | 1- "Geotechnical Engineering: Principles and Practices", by Donald P.        |
|                 | Coduto, (Hardcover - Jul 24, 1998).                                          |
|                 | 2- Applied Analysis in Geotechnics", by FethiAzizi 2000, E&FN Spon,          |
|                 | Taylor and Francis, London and New York.                                     |
| Course learning | 1- Identification of Geotechnical Engineering.                               |
| Objectives      | 2- Definition of the physical and mechanical properties of soil and          |
| (C.L.O.)        | discussing their relations.                                                  |
|                 | 3- Definition of soil classifications regarding different authorities and    |
|                 | institutions.                                                                |
|                 | 4- Calculation of effective stresses and porewater pressure for deciding the |
|                 | excavation depth.                                                            |
|                 | 5- Determination of water Permeability and water seepage.                    |
|                 | 6- Permeability determination at field and laboratory.                       |
|                 | 7- Stresses in soil due to different types of load-bearing.                  |
|                 | 8- Calculation of settlement under concentrated loading and under the corner |
|                 | of flexible and rigid rectangular foundation.                                |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان ä كلية المندس قسم الهندسة المدنية

| Descriptive Course  | 1- Introduction to Geotechnical Engineering.                        |  |  |
|---------------------|---------------------------------------------------------------------|--|--|
| Topics              | 2- Preliminary Definitions and Relations of soil.                   |  |  |
|                     | 3- Index Properties of soil                                         |  |  |
|                     | 4- Concepts and fundamentals of soil classification and physical    |  |  |
|                     | properties of soil.                                                 |  |  |
|                     | 5- Studying Water in Soil. Effective stresses and neutral stresses  |  |  |
|                     | 6- Studying permeability of groundwater in soil.                    |  |  |
|                     | 7- Studying the aquifers                                            |  |  |
|                     | 8- Studying stresses in soil                                        |  |  |
|                     | 9- Studying settlement of soil due to excessive loads.              |  |  |
| Experimental Work   | Laboratory practice is performed at the rate of once a week (50 min |  |  |
|                     | per class).                                                         |  |  |
| Design              | Lectures, Laboratory.                                               |  |  |
| Activities/Projects |                                                                     |  |  |

| Course learning<br>Objectives (C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                          | Program Outcomes<br>(P.O.) |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course learning objective-1            | Identification of Geotechnical Engineering.                                                                                                    | [ a, k ]                   |
| Course learning<br>objective-2         | Definition of the physical and mechanical properties of soil and discussing their relations.                                                   | [k]                        |
| Course learning<br>objective-3         | Definition of soil classifications regarding different authorities and institutions.                                                           | [ a, k ]                   |
| Course learning<br>objective-4         | Calculation of effective stresses and porewater pressure for deciding the excavation depth.                                                    | [ a, e, k ]                |
| Course learning<br>objective-5         | <ol> <li>Determination of water Permeability and<br/>water seepage.</li> <li>Permeability determination at field and<br/>laboratory</li> </ol> | [ a, b, e, k ]             |
| Course learning<br>objective-6         | Stresses in soil due to different types of load-<br>bearing.                                                                                   | [ a, b, e, k ]             |
| Course learning<br>objective-7         | Calculation of settlement under concentrated<br>loading and under the corner of flexible and<br>rigid rectangular foundation.                  | [ a, b, e, k ]             |

| Course Contribution to | Engineering science | 80 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 20 % |



| Course Code   | CE 332                       |      |      |      |
|---------------|------------------------------|------|------|------|
| Course Title  | Geotechnical Engineering (2) |      |      |      |
| Year / Level  | 3 / 7                        |      |      |      |
| Hours         | Credit                       | Lec. | Lab. | Tut. |
| 110015        | 3                            | 2    | 3    | -    |
| Prerequisites | CE 231                       |      |      |      |

| Course          | This course provides the essential items to evaluate the shear strength of soil                                                                           |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Description     | and its practical application for some civil works such as: Lateral earth                                                                                 |  |  |
| 1               | pressure, Bearing capacity, stability of slopes, that is besides, the site                                                                                |  |  |
|                 | investigation.                                                                                                                                            |  |  |
| Textbook        | 4- Principles of Geotechnical Engineering", by BRAJA M. DAS, FIFTH                                                                                        |  |  |
|                 | EDITION.                                                                                                                                                  |  |  |
|                 | 5- Fundamentals of Soil Mechanics", by Amr Radwan, 2007.                                                                                                  |  |  |
|                 | 6- Handout Notes, prepared by the instructor.                                                                                                             |  |  |
| References      | 3- Applied Analysis in Geotechnics", by FethiAzizi 2000, E&FN Spon,                                                                                       |  |  |
|                 | Taylor and Francis, London.                                                                                                                               |  |  |
|                 | 4- Rheology and Soil Mechanics, by Keedwell, M.J., (ElSevier Applied                                                                                      |  |  |
|                 | science publishers, 1984).                                                                                                                                |  |  |
| Course learning | 9- Knowledge and understanding the meaning of shear strength.                                                                                             |  |  |
| Objectives      | 10- Understanding the methods of determining the soil shear strength                                                                                      |  |  |
| (C.L.O.)        | parameters.                                                                                                                                               |  |  |
|                 | 11- Evaluation the shear strength of soil under various loading conditions.                                                                               |  |  |
|                 | 12-Discussing the overall view of effect shear principals on various practical                                                                            |  |  |
|                 | civil engineering problems.                                                                                                                               |  |  |
|                 | 13- Understanding the lateral earth pressure.                                                                                                             |  |  |
|                 | 14- Analytical and graphical methods for lateral earth pressures                                                                                          |  |  |
|                 | <ul><li>15- Introduction to site investigation and understanding the bearing capacity.</li><li>16- Methods of soil exploration and boring works</li></ul> |  |  |
|                 | 17- Determination the bearing capacity of soil.                                                                                                           |  |  |
|                 | 18- Evaluation of plate load data.                                                                                                                        |  |  |
|                 | 19- Studying the analysis of stability of slopes.                                                                                                         |  |  |
|                 | 20- Evaluation of slope satiability.                                                                                                                      |  |  |
|                 | 21- Lateral earth pressure practical applications.                                                                                                        |  |  |
|                 | 22- Transform the skillful of evaluating the relationship between the distress                                                                            |  |  |
|                 | of various civil engineering works and the soil shear strength under                                                                                      |  |  |
|                 | various loading conditions.                                                                                                                               |  |  |



| Descriptive         | 1- Introduction to shear failures and determination of the soil shear strength |
|---------------------|--------------------------------------------------------------------------------|
| Course Topics       | parameters.                                                                    |
|                     | 2- Shear strength of soil under various loading conditions.                    |
|                     | 3- Lateral earth pressure.                                                     |
|                     | 4- Analytical and graphical methods for lateral earth pressures                |
|                     | 5- Introduction to site investigation and understanding the bearing capacity.  |
|                     | 6- Methods of soil exploration and boring works                                |
|                     | 7- Determination the bearing capacity of soil.                                 |
|                     | 8- Plate load test.                                                            |
|                     | 9- Analysis of stability of slopes.                                            |
|                     | 10- Lateral earth pressure practical applications.                             |
| Experimental        | Laboratory practice is performed at the rate of three times a week (180 min    |
| Work                | per class).                                                                    |
| Design              | Lectures, Laboratory.                                                          |
| Activities/Projects |                                                                                |

|                     |                                                | P O (            |
|---------------------|------------------------------------------------|------------------|
| Course learning     | Student Learning Outcomes                      | Program Outcomes |
| Objectives (C.L.O.) | (S.L.O.)                                       | (P.O.)           |
| Course learning     | Understanding of the meaning of shear          | [ a, k ]         |
| objective-1         | strength.                                      |                  |
| Course learning     | Understanding the methods of determining       | [ a, b ]         |
| objective-2         | the soil shear strength parameters.            |                  |
| Course learning     | Evaluation the shear strength of soil under    | [ a, k ]         |
| objective-3         | various loading conditions.                    |                  |
| Course learning     | Discussing the overall view of effect shear    | [ a, e, k ]      |
| objective-4         | principals on various practical civil          |                  |
|                     | engineering problems.                          |                  |
| objective-5         | Understanding the lateral earth pressure.      | [ a, b ]         |
| Course learning     | Analytical and graphical methods for lateral   | [ a, b, e, k ]   |
| objective-6         | earth pressures                                |                  |
| Course learning     | Introduction to site investigation and         | [ a, b, e, k ]   |
| objective-7         | understanding the bearing capacity.            |                  |
| Course learning     | Methods of soil exploration and boring works   | [ a, b]          |
| objective-8         |                                                |                  |
| objective-9         | Determination the bearing capacity of soil.    | [ a, b, e, k ]   |
| objective-10        | Evaluation of plate load data.                 | [ a, b, e, k ]   |
| Course learning     | Studying the analysis of stability of slopes.  | [ a, b, e, k ]   |
| objective-11        |                                                |                  |
| objective-12        | Evaluation of slope satiability.               | [ a, b, e, k ]   |
| objective-13        | Lateral earth pressure practical applications. | [ a, b, e, k ]   |
| Course learning     | Transform the skillful of evaluating the       | [ a, b, e, k ]   |
| objective-14        | relationship between the distress of various   |                  |
|                     | civil engineering works and the soil shear     |                  |
|                     | strength under various loading conditions.     |                  |

| Course Contribution to | Engineering science | 80 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 20 % |

**BSCE Program** 



| Course Code   | CE 433                 |      |      |      |
|---------------|------------------------|------|------|------|
| Course Title  | Foundation Engineering |      |      |      |
| Year / Level  | 3 / 8                  |      |      |      |
| Hours         | Credit                 | Lec. | Lab. | Tut. |
| 110015        | 3                      | 2    | -    | 2    |
| Prerequisites | CIE 317 & CIE 332      |      |      |      |

| Course<br>Description | This course is intended to introduce the fundamentals of Foundation<br>Engineering. The course involves introduction to Foundation Engineering<br>types; Concepts and fundamentals of shallow and deep foundations. Bearing<br>capacity of shallow foundations in addition to studying the factors affecting<br>bearing capacity; immediate and consolidation settlement of shallow<br>foundations; mat foundations; analysis, design, and installation of pile<br>foundations; capacity and settlement of single piles and pile groups; drilled<br>piers and caissons. |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook              | 7- "Foundation Design", by Abd El-Rahman Omar Hindi, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| References            | 5- "Principles of foundation engineering", by Das B.M., 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | 6- "Foundations of Engineering", by Mark Holtzapple and W. Reece.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Course learning       | 23- Understanding the site exploration and geotechnical engineering report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Objectives            | 24- Calculation of bearing capacity of soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (C.L.O.)              | 25- Studying the factors affecting the bearing capacity of soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | 26- Determination of immediate settlement of shallow foundations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | 27- Definition of shallow foundations; isolated, combined, mat, and strip footing, analysis and design them.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | 28- Definition of deep foundations; single piles, pile groups, analysis and design them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 29- Design the mat foundations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | 30- Studying the installation of pile foundations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | 31- Calculation of capacity and settlement of single piles and pile groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 32- Understanding the drilled piers and caissons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان ä كلية المندسب قسم الهندسة المدنية

| Descriptive         | 1- Soil Exploration                             |
|---------------------|-------------------------------------------------|
| Course Topics       | 2- Bearing capacity and settlement              |
|                     | 3- Shallow Foundations                          |
|                     | 4- Footing subjecting to moment                 |
|                     | 5- Combined footing                             |
|                     | 6- Pile foundation                              |
|                     | 7- Pile deriving                                |
|                     | 8- Pier and caisson foundation                  |
| Experimental        | This course does not include experimental work. |
| Work                |                                                 |
| Design              | Lectures, Tutorials.                            |
| Activities/Projects |                                                 |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                    | Program Outcomes<br>(P.O.) |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|
| Course learning objective-1               | Understanding the site exploration and geotechnical engineering report.                                  | [ a, e, k ]                |
| Course learning objective-2               | Calculation of bearing capacity of soil.                                                                 | [ a, k ]                   |
| Course learning objective-3               | Studying the factors affecting the bearing capacity of soil.                                             | [ a, k ]                   |
| Course learning objective-4               | Determination of immediate settlement of shallow foundations.                                            | [ a, e, k ]                |
| Course learning<br>objective-5            | Definition of shallow foundations; isolated, combined, mat, and strip footing, analysis and design them. | [ a, e, k ]                |
| Course learning objective-6               | Definition of deep foundations; single piles, pile groups, analysis and design them.                     | [ a, b, k ]                |
| Course learning objective-7               | Design the mat foundations                                                                               | [ a, b, k ]                |
| Course learning objective-8               | Studying the installation of pile foundations                                                            | [ a, b, k ]                |
| Course learning objective-9               | Calculation of capacity and settlement of single piles and pile groups                                   | [ a, b, k ]                |
| Course learning objective-10              | Understanding the drilled piers and caissons.                                                            | [ a, b, k ]                |

| Course Contribution to       | Engineering science | 70 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 30 % |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة المدنية قسم الهندسة المدنية

| Course Code   | CE 341                         |      |      |      |
|---------------|--------------------------------|------|------|------|
| Course Title  | Transportation Engineering (1) |      |      |      |
| Year / Level  | 3/7                            |      |      |      |
| Hours         | Credit                         | Lec. | Lab. | Tut. |
| 110015        | 3                              | 3    | 1    | -    |
| Prerequisites | CE 282                         |      |      |      |

| Course          | Transportation as a system; human and vehicle                       |  |  |
|-----------------|---------------------------------------------------------------------|--|--|
| Description     | characteristics; traffic flow characteristics; highway              |  |  |
| 1               | capacity analysis; highway control devices; public                  |  |  |
|                 | transportation; urban transportation planning; parking              |  |  |
|                 | facilities; transportation safety; intelligent transportation       |  |  |
|                 | system and computer applications; introduction to                   |  |  |
|                 | ilway, waterway, airport and pipeline.                              |  |  |
| Textbook        | Transportation Engineering- An Introduction                         |  |  |
|                 | C. JotinKhisty and B. Kent Lall, 3 <sup>rd</sup> Edition, Prentice  |  |  |
|                 | Hall, 2003.                                                         |  |  |
| References      | 1- Traffic and Highway Engineering, Nicholas Garber and             |  |  |
|                 | Lester Hoel, 2 <sup>nd</sup> Edition, PWS Publishing Company, 1997. |  |  |
|                 | 2- Transportation Research Board, 2000.                             |  |  |
| Course learning | 1. Recognize the function and scope of Transportation               |  |  |
| Objectives      | Engineering                                                         |  |  |
| (C.L.O.)        | 2. Identify Driver, User, vehicle and Roadway                       |  |  |
|                 | characteristics and Analyze the interaction among the               |  |  |
|                 | parameters.                                                         |  |  |
|                 | 3. Analyze Speed-Volume-Density, Perform Highway                    |  |  |
|                 | Capacity Analysis and Describe Traffic Control                      |  |  |
|                 | System Components and Devices                                       |  |  |
|                 | 4. Recognize problems and issues of Parking, Accident,              |  |  |
|                 | Public Transport and ITS                                            |  |  |
|                 | 5. Describe Transportation Planning Process and apply               |  |  |
|                 | Traffic Forecasting Methods. Prepare Transportation                 |  |  |
|                 | Impact Analysis Report.                                             |  |  |
|                 | 6. Describe basic components of Railway, Waterway,                  |  |  |
|                 | Airport and Pipeline.                                               |  |  |

| Descriptive   | 1 - Introduction, Transportation system components, Transport modes, |
|---------------|----------------------------------------------------------------------|
| Course Topics | specialties in transportation engineering.                           |
|               | 2 - Characteristics of drivers and vehicles                          |
|               | 3 - Traffic flow theory                                              |
|               | 4- Highway Capacity Analysis                                         |
|               | 5 - Intersection control and design                                  |
| _             |                                                                      |



|                     | <ul> <li>6 - Parking Study</li> <li>7 - Public transportation</li> <li>8 - Transportation planning</li> <li>9 - Transportation safety</li> <li>10 - Intelligent transportation system</li> <li>11 - Computer application</li> <li>12- Introduction to Railway, Waterway, Airport and Pipeline</li> </ul> |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental        | This course does not include experimental work.                                                                                                                                                                                                                                                          |
| Work                |                                                                                                                                                                                                                                                                                                          |
| Design              | This course does not include design activities or projects.                                                                                                                                                                                                                                              |
| Activities/Projects |                                                                                                                                                                                                                                                                                                          |

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                               | Program Outcomes<br>(P.O.) |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course<br>learning<br>objective-<br>1        | Recognize the function and scope of<br>Transportation Engineering                                                                   | [ a, e , g ]               |
| Course<br>learning<br>objective-<br>2        | Identify Driver, User, vehicle and Roadway<br>characteristics and Analyze the interaction<br>among the parameters.                  | [g]                        |
| Course<br>learning<br>objective-<br>3        | Analyze Speed-Volume-Density, Perform<br>Highway Capacity Analysis and Describe Traffic<br>Control                                  | [ a, e ]                   |
| Course<br>learning<br>objective-<br>4        | Recognize problems and issues of Parking,<br>Accident, Public Transport and ITS                                                     | [ a, j, k ]                |
| Course<br>learning<br>objective-<br>5        | Describe Transportation Planning Process and<br>apply Traffic Forecasting Methods. Prepare<br>Transportation Impact Analysis Report | [ f , j, k ]               |
| Course<br>learning<br>objective-<br>6        | Describe basic components of Railway,<br>Waterway ,Airport and Pipeline.                                                            | [g,j,k]                    |

| Course Contribution to       | Engineering science | 80 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 20 % |



| Course Code   | CE 342                         |      |      |      |
|---------------|--------------------------------|------|------|------|
| Course Title  | Transportation Engineering (2) |      |      |      |
| Year / Level  | 3/8                            |      |      |      |
| Hours         | Credit                         | Lec. | Lab. | Tut. |
| 110015        | 3                              | 2    | -    | 2    |
| Prerequisites | CE 341                         |      |      |      |

| Course                 | Highway location. Characteristics of driver. Vehicle. Road and traffic.       |  |
|------------------------|-------------------------------------------------------------------------------|--|
| Description            | Geometric design. Pavement design.                                            |  |
| Textbook               | Transportation Engineering- An Introduction                                   |  |
|                        | C. JotinKhisty and B. Kent Lall, 3 <sup>rd</sup> Edition, Prentice            |  |
|                        | Hall, 2003.                                                                   |  |
| References             | 1- Traffic and Highway Engineering, Nicholas Garber and                       |  |
|                        | Lester Hoel, 2 <sup>nd</sup> Edition, PWS Publishing Company, 1997.           |  |
|                        | 2- Transportation Research Board, 2000.                                       |  |
|                        | 3- "Highway Engineering" PaulH. Wright and Karen K.Dixon, 7th Edition,        |  |
|                        | Johm Wiley & Sons, Inc.                                                       |  |
| <b>Course learning</b> | 1. Understand driver characteristics that influence the highway design.       |  |
| Objectives             | 2. Recognize vehicles performance elements influencing highway design.        |  |
| (C.L.O.)               | 3. Understand traffic characteristics that influence traffic volume and level |  |
|                        | of service.                                                                   |  |
|                        | 4. Determine the required number of traffic lane for a given traffic volume.  |  |
|                        | 5. Recognize the importance of right-of-way for urban and rural highways.     |  |
|                        | 6. Introduce the important highway geometric design characteristics.          |  |
|                        | 7. Design of horizontal and vertical alignment elements.                      |  |
|                        | 8. Implementing the safety requirement in designing the elements of           |  |
|                        | horizontal and vertical alignment.                                            |  |
|                        | 9.Recognize the functional and operational characteristics of intersections   |  |
|                        | and interchanges.                                                             |  |
|                        | 10. Understand the importance of parking facility and recognize the effect of |  |
|                        | parking arrangement in utilizing available space.                             |  |
|                        | 11. Recognize the importance of service drainage and identify methods used    |  |
|                        | to control erosion in highway drainage.                                       |  |

| Descriptive         | 1. Driver, Pedestrian, and Vehicle Characteristics          |
|---------------------|-------------------------------------------------------------|
| Course Topics       | 2. Traffic Flow Characteristics                             |
|                     | 3. Geometric Design of Highways                             |
|                     | 4. Intersections, Interchanges, and Parking Facilities      |
|                     | 5. Highway Drainage                                         |
| Experimental        | This course does not include experimental work.             |
| Work                |                                                             |
| Design              | This course does not include design activities or projects. |
| Activities/Projects |                                                             |



| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                              | Program Outcomes<br>(P.O.) |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course<br>learning<br>objective-1            | Understand driver characteristics that influence the highway design.                                                                                               | [ a, e , g ]               |
| Course<br>learning<br>objective-2            | Determine the required number of traffic lane for<br>a given traffic volume.                                                                                       | [ a , g ]                  |
| Course<br>learning<br>objective-3            | Design of horizontal and vertical alignment<br>elements. Implementing the safety requirement<br>in designing the elements of horizontal and<br>vertical alignment. | [ a, j , e ]               |
| Course<br>learning<br>objective-4            | Recognize the functional and operational characteristics of intersections and interchanges                                                                         | [ a, j, k ]                |
| Course<br>learning<br>objective-5            | Understand the importance of parking facility<br>and recognize the effect of parking arrangement<br>in utilizing available space.                                  | [ f , j, k ]               |
| Course<br>learning<br>objective-6            | Recognize the importance of service drainage<br>and identify methods used to control erosion in<br>highway drainage.                                               | [g,j,k]                    |

| Course Contribution to       | Engineering science | 60 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 40 % |



| Course Code   | CE 443          |       |      |      |
|---------------|-----------------|-------|------|------|
| Course Title  | Pavement Design |       |      |      |
| Year / Level  |                 | 4/9   |      |      |
| Hours         | Credit          | Lec.  | Lab. | Tut. |
| Tiouis        | 3               | 2     | 1    | 1    |
| Prerequisites |                 | CE 34 | 42   |      |

| Course          | Pavement design. Highway materials. Construction. Drainage and soil    |
|-----------------|------------------------------------------------------------------------|
| Description     | improvement. Highway maintenance. Operation and road safety. Pavement  |
|                 | management system. Computer applications.                              |
| Textbook        | "Highway Engineering" PaulH. Wright and Karen K.Dixon, 7th Edition,    |
|                 | Johm Wiley & Sons, Inc.                                                |
| References      | 1- Traffic and Highway Engineering, Nicholas Garber and                |
|                 | Lester Hoel, 2 <sup>nd</sup> Edition, PWS Publishing Company, 1997.    |
|                 |                                                                        |
| Course learning | 1. Recognize the required aggregate properties to produce high quality |
| Objectives      | paving material.                                                       |
| (C.L.O.)        | 2. Conduct standard tests on asphalt binder to verify compliance with  |
|                 | specification.                                                         |
|                 | 3. Design paving mixture according to local design practice.           |
|                 | 4. Design flexile pavement structure using AASHTO design method.       |
|                 | 5. Design Rigid pavement structure.                                    |
|                 | 6. Recognize the different activities and methods used in highway      |
|                 | construction.                                                          |
|                 | 7. Identify common cause of some pavement distresses and corrective    |
|                 | activities.                                                            |

| Descriptive         | 1.Design of High Quality Paving Materials                           |
|---------------------|---------------------------------------------------------------------|
| Course Topics       | 2. Design of Flexible Pavements                                     |
| 1                   | 3. Design of Rigid Pavements                                        |
|                     | 4. Highway Construction                                             |
|                     | 5. Highway Maintenance and Rehabilitation                           |
| Experimental        | 1. Carry out the quality of mineral aggregates through laboratory   |
| Work                | experiments such as flakiness tests, crushing value tests, hardness |
|                     | test,                                                               |
|                     | impact test, angularity number of aggregation.                      |
|                     | 2. Perform bitumen tests to determine bitumen quality, type and     |
|                     | grades.                                                             |
|                     | 3. Produce trial mixes of plastic concrete.                         |
|                     | 4. Carry out Marshall stability and flow tests.                     |
|                     | 5. Carry out Super pave tests.                                      |
| Design              | This course does not include design activities or projects.         |
| Activities/Projects |                                                                     |



|            |                                                    | ſ                |
|------------|----------------------------------------------------|------------------|
| Course     | Student Learning Outcomes                          | Program Outcomes |
| learning   | (S.L.O.)                                           | (P.O.)           |
| Objectives |                                                    |                  |
| (C.L.O.)   |                                                    |                  |
| Course     | Recognize the required aggregate properties to     | [ a, b , c ]     |
| learning   | produce high quality paving material               |                  |
| objective- |                                                    |                  |
| 1          |                                                    |                  |
| Course     | Conduct standard tests on asphalt binder to verify | [b]              |
| learning   | compliance with specification.                     |                  |
| objective- |                                                    |                  |
| 2          |                                                    |                  |
| Course     | Design paving mixture according to local design    | [ a, b ]         |
| learning   | practice.                                          |                  |
| objective- |                                                    |                  |
| 3          |                                                    |                  |
| Course     | Design Rigid pavement structure.                   | [ a, e, k ]      |
| learning   |                                                    |                  |
| objective- |                                                    |                  |
| 4          |                                                    |                  |
| Course     | Recognize the different activities and methods     | [ a , e, k ]     |
| learning   | used in highway construction.                      |                  |
| objective- |                                                    |                  |
| 5          |                                                    |                  |
| Course     | Identify common cause of some pavement             | [ a , b, k ]     |
| learning   | distresses and corrective activities.              |                  |
| objective- |                                                    |                  |
| 6          |                                                    |                  |

| Course Contribution to       | Engineering science | 60 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 40 % |



| Course Code   | CE 251          |       |      |      |
|---------------|-----------------|-------|------|------|
| Course Title  | Fluid Mechanics |       |      |      |
| Year / Level  |                 | 2 / 5 | 5    |      |
| Hours         | Credit          | Lec.  | Lab. | Tut. |
| 110015        | 3               | 2     | 2    | 1    |
| Prerequisites |                 | PHYS  | 102  |      |

| Course          | This course introduces an introduction to fluid mechanics. Through                                  |
|-----------------|-----------------------------------------------------------------------------------------------------|
| Description     | this course student will be able to emphasize the fundamental                                       |
| 1               | concepts and problem solving techniques. This course will cover                                     |
|                 | fluid properties, fluid statics, fluid kinematics, control volume                                   |
|                 | analysis, dimensional analysis, Flow through Pipes, and the                                         |
|                 | applications of continuity, energy, and momentum equations. The                                     |
|                 | student will be able to carry out the dimensional analysis to                                       |
|                 | problems and able to use the similarities techniques. in addition,                                  |
|                 | design of open channel cross section for different shapes, best                                     |
|                 | hydraulic sections, specific energy, critical flow, hydraulic jump,                                 |
|                 | flow measurements, gradually varied flow, pump and turbines will                                    |
|                 | be covered.                                                                                         |
| Textbook        | Munson, Young, and Okiishi, Fundamentals of Fluid Mechanics 6,                                      |
|                 | Ed., Wiley, 2009, ISBN 9780470262849.                                                               |
| References      | 1. J.A. Roberson and C.T. Crowe, Engineering Fluid                                                  |
|                 | Mechanics, 7th Ed., Houghton Mifflin                                                                |
|                 | 2. Open Channel Hydraulics, V.T. Chow, Mc-Graw Hill,                                                |
|                 | ISBN 978-0670107762.                                                                                |
|                 | 3. 2. D.F. Young, B.R. Munson, T.H. Okiishi, A Brief                                                |
|                 | Introduction to Fluid Mechanics, 2nd Ed., John Wiley &                                              |
|                 | Sons, Inc                                                                                           |
| Course learning | 1. To Discover fluid properties, dimensions, and units[a,k]                                         |
| Objectives      | Application                                                                                         |
| (C.L.O.)        | 2. To Describe hydraulic pressure devices exerted by non-                                           |
|                 | compressible fluid on a submerged object, and the location                                          |
|                 | and magnitude of the resultant force of the fluid on the                                            |
|                 | object [a,b,e,k] (Evaluation)                                                                       |
|                 | 3. To create Buoyancy principle and accelerated masses (b, a)                                       |
|                 | (Synthesis)                                                                                         |
|                 | 4. To develop the principles of continuity, momentum and                                            |
|                 | energy equations [e, b, a] (Synthesis)                                                              |
|                 | 5. To develop experiments to measure fluid properties in a                                          |
|                 | actual environmental problem [b,e,g] (Synthesis)                                                    |
|                 | 6. To apply dimensional analysis and similarity techniques to different problems [a,k], (Synthesis) |
|                 | 7. Classification of flow and computation of velocity in open                                       |
|                 | channel (a, k)                                                                                      |
|                 |                                                                                                     |



| 8. Derivation of most economical channel sections of         |
|--------------------------------------------------------------|
| different geometry[a, k]                                     |
| 9. Calculation of specific energy head, alternate depths,    |
| critical depth, and hydraulic jump [a,k]                     |
| 10. Classification of turbines and pump and analysis of flow |
| within turbines and pumps. [a, k]                            |

| Descriptive         | 1- Fundamental basics (Dimensions and units, Fluid                                                           |
|---------------------|--------------------------------------------------------------------------------------------------------------|
| Course Topics       | properties- density- specific weight- specific gravity)                                                      |
| 1                   | 2- Pressure devices measurements - Hydrostatic pressure                                                      |
|                     | force- buoyancy force- Introduction to fluid kinematics)                                                     |
|                     | 3- Continuity equations, energy equation and momentum                                                        |
|                     | equation and applications                                                                                    |
|                     | 4- Dimensional analysis – methods for dimensional analysis-                                                  |
|                     | Hydraulic modeling – advantage, disadvantages, type of                                                       |
|                     | similarity, application.                                                                                     |
|                     | 5- Open Channel Flow- Different types of channels, different                                                 |
|                     | types of flow (uniform/non-uniform, steady/unsteady),                                                        |
|                     | computation of velocity, most economical channel                                                             |
|                     | section, specific energy, critical flow, hydraulic jump,                                                     |
|                     | gauging flumes, Non-uniform flow equation, back water                                                        |
|                     | and draw down curve                                                                                          |
|                     | 6- Hydraulic Measurement- Stage or water level                                                               |
|                     | measurements, velocity measurement and discharge                                                             |
|                     | measurement by area velocity method and dilution                                                             |
|                     | technique, Stage discharge relationship, shifting control.                                                   |
|                     | 7- Flow Through Pipes- Flow through Pipes mainly                                                             |
|                     | emphasized on head-loss in pipe flow, flow through parallel and series connection and pipe network analysis. |
|                     | <ul><li>8- Hydraulic Pumps and Turbines- different types of turbines</li></ul>                               |
|                     | (inward flow, outward flow and axial flow) and pumps                                                         |
|                     | (centrifugal pumps), different inlet and outlet vector                                                       |
|                     | diagrams of flow, and hydraulic efficiency.                                                                  |
| Experimental        | Fluid Properties- Calibration of Burdon Gauge- hydrostatic                                                   |
| Work                | pressure force- momentum force- pipe losses- specific energy-                                                |
|                     | hydraulic jump- pumps                                                                                        |
| Design              | This course does not include design activities or projects.                                                  |
| Activities/Projects |                                                                                                              |



| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                     | Program Outcomes<br>(P.O.) |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| C.L.O.1                                      | To Discover fluid properties, dimensions, and units                                                                                                                                       | [ a, k ]                   |
| C.L.O.2                                      | To Describe hydraulic pressure devices exerted<br>by non-compressible fluid on a submerged<br>object, and the location and magnitude of the<br>resultant force of the fluid on the object | [ a, b, e, k ]             |
| C.L.O.3                                      | To create Buoyancy principle and accelerated masses                                                                                                                                       | [ a, b ]                   |
| C.L.O.4                                      | To develop the principles of continuity, momentum and energy equations                                                                                                                    | [ a, b, e ]                |
| C.L.O.5                                      | To develop experiments to measure fluid properties in a actual environmental problem                                                                                                      | [ b, e, g]                 |
| C.L.O.6                                      | To apply dimensional analysis and similarity techniques to different problems                                                                                                             | [ a, k ]                   |
| C.L.O.7                                      | Classification of flow and computation of velocity in open channel                                                                                                                        | [ a, k ]                   |
| C.L.O.8                                      | Derivation of most economical channel sections of different geometry                                                                                                                      | [ a, k ]                   |
| C.L.O9                                       | Calculation of specific energy head, alternate depths, critical depth, and hydraulic jump                                                                                                 | [ a,k]                     |
| C.L.O.10                                     | Classification of turbines and pump and analysis<br>of flow within turbines and pumps                                                                                                     | [ a, k ]                   |

| Course Contribution to       | Engineering science | 80 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 20 % |



| Course Code   | CE 352    |         |           |        |
|---------------|-----------|---------|-----------|--------|
| Course Title  | Hydrology | and W   | ater Resc | ources |
|               | ]         | Enginee | ring      |        |
| Year / Level  |           | 3 / 8   | }         |        |
| Hours         | Credit    | Lec.    | Lab.      | Tut.   |
| 110015        | 3         | 2       | 2         | 1      |
| Prerequisites |           | CE 25   | 51        |        |

| Course          | The course has been presented with six chapters. The hydrologic               |
|-----------------|-------------------------------------------------------------------------------|
| Description     | Cycle and World Water Balance are covered in Chapter 1. Chapter               |
| 1               | 2 is dealt with Measurement and Analysis of Precipitation. Chapter            |
|                 | 3 covers Losses from the Precipitation- Infiltration, Evaporation             |
|                 | and Evapo-transpiration. In Chapter 4, Surface Flow Yield from a              |
|                 | Catchment is covered. Development of Direct Run-off Hydrograph                |
|                 | and Unit Hydrograph are dealt in Chapter 5. Ground Water and                  |
|                 | Conjunctive use of Ground and Surface Water covered in Chapter                |
|                 | 6.                                                                            |
| Textbook        | Subramanya, K., Engineering Hydrology, 2nd Edition, Tata                      |
|                 | McGraw-Hill Publishing Company Ltd., ISBN 978 0070107762                      |
| References      | 1. Applied Hydrology, V.T.Chow, International Edition, ISBN                   |
|                 | 978-0071001748                                                                |
|                 | 2. Handbook of Hydrology, David Maidment, International                       |
|                 | Edition,ISBN 978-0070397323                                                   |
| Course learning | 1. Analysis of Hydrologic Cycle, Water budget equation and                    |
| Objectives      | water balance studies.                                                        |
| (C.L.O.)        | 2. Computation of average rainfall and depth-area-duration                    |
|                 | relationship,                                                                 |
|                 | 3. Calculation of infiltration, infiltration capacity values and              |
|                 | infiltration indices                                                          |
|                 | 4. Methods of Evaporation estimation and Measurement of reservoir evaporation |
|                 | 5. Computation of Evapotranspiration                                          |
|                 | 6. Development of flow duration curve and flow mass curve.                    |
|                 | 7. Estimation of Direct Runoff and Direct Runoff hydrograph                   |
|                 | 8. Derivation of Unit Hydrograph                                              |
|                 | 9. Computation of ground water yield from a well in confined                  |
|                 | and unconfined aquifer.                                                       |
|                 | 10. Conjunctive use of ground and surface water for an                        |
|                 | irrigation project.                                                           |



| Descriptive         | 1- Hydrologic Cycle and World Water Budget- Introduction,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Topics       | Hydrologic Cycle, World water Inventory, History of Hydrology,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | Applications in Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | 2- Measurement and Analysis of Precipitation- Forms of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | precipitation, Measurement, Raingauge Network, Preparation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Data, Mean Precipitation over an area, Depth-area-duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | relationships                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | 3- Losses from Precipitation- (1) Evaporation:- Evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | process, Emperical Evaporation Formula, Reservoir Evaporation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | (2) Evapotranspiration:- Transpiration, Evapotranspiration,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | Measurement of Evapotranspiration (3) Infiltration:- Infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | Process, Infiltration Capacity, Measurement of Infiltration,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | Infiltration Indices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | 4- Surface Flow Yield- Hydrograph, Yield (Annual Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | Volume), Flow duration Curve, Flow Mass Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | 5- Development of Direct Run-off Hydrograph and Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Hydrograph –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | Factors affecting Flood Hydrograph, Components of Hydrograph,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Base Flow Separation, Effective Rainfall, Unit Hydrograph,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | Derivation of Unit Hydrograph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | 6- Ground Water and Conjunctive Use of Surface and Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | Water- Introduction, Forms of Subsurface Water, Aquifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | Properties, Wells, Yields through Well, Conjunctive use,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | Estimation and use of Surface and Ground Water Potential.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Experimental        | No laboratory. Require to Develop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Work                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Design              | This course does not include design activities or projects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Activities/Projects | G and the grade of the second s |



| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                  | Program Outcomes<br>(P.O.) |
|----------------------------------------------|----------------------------------------------------------------------------------------|----------------------------|
| C.L.O.1                                      | 1. Analysis of Hydrologic Cycle, Water budget equation and water balance studies.      | [ a, k ]                   |
| C.L.O.2                                      | 2. Computation of average rainfall and depth-<br>area-duration relationship            | [ a,k ]                    |
| C.L.O.3                                      | 3. Calculation of infiltration, infiltration capacity values and infiltration indices. | [ a, k ]                   |
| C.L.O.4                                      | 4. Methods of Evaporation estimation and Measurement of reservoir evaporation.         | [ a, e ]                   |
| C.L.O.5                                      | 5. Computation of Evapotranspiration                                                   | [ a, e ]                   |
| C.L.O.6                                      | 6. Development of flow duration curve and flow mass curve.                             | [ a,b,k ]                  |
| C.L.O.7                                      | 7. Estimation of Direct Runoff and Direct Runoff hydrograph                            | [ a,e ]                    |
| C.L.O.8                                      | 8. Derivation of Unit Hydrograph .                                                     | [ b,e,k ]                  |
| C.L.O9                                       | 9. Computation of ground water yield from a well in confined and unconfined aquifer.   | [ a,e]                     |
| C.L.O.10                                     | 10. Conjunctive use of ground and surface water for an irrigation project.             | [ b,e,k ]                  |

| Course Contribution to       | Engineering science | 80 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 20 % |



| Course Code   | CE 261                       |         |        |      |
|---------------|------------------------------|---------|--------|------|
| Course Title  | Environnemental Microbiology |         |        |      |
| Year / Level  |                              | 2/6     |        |      |
| Hours         | Credit                       | Lec.    | Lab.   | Tut. |
| 110015        | 3                            | 3       | -      | -    |
| Prerequisites | ENG                          | 102 - C | HEM 10 | 1    |

| Course          | This class provides a general introduction to the diverse roles of          |
|-----------------|-----------------------------------------------------------------------------|
| Description     | microorganisms in natural and artificial environments. It will cover        |
| Description     | topics including: cellular architecture, energetics, and growth;            |
|                 |                                                                             |
|                 | evolution and gene flow; population and community dynamics;                 |
|                 | water and soil microbiology; biogeochemical cycling; and                    |
|                 | microorganisms in biodeterioration and bioremediationThe                    |
|                 | course has been presented in five chapters as below:                        |
|                 | Chapter 1 : Introduction to Environmental microbiology                      |
|                 | Chapter 2 : Microbial diversity, Growth & Metabolism                        |
|                 | Chapter 3 : Industrial microbiology                                         |
|                 | Chapter 4 : Contaminant biodegradation                                      |
|                 | Chapter 5 : Microbiology of Engineered Environmental Systems                |
| Textbook        | Madigan, M., J. Martinko, and J. Parker. Brock Biology of                   |
|                 | Microorganisms. 10th ed. New York: Prentice Hall, 2002.                     |
|                 | ISBN: 0130662712.                                                           |
| References      | 1. Brock Biology Of Microorganisms, 13th Ed, by Madigan •                   |
|                 | et al., Prentice Hall, 2012.                                                |
|                 | 2. MICROBIOLOGY: An Evolving Science, 2nd Ed. By •                          |
|                 | Slonczewski and Foster, Norton Publishing, 2011                             |
| Course learning | 1. Scope of microbiology. Microbial characterization : prokaryotes          |
| Objectives      | and                                                                         |
| (C.L.O.)        | eukaryotes cell structure.                                                  |
| ` '             | 2. Microbial nutrition and cultivation, Microbial growth control :          |
|                 | principles, physical and chemical agents                                    |
|                 | 3. Microbial ecology : air, water, and soil microbiology                    |
|                 | 4. Microbial metabolisms. Microbial genetics : inheritance and              |
|                 | variability, genetics engineering, Work mechanism and inhibition            |
|                 | of enzymatic molecules, control of enzyme activities, enzyme                |
|                 | kinetics                                                                    |
|                 | 5.Microbiological application in food processing industries,                |
|                 | beverages industries etc.                                                   |
|                 | 6. Aerobic respirations, diversity of aerobic metabolism,                   |
|                 | fermentation, anaerobic respirations, anaerobic food chains,                |
|                 | autotrophy, regulation of activity.                                         |
|                 | 7. Detoxification of inorganic and organic pollutants by                    |
|                 |                                                                             |
|                 | microorganisms<br>8 Riodatorioration solid and liquid wastes bioromodiation |
|                 | 8.Biodeterioration, solid and liquid wastes, bioremediation,                |

| biodegradation, biological pest control.                             |
|----------------------------------------------------------------------|
| 9. Microbes and diseases : resistance, host-parasite interactions,   |
| immune response, antibiotics and other chemical agents.              |
| 10.Evaluate the feasibility of bioremediation strategies to mitigate |
| adverse ecological/health impacts of organic pollutants in           |
| environmental media and engineer appropriate controls to prevent     |
| undesired microbial infestation.                                     |

| Description         | 1. Inter de dien de Englise mandel mitentielen Commenselleter    |
|---------------------|------------------------------------------------------------------|
| Descriptive         | 1: Introduction to Environmental microbiology- Scope, syllabus,  |
| Course Topics       | requirements, history of (environmental) microbiology.           |
|                     | 2: Microbial diversity, Growth & Metabolism- Aerobic             |
|                     | respirations, diversity of aerobic metabolism, fermentation,     |
|                     | anaerobic respirations, anaerobic food chains, autotrophy,       |
|                     | regulation of activity.                                          |
|                     | e i                                                              |
|                     | 3: Industrial microbiology -microbiological application for      |
|                     | industries, food microbiology.                                   |
|                     | 4: Contaminant biodegradation-Biodeterioration, solid and liquid |
|                     | wastes, bioremediation, biodegradation, biological pest control. |
|                     | 5: Microbiology of Engineered Environmental Systems- Predict     |
|                     | long-term sequence of microbially-mediated transformation        |
|                     | reactions following release of an organic material into an       |
|                     | environmental system.                                            |
| <b>Г</b> ' (1       |                                                                  |
| Experimental        | No laboratory.                                                   |
| Work                |                                                                  |
| Design              | This course include design activities or projects.               |
| Activities/Projects |                                                                  |



| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                                                                       | Program Outcomes<br>(P.O.) |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| C.L.O.1                                      | 1. Metabolism, anabolism, key enzymes,<br>biosynthesis, nutrient assimilation, fuelling<br>reactions, energetics.                                                                                                                           | [ a,k ]                    |
| C.L.O.2                                      | 2. Chemical composition of microbial cells, cell structure,                                                                                                                                                                                 | [ a,k ]                    |
| C.L.O.3                                      | 3. Genetic elements, mutation and genetic exchange,                                                                                                                                                                                         | [ a, k ]                   |
| C.L.O.4                                      | 4. Use of tables and nomograms for<br>Hydraulic computations for the Design of<br>sewers                                                                                                                                                    | [ a, k ]                   |
| C.L.O.5                                      | 5. Microbiological industry development, scope of microbiological industries,                                                                                                                                                               | [ a, e ]                   |
| C.L.O.6                                      | 6. Microbes in mine industries, microbes in waste treatment industries.                                                                                                                                                                     | [ a,k ]                    |
| C.L.O.7                                      | 7. Role of microorganisms in petroleum biodegradation                                                                                                                                                                                       | [ a,e,k ]                  |
| C.L.O.8                                      | 8. Geochemical cycling of elements, climate control, detoxification of pollutants                                                                                                                                                           | [ a,e,k ]                  |
| C.L.O9                                       | 9. Different methods for the characterization of microbial communities (microscopic, molecular, biochemical) and decide which one to apply in order to attempt at solving major open problems such as reducing drug resistance in biofilms, | [ a,e]                     |
| C.L.O.10                                     | 10. Optimizing landfills degradation of waste<br>and use of landfill byproducts such as methane<br>as alternative energy.                                                                                                                   | [e,k ]                     |

| Course Contribution to       | Engineering science | 80 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 20 % |



| Course Code   | CE 462               |      |      |      |
|---------------|----------------------|------|------|------|
| Course Title  | Sanitary Engineering |      |      |      |
| Year / Level  | 4/10                 |      |      |      |
| Hours         | Credit               | Lec. | Lab. | Tut. |
| 110015        | 3                    | 2    |      | 2    |
| Prerequisites | CE 261               |      |      |      |

| Course                                    | Water quality - sources of water - water collection - water                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                               | purification - water distribution - water desalination - sewerage<br>works - sources of sewage - sewerage collection works sewerage -<br>treatment works - disposal of sewage                                                                                                                                                                       |
| Textbook                                  | Mines, R., Lackey, L., "Introduction to Environmental Engineering", Prentice-Hall, 2009                                                                                                                                                                                                                                                             |
| References                                | <ol> <li>Metcalf and Eddy, Wastewater Engineering, Treatment and<br/>Reuse, Tata McGraw- Hill Publication,, International Edition,<br/>ISBN 0070418780</li> <li>Municipal and Rural Sanitation. By Victor M. Ehlers and Ernest<br/>W. Steel. New York: McGraw Hill Book Company, 1927. Pp. xi,<br/>448</li> </ol>                                   |
| Course learning<br>Objectives<br>(C.L.O.) | <ol> <li>Understanding of basics of sanitary engineering, water supply<br/>and pollution</li> <li>Ability to calculate water usage and predict future usage based<br/>on population forecast</li> <li>Analyze and design water distribution system and sewer system</li> <li>Design water purification and waste water treatment systems</li> </ol> |

| Descriptive<br>Course Topics  | Definition of environmental engineering and pollution of water -<br>water sources - water quality - water consumption - design period<br>of water works - population studies and forecasting - water<br>collection - ground water - surface water - purification of water -<br>sedimentation - coagulation - filtration - water disinfection -<br>demineralization of water - water desalination - water distribution<br>works - High lift pumping station - pipe networks - elevated<br>storage tanks - sewer works - sewer systems - collection of<br>wastewater composition and characteristics of sewage - treatment<br>works - primary treatment works - biological treatment -trickling<br>filters - activated sludge treatment - sewage disposal works -<br>aludge tendent and disposal |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | sludge treatment and disposal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Experimental<br>Work          | No Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Design<br>Activities/Projects | This course does not include design activities or projects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| Course<br>learning<br>Objectives | Student Learning Outcomes<br>(S.L.O.)                                                     | Program Outcomes<br>(P.O.) |
|----------------------------------|-------------------------------------------------------------------------------------------|----------------------------|
| (C.L.O.)                         |                                                                                           |                            |
| C.L.O.1                          | Understanding of basics of sanitary engineering, water supply and pollution               | a,e,k                      |
| C.L.O.2                          | Ability to calculate water usage and predict<br>future usage based on population forecast | a,e,k                      |
| C.L.O.3                          | Analyze and design water distribution system and sewer system                             | c, e                       |
| C.L.O.4                          | Design water purification and waste water treatment systems                               | c, e                       |

| Course Contribution to | Engineering science | 60 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 40 % |



| Course Code   | CE 371                   |      |      |      |
|---------------|--------------------------|------|------|------|
| Course Title  | Construction Engineering |      |      |      |
| Year / Level  | 3 / 8                    |      |      |      |
| Hours         | Credit                   | Lec. | Lab. | Tut. |
| 110015        | 3                        | 2    | -    | 2    |
| Prerequisites | CE 317                   |      |      |      |

| Course<br>Description | Types, selection, utilization, and unit cost of construction equipment<br>regarding soil compaction and stabilization, excavation and earthmoving<br>operations. Formwork design. detailed cost estimation for civil works.<br>project control. |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Textbook              | - "Construction Planning, Equipment, and Methods. 7th edition. By R.L. Peurify and C. J. Schexnayder. McGraw Hill, 2006.                                                                                                                        |  |
| References            | - Construction Estimating Using Excel. Steven J. Peterson, Prentice Hall, 2007.                                                                                                                                                                 |  |
| Course learning       | 1) Describe the characteristics of certain construction equipment e.g.                                                                                                                                                                          |  |
| Objectives            | Dozers, Scrapers, Compactors, Excavating equipment, and Trucks.                                                                                                                                                                                 |  |
| (C.L.O.)              | 2) Calculate the productivity and unit cost of using certain construction<br>equipment e.g. Dozers, Scrapers, Compactors, Excavating equipment,<br>and Trucks.                                                                                  |  |
|                       | 3) Design a wooden formwork system for a slab, wall and column.                                                                                                                                                                                 |  |
|                       | 4) Prepare detailed cost estimation for civil works.                                                                                                                                                                                            |  |
|                       | 5) Evaluate the performance of a project using Earned Value metrics.                                                                                                                                                                            |  |
|                       | 6) Practice long life learning through identifying new course topics, locating sources of information, and reporting the results.                                                                                                               |  |

| Descriptive Course  | 1- Construction Productivity                                |  |
|---------------------|-------------------------------------------------------------|--|
| Topics              | 2-Labor & EQP cost                                          |  |
|                     | 3. Compaction and Stabilization Equipment                   |  |
|                     | 4. Machine Equipment Power Requirements                     |  |
|                     | 5. Dozers, Excavators, Compactors, Graders & Hauling        |  |
|                     | 6. Q.S & detailed estimate of Civil Works                   |  |
|                     | 7. Project Control                                          |  |
|                     | 8. Formwork Design                                          |  |
|                     | 9. Life Long Learning                                       |  |
| Experimental Work   | This course does not include experimental work.             |  |
| Design              | This course does not include design activities or projects. |  |
| Activities/Projects |                                                             |  |



| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                         | Program Outcomes<br>(P.O.) |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course<br>learning<br>objective-1            | Describe the characteristics of certain<br>construction equipment e.g. Dozers, Scrapers,<br>Compactors, Excavating equipment, and Trucks                      | [ e, i, k ]                |
| Course<br>learning<br>objective-2            | Calculate the productivity and unit cost of using<br>certain construction equipment e.g. Dozers,<br>Scrapers, Compactors, Excavating equipment,<br>and Trucks | [ k ]                      |
| Course<br>learning<br>objective-3            | Design a wooden formwork system for a slab, wall and column                                                                                                   | [ b, k ]                   |
| Course<br>learning<br>objective-4            | Prepare detailed cost estimation for civil works.                                                                                                             | [ i, k ]                   |
| Course<br>learning<br>objective-5            | Evaluate the performance of a project using Earned Value metrics.                                                                                             | [ i, k ]                   |
| Course<br>learning<br>objective-6            | Practice long life learning through identifying<br>new course topics, locating sources of<br>information, and reporting the results.                          | [ a, i ]                   |

| Course Contribution to | Engineering science | 90 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 10 % |



| Course Code   |         | CE 47   | 72       |      |
|---------------|---------|---------|----------|------|
| Course Title  | Constru | ction M | Ianageme | ent  |
| Year / Level  | 4 / 10  |         |          |      |
| Hours         | Credit  | Lec.    | Lab.     | Tut. |
| 110015        | 3       | 2       | -        | 2    |
| Prerequisites | CE 371  |         |          |      |

| Course          | Characteristics of Construction Industry; project delivery systems. the design |  |  |
|-----------------|--------------------------------------------------------------------------------|--|--|
|                 | and construction process. construction contracting. construction planning.     |  |  |
| Description     |                                                                                |  |  |
|                 | cash flow. Conceptual cost estimation. Quality and Safety Management           |  |  |
| Textbook        | "Construction Management", Daniel W. Halpin, 3rd Edition, 2006, John           |  |  |
|                 | Wiley & Sons, New York.                                                        |  |  |
| References      | 1-Ghalot, P.S., Dhir, D.M., Construction Planning and Management, Wiley        |  |  |
|                 | Eastern                                                                        |  |  |
|                 | .Limited,1992                                                                  |  |  |
|                 | 2- Chitkara, K.K., Construction Project Management, Tata McGraw Hill .         |  |  |
|                 | Publishing Co, Ltd New Delhi,998                                               |  |  |
|                 | 3 -Punmia, B, C., Project Planning and Control with PERT and CPM, Laxmi .      |  |  |
|                 | ·PublicationsNew Delhi,1987                                                    |  |  |
| Course learning | 1. Recognize the construction industry environment including its               |  |  |
| Objectives      | characteristics, parties involved, legal structure, functions of management    |  |  |
| (C.L.O.)        | and the different types of construction projects.                              |  |  |
|                 | 2.Recognize the different activities involved in the development stages of     |  |  |
|                 | construction projects.                                                         |  |  |
|                 | 3. Develop schedules and cash flow for construction projects using the         |  |  |
|                 | critical path method (CPM).                                                    |  |  |
|                 | 4. Recognize types of construction estimates.                                  |  |  |
|                 | 5.Recognize professional issues such as quality management, material           |  |  |
|                 | management process, construction safety, and Value Engineering                 |  |  |
|                 | Technique.                                                                     |  |  |
|                 | 6. Understand professional and ethical responsibility.                         |  |  |
|                 | o. Chaerstand professional and cancal responsionity.                           |  |  |



| Descriptive         | 1. The Construction Environment                             |  |
|---------------------|-------------------------------------------------------------|--|
| Course Topics       | 2. Legal Structure and Functions of Management              |  |
|                     | 3. Design phase                                             |  |
|                     | 4. Bidding phase                                            |  |
|                     | 5. Saudi Tender Regulation                                  |  |
|                     | 6. Construction Phase                                       |  |
|                     | 7. Quality Management, Construction Safety, and Value       |  |
|                     | Engineering                                                 |  |
|                     | 8. Engineering Ethics                                       |  |
|                     | 9. Project planning                                         |  |
|                     | 10. Project Scheduling using CPM                            |  |
|                     | 11. Resource Management                                     |  |
|                     | 12. Project Cash Flow                                       |  |
| Experimental        | This course does not include experimental work.             |  |
| Work                |                                                             |  |
| Design              | This course does not include design activities or projects. |  |
| Activities/Projects |                                                             |  |

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                                     | Program Outcomes<br>(P.O.) |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course<br>learning<br>objective-1            | 1.Recognize the construction industry<br>environment including its characteristics,<br>parties involved, legal structure, functions of<br>management and the different types of<br>construction projects. | [ a, f, k ]                |
| Course<br>learning<br>objective-2            | 2.Recognize the different activities involved in<br>the development stages of construction<br>projects.                                                                                                   | [ a,k ]                    |
| Course<br>learning<br>objective-3            | 3.Develop schedules and cash flow for<br>construction projects using the critical path<br>method (CPM).                                                                                                   | [ a, k ]                   |
| Course<br>learning<br>objective-4            | 4. Recognize types of construction estimates.                                                                                                                                                             | [ a, f, k ]                |
| Course<br>learning<br>objective-5            | 5. Recognize professional issues such as quality<br>management, material management process,<br>construction safety, and Value Engineering<br>Technique.                                                  | [ a, f ]                   |
| Course<br>learning<br>objective-6            | 6.Understand professional and ethical responsibility.                                                                                                                                                     | [ a, k ]                   |

| <b>Course Contribution to</b> | Engineering science | 100 % |
|-------------------------------|---------------------|-------|
| <b>Professional Branches</b>  | Engineering design  | 00 %  |



| Course Code   |               | CE 28 | 31   |      |
|---------------|---------------|-------|------|------|
| Course Title  | Surveying (1) |       |      |      |
| Year / Level  | 2 / 6         |       |      |      |
| Hours         | Credit        | Lec.  | Lab. | Tut. |
| 110015        | 2             | 1     | 2    | 1    |
| Prerequisites | MATH 212      |       |      |      |

| Course<br>Description                     | This course presents the fundamentals of surveying with particular emphasis on<br>instrumental procedures and simple computation methods. Methods employed for<br>distance measurement, vertical and horizontal control, leveling, and measurement<br>of angles, bearing determination, traverse closure, area determination, and<br>construction layout are considered.                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook                                  | Elementary Surveying: An Introduction to Geomatics", (12th Edition) by Charles D. Ghilani and Paul R. Wolf (Hardcover - Jan 10, 2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| References                                | <ol> <li>Surveying (5th edition), McCormacm Jack C., Jack C. McCormac, 2003,<br/>Publisher: John Wiley &amp; Sons Inc.</li> <li>Surveying: With Construction Applications (6th edition), Barry F. Kavanagh,<br/>2008, Publisher: Prentice Hall.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Course learning<br>Objectives<br>(C.L.O.) | <ol> <li>Identify the fundamental principles of land surveying science.</li> <li>Classify sources and types of errors in surveying measurements.</li> <li>Apply the correction formulae to the measured distances using the tape.</li> <li>Compute the unknown survey parameters such as points coordinates , the reduced levels of the ground points, the area of a closed traverse and the related volumes and earthworks.</li> <li>Operate the automatic and digital level and digital Theodolite in field measurements.</li> <li>Measure the horizontal and vertical angles in a closed traverse using digital Theodolite.</li> <li>Evaluate the horizontal and vertical distance using stadia method.</li> </ol> |

| Descriptive   | 1- Basic and Fundamental of Surveying.                                                                                    |
|---------------|---------------------------------------------------------------------------------------------------------------------------|
| Course Topics | Introduction - Units of Measurement - International System of Units (SI) - Types and Branches of Surveying - Maps scales. |
|               | Units (31) - Types and Branches of Surveying - Maps scales.                                                               |
|               | 2- Theory of Errors in Observations                                                                                       |
|               | Direct and Indirect Observations - Errors in Measurements -                                                               |
|               | Mistakes - Sources of Errors in Making Observations - Types of                                                            |
|               | Errors - Precision and Accuracy - Eliminating Mistakes and                                                                |
|               | Systematic Errors - Probability - Most Probable Value - Residuals                                                         |
|               | - Measures of Precision - Interpretation of Standard Deviation -                                                          |
|               | Weights of Observations.                                                                                                  |

**BSCE Program** 



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة المدنية قسم الهندسة المدنية

|              | 3- Distance Measurements<br>Introduction - Pacing - Odometer Readings - Optical<br>Rangefinders - Tacheometry - Subtense Bar - Taping Equipment<br>and Accessories - Taping on Level Ground - Horizontal<br>Measurements on Sloping Ground - Slope Measurements -<br>Sources of Error in Taping - Combined Corrections in a Taping<br>Problem.                                                                                                                              |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 4- Angles, Azimuths and Bearings<br>Introduction - Units of Angle Measurement - Kinds of Horizontal<br>Angles - Direction of a Line - Azimuths - Bearings - Comparison<br>of Azimuths and Bearings - Computing Azimuths - Computing<br>Bearings.                                                                                                                                                                                                                            |
|              | 5- Leveling Survey<br>Definitions - Curvature and Refraction - Methods for Determining<br>Differences in Elevation - Categories of Levels - Telescopes -<br>Level Vials - Tilting Levels - Automatic Levels - Digital Levels -<br>Tripods - Hand Level - Level Rods – Field Procedures and<br>Computations - Carrying and Setting Up a Level - Differential<br>Leveling - Profile Leveling - Grid, Cross-Section, or Borrow-Pit<br>Leveling - Sources of Error in Leveling. |
|              | <ul> <li>6- Theodolite Survey</li> <li>Characteristics of Theodolites - Handling, Setting up, and Using a<br/>Theodolite - Observation of Horizontal and vertical Angles -<br/>Observation of Traverse Lengths - Selection of Traverse Stations</li> <li>- Traverse Field Notes - Referencing Traverse Stations - Angle<br/>Misclosure - Radial Traversing - Sources of Error in Traversing.</li> </ul>                                                                     |
|              | 7- Traverse Computations<br>Balancing Angles - Computation of Preliminary Azimuths or<br>Bearings - Departures and Latitudes - Departure and Latitude<br>Closure Conditions - Traverse Linear Misclosure and Relative<br>Precision - Traverse Adjustment - Rectangular Coordinates -<br>Computing Final Adjusted Traverse Lengths and Directions -<br>Mistakes in Traverse Computations.                                                                                    |
|              | 8- Area Calculations<br>Introduction - Methods of Measuring Area - Area by Division<br>Into Simple Figures - Area by Offsets from Straight Lines - Area<br>by Coordinates - Area by Double-Meridian Distance Method -<br>Area of Parcels with Circular Boundaries - Partitioning of Lands -<br>Area by Measurements from Maps - Sources of Error in<br>Determining Areas.                                                                                                   |
| Experimental | 1- Alignment of a line on the ground.                                                                                                                                                                                                                                                                                                                                                                                                                                       |

**BSCE Program** 

| Work                          | <ol> <li>Measuring slope and horizontal distance by the tape.</li> <li>Setting up the automatic and digital levels.</li> <li>Differential and profile levelling using the method of collimation.</li> <li>Measuring the height difference between survey points.</li> <li>Setting up the digital Theodolite.</li> <li>Measuring Horizontal angle by digital Theodolite.</li> <li>Measuring Vertical angle by digital Theodolite.</li> <li>Linear measurement using stadia method.</li> <li>Gradient between two survey points (A &amp; B).</li> <li>Closed traverse.</li> <li>Elevation of a high inaccessible point.</li> </ol> |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design<br>Activities/Projects | This course does not include design activities or projects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                    | Program<br>Outcomes<br>(P.O.) |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Course<br>learning<br>objective-1            | Identify the fundamental principles of land surveying science.                                                                                                                           | [ a, e ]                      |
| Course<br>learning<br>objective-2            | Classify sources and types of errors in surveying measurements.                                                                                                                          | [ a, e ]                      |
| Course<br>learning<br>objective-3            | Apply the correction formulae to the measured distances using the tape.                                                                                                                  | [ a, b, e ]                   |
| Course<br>learning<br>objective-4            | Compute the unknown survey parameters such as<br>points coordinates the reduced levels of the ground<br>points, the area of a closed traverse and the related<br>volumes and earthworks. | [ a, e, k ]                   |
| Course<br>learning<br>objective-5            | Operate the automatic and digital level and digital Theodolite in field measurements.                                                                                                    | [ a, b, k ]                   |
| Course<br>learning<br>objective-6            | Measure the horizontal and vertical angles in a closed traverse using digital Theodolite.                                                                                                | [ a, b, e ]                   |
| Course<br>learning<br>objective-7            | Evaluate the horizontal and vertical distance using stadia method.                                                                                                                       | [ a, e, k ]                   |

| Course Contribution to | Engineering science | 75 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 25 % |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة قسم الهندسة المدنية

| Course Code   | CE 382        |      |      |      |
|---------------|---------------|------|------|------|
| Course Title  | Surveying (2) |      |      |      |
| Year / Level  | 3 / 7         |      |      |      |
| Hours         | Credit        | Lec. | Lab. | Tut. |
| Hours         | 2             | 1    | 2    | 1    |
| Prerequisites | CE 281        |      |      |      |

| Course<br>Description              | In this course the main subject of study will be the calculation and<br>methods for the layout of individual control points for the construction of<br>roads and highways based on design requirements. It covers the<br>calculation and layouts of simple circular curves, compound and reverse<br>curves, and vertical curves. This course also presents the fundamental<br>principles of photogrammetry. It covers the photogrammetric optics<br>metric camera calibration, geometry of aerial photographs; photo<br>coordinates measurements and transformation, stereoscopic viewing,<br>parallax and orientations. Flight planning and cost estimation in aerial<br>mapping work are considered. This course also presents the fundamental<br>principles of GPS positioning. |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook                           | Elementary Surveying: An Introduction to Geomatics", (12th Edition) by<br>Charles D. Ghilani and Paul R. Wolf (2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| References                         | <ol> <li>Surveying (5th edition), McCormacm Jack C., Jack C. McCormac,<br/>2003, Publisher: John Wiley &amp; Sons Inc.</li> <li>Surveying: With Construction Applications (6th edition), Barry F.<br/>Kavanagh, Publisher: Prentice Hall,(2010).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Course                             | By the completion of the course, the students should be able to:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| learning<br>Objectives<br>(C.L.O.) | 1- Explain the principles of angles and distances measurements by using Total station instrument.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (C.E.O.)                           | 2- Calculate the elements of the horizontal and vertical curves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                    | 3- Operate Total Station to obtain survey measurements in the field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    | <ul><li>4- Compute the positions of survey points forming a horizontal and vertical curves.</li><li>5- Perform the calculations related to volumes and earthworks.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                    | 6- Apply the correction formulae to the measured data to obtain the corrected values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                    | 7- Explain the principles of aerial photographs and satellite positioning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| Description   | 1 Total Station Instruments                                          |
|---------------|----------------------------------------------------------------------|
| Descriptive   | 1- Total Station Instruments                                         |
| Course Topics | Characteristics of Total Station Instruments – Functions Performed   |
|               | by Total Station Instruments – Parts of a Total Station Instrument – |
|               | Handling and Setting Up a Total Station Instrument – Angle           |
|               | Observations – Elevation Differences – Traversing with Total         |
|               | Station Instruments – Computing Horizontal Lengths from Slope        |
|               | Distances – Sources of Error in Total Station Work.                  |
|               | 2- Horizontal Curves                                                 |
|               | Degree of Circular Curve – Definitions and Derivation of Circular    |
|               | Curve Formulas – Circular Curve Stationing – General Procedure of    |
|               | Circular Curve Layout by Deflection Angles – Computing               |
|               | Deflection Angles and Chords – Detailed Procedures for Circular      |
|               | Curve Layout by Deflection Angles – Circular Curve Layout by         |
|               | Coordinates Total Stations – Circular Curve Layout by Offsets –      |
|               | Compound and Reverse Curves – Sight Distance on Horizontal           |
|               | Curves – Sources of Error in Laying Out Circular Curves.             |
|               | 3- Vertical Curves                                                   |
|               | General Equation of a Vertical Parabolic Curve – High or Low Point   |
|               | on a Vertical Curve – Vertical Curve Computations Using the          |
|               |                                                                      |
|               | Tangent Offset Equation – Curve Computations by Proportion –         |
|               | Staking a Vertical Parabolic Curve – Computations for an Unequal     |
|               | Tangent Vertical Curve – Designing a Curve to Pass Through a         |
|               | Fixed Point – Sight Distance – Sources of Error in Laying Out        |
|               | Vertical Curves.                                                     |
|               | 4- Volumes and Earthworks                                            |
|               | Methods of Volume Measurement – The Cross-Section Method –           |
|               | Types of Cross Sections – Average-End-Area Formula –                 |
|               | Determining End Areas - Computing Slope Intercepts - Prismoidal      |
|               | Formula – Volume Computations – Unit-Area, or Borrow-Pit,            |
|               | Method – Contour-Area Method – Measuring Volumes of Water            |
|               | Discharge – Sources of Error in Determining Volumes – Mistakes.      |
|               | 5- Construction Survey                                               |
|               | Specialized Equipment for Construction Surveys – Horizontal and      |
|               | Vertical Control – Staking Out a Pipeline – Staking Pipeline Grades  |
|               | – Staking Out a Building – Staking Out Highways – Other              |
|               | Construction Surveys – Construction Surveys Using Total Station      |
|               | Instruments – 23.13 Sources of Error in Construction Surveys.        |
|               | 6- Photogrammetry                                                    |
|               | Aerial Cameras - Types of Aerial Photographs - Vertical Aerial       |
|               | Photographs – Scale of a Vertical Photograph – Ground Coordinates    |
|               | from a Single Vertical Photograph – Relief Displacement on a         |
|               | Vertical Photograph – Flying Height of a Vertical Photograph –       |
|               | Stereoscopic Parallax - Stereoscopic Viewing – Orthophotos –         |
|               | Ground Control for Photogrammetry – Flight Planning – Sources of     |
|               | Error in Photogrammetry.                                             |
|               | 7- Introduction to Global Satellite Systems                          |
|               | Overview of GPS – The GPS Signal – Reference Coordinate              |
|               | Systems – Fundamentals of Satellite Positioning – Errors in          |
|               | Systems – Fundamentals of Satellite Positioning – Errors in          |



|                     | Observations – Differential Positioning – Kinematic Methods –<br>Relative Positioning – Other Satellite Navigation Systems. |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Experimental        | 13- Setting up the Total Station.                                                                                           |  |  |
| Work                | 14- Measuring Horizontal angle using Total Station.                                                                         |  |  |
|                     | 15-Measuring Vertical angle using Total Station.                                                                            |  |  |
|                     | 16-Measuring the height difference between survey points.                                                                   |  |  |
|                     | 17- Measuring the slope and horizontal distances using Total Station.                                                       |  |  |
|                     | 18- Setting out the simple circular curve using Total Station.                                                              |  |  |
|                     | 19- Setting out the compound circular curve using Total Station.                                                            |  |  |
|                     | 20- Setting out the vertical curve using Total Station.                                                                     |  |  |
|                     | 21-Elevation of a high inaccessible point.                                                                                  |  |  |
|                     | 22- Measuring the angles and side lengths of the closed traverse.                                                           |  |  |
| Design              | This course does not include design activities or projects.                                                                 |  |  |
| Activities/Projects |                                                                                                                             |  |  |

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                               | Program<br>Outcomes<br>(P.O.) |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Course<br>learning<br>objective-1            | <ul> <li>Explain the principles of angles and distances measurements by using Total station instrument.</li> <li>Explain the principles of aerial photographs and satellite positioning.</li> </ul> | [ a, b, k ]                   |
| Course<br>learning<br>objective-2            | Calculate the elements of the horizontal and vertical curves.                                                                                                                                       | [ a, e ]                      |
| Course<br>learning<br>objective-3            | Operate Total Station to obtain survey measurements in the field and staking out construction survey.                                                                                               | [ a, b, k ]                   |
| Course<br>learning<br>objective-4            | Compute the positions of survey points forming a horizontal and vertical curves.                                                                                                                    | [ a, b, e ]                   |
| Course<br>learning<br>objective-5            | Perform the calculations related to volumes and earthworks.                                                                                                                                         | [ a, e ]                      |
| Course<br>learning<br>objective-6            | Apply the correction formulae to the measured data to obtain the corrected values.                                                                                                                  | [ a, e ]                      |

| Course Contribution to | Engineering science | 75 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 25 % |



# **Elective Courses**

| Course Code   | CE 421                 |      |      |      |
|---------------|------------------------|------|------|------|
| Course Title  | Structural Analysis II |      |      |      |
| Year / Level  | 4/9                    |      |      |      |
| Hours         | Credit                 | Lec. | Lab. | Tut. |
| nours         | 3                      | 3    | -    | -    |
| Prerequisites | CE 215                 |      |      |      |

|                                              | <b>Description</b><br>such as: method of slope-deflection, moment distribution and three<br>moment equation. Calculation of deflection for determinate beams an<br>frames by using unit load method. Analysis of tow hinged arche<br>Influence lines for statically indeterminate structures. Introduction to<br>matrix methods of structural analysis. Computer applications |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Textbook                                     | <ol> <li>Handout Notes, prepared by the lecturer.</li> <li>Hibbeler R.C.; "Structural Analysis", Eight Edition., Prentice<br/>Hall, 2012.</li> </ol>                                                                                                                                                                                                                          |  |
| References                                   | <ol> <li>Aslam Kassimali, "Structural Analysis", 4<sup>th</sup> edition, Cengage<br/>Learning, 2011.</li> <li>Wang, C.K, Intermediate Structural Analysis, 7th Ed., Mc Graw<br/>Hill, 2008.</li> <li>MegsonT.H.G. "Structural and Stress Analysis", Butterworth-<br/>Heinemann, 2000.</li> </ol>                                                                              |  |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>Understand indeterminate structure and methods of analysis.</li> <li>Analysis of indeterminate beams and frames by slope deflection method</li> </ol>                                                                                                                                                                                                                |  |
|                                              | 3. Analysis of indeterminate beams and frames without and with side-<br>sway by using moment distribution method.                                                                                                                                                                                                                                                             |  |
|                                              | 4. Calculation the deflection of trusses, beams and frames by using unit load method.                                                                                                                                                                                                                                                                                         |  |
|                                              | 5. Analysis of two pinned arches.                                                                                                                                                                                                                                                                                                                                             |  |
|                                              | 6. Apply influence line for indeterminate beams.                                                                                                                                                                                                                                                                                                                              |  |
|                                              | 7. Understand matrix method and its application for computer-based analysis of structure.                                                                                                                                                                                                                                                                                     |  |
| Deserintive                                  |                                                                                                                                                                                                                                                                                                                                                                               |  |
| Descriptive<br>Course Topics                 | 1. Review about determinate structures.                                                                                                                                                                                                                                                                                                                                       |  |
| ·                                            | 2. Concept of Static and Kinematic Indeterminacy, Degree of Freedom.                                                                                                                                                                                                                                                                                                          |  |
|                                              | 3. Methods of the Analysis for Indeterminate structures.                                                                                                                                                                                                                                                                                                                      |  |
|                                              | 4. Slope-Deflection Method                                                                                                                                                                                                                                                                                                                                                    |  |
|                                              | 5. Moment Distribution Method.                                                                                                                                                                                                                                                                                                                                                |  |
| BSCE Brogrom                                 | -<br>-                                                                                                                                                                                                                                                                                                                                                                        |  |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان ä كلية المندس قسم الهندسة المدنية

|                                           | 6. Deflection by unit load method.                                                                                                                            |                            |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
|                                           | ·                                                                                                                                                             |                            |  |
|                                           | 7. Analysis of two pinned arches.                                                                                                                             |                            |  |
|                                           | 8. Influence Line for Indeterminate Structures.                                                                                                               |                            |  |
|                                           | 9. Introduction to Matrix Method                                                                                                                              |                            |  |
|                                           | 10. Computer Application.                                                                                                                                     |                            |  |
| Experimental<br>Work                      | experimental work includes                                                                                                                                    |                            |  |
| Design<br>Activities/Projects             | This course does not include design activities or projects.                                                                                                   |                            |  |
| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                         | Program Outcomes<br>(P.O.) |  |
| Course learning objective-1               | An ability to apply knowledge of mathematics, science, and engineering to understand indeterminate structure                                                  | [ a ]                      |  |
| Course learning objective-2               | An ability to identify, formulate and solve engineering<br>problems using slope deflection method.                                                            | [ e ]                      |  |
| Course learning objective-3               | An ability to identify, formulate and solve structural<br>analysis problems using moment distribution method                                                  | [ e ]                      |  |
| Course learning objective-4               | An ability to identify, formulate and solve structural<br>engineering problems to calculate deflection of<br>trusses, beams and frames using unit load method | [ e ]                      |  |
| Course learning objective-5               | An ability to identify, formulate and solve structural<br>analysis problems involving analysis of two pinned<br>arches.                                       | [ e ]                      |  |
| Course learning<br>objective-6            | An ability to identify, formulate and solve structural analysis problems involving moving loads                                                               | [ e ]                      |  |
| Course learning objective-7               | An ability to use the techniques, skills, and modern<br>engineering tools like stiffness method necessary for<br>engineering practice.                        | [ k ]                      |  |

| Course Contribution to       | Engineering science | 75 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 25 % |

\_



# Course Syllabus

| Course Code   |         | CE 422                       |      |      |  |
|---------------|---------|------------------------------|------|------|--|
| Course Title  | Advance | Advanced Structural Analysis |      |      |  |
| Year / Level  |         | 4/9                          |      |      |  |
| Hours         | Credit  | Lec.                         | Lab. | Tut. |  |
| nours         | 3       | 3                            | -    | -    |  |
| Prerequisites |         | CE 421                       |      |      |  |

| Course      | Analysis of indeterminate structures by using numerical methods,   |  |  |  |
|-------------|--------------------------------------------------------------------|--|--|--|
| Description | flexibility method and stiffness method, finite difference method, |  |  |  |
|             | introduction to finite element method and computer application.    |  |  |  |
| Textbook    | 1. Kenneth M. Leet, Chia-Ming Uang, Anne M. Gilbert,               |  |  |  |
|             | Fundamentals of Structural Analysis, Third Edition, McGrawHill     |  |  |  |
| References  | 1. Harry H. West, Louis F. Geschwindner, Fundamentals of           |  |  |  |
|             | Structural Analysis, Second Edition, Wiley                         |  |  |  |
|             | 2. R. C. Coates, M. g. Coutie, F. K. Kong, Structural Analysis,    |  |  |  |
|             | Third Edition, Chapman and Hall.                                   |  |  |  |
| Course      | 1. Introduce flexibility method for analysis of statically         |  |  |  |
| learning    | indeterminate structures.                                          |  |  |  |
| Objectives  | 2. Introduce stiffness method for analysis of statically           |  |  |  |
| (Č.L.O.)    | indeterminate structures.                                          |  |  |  |
|             | 3. Introduce finite difference method for analysis of slabs        |  |  |  |
|             | 4. Introduce introduction to finite element method for analysis of |  |  |  |
|             | statically indeterminate structures                                |  |  |  |

| Descriptive                   | <i>1.</i> flexibility method for analysis of statically indeterminate structures. |
|-------------------------------|-----------------------------------------------------------------------------------|
| Course Topics                 | 2. Introduce stiffness method for analysis of statically indeterminate truss,     |
|                               | beams and frames.                                                                 |
|                               | 3. Introduce finite difference method for analysis of slabs                       |
|                               | 4. Introduce introduction to finite element method for analysis of statically     |
|                               | indeterminate structures.                                                         |
|                               | 5. Computer application.                                                          |
| Experimental<br>Work          | This course does not include experimental work.                                   |
| Design<br>Activities/Projects | This course does not include design activities or projects.                       |

| Course learning<br>Objectives<br>(C.L.O.)                                                                                            | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                                                                                                                                                                                                                                    | Program<br>Outcomes<br>(P.O.) |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Course learning<br>objective-1<br>Course learning<br>objective-2<br>Course learning<br>objective-3<br>Course learning<br>objective-4 | An ability to apply knowledge of mathematics, science,<br>and engineering to understand indeterminate structure<br>determinate-indeterminate structures, an ability to<br>identify, formulate and solve engineering problems using<br>slope deflection method and an ability to use the<br>techniques, skills, and modern engineering tools like<br>stiffness method necessary for engineering practice. | [a, e, k]                     |

| Course Contribution to | Engineering science | 80 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 20 % |

**BSCE Program** 



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة المدنية قسم الهندسة المدنية

## Course Syllabus

| Course Code   | CE 423             |      |      |      |
|---------------|--------------------|------|------|------|
| Course Title  | Advanced RC Design |      |      |      |
| Year / Level  | 4/9                |      |      |      |
| Hours         | Credit             | Lec. | Lab. | Tut. |
|               | 3                  | 3    | -    | -    |
| Prerequisites | CE 421             |      |      |      |

| Course      | This course is intended to complete the topics of                     |  |  |
|-------------|-----------------------------------------------------------------------|--|--|
| Description | reinforced concrete design not covered in compulsory                  |  |  |
| -           | courses. The course involves the study of check of                    |  |  |
|             | deflection in flexural elements. An introduction to                   |  |  |
|             | Prestressed concrete is also involved. This course                    |  |  |
|             | focuses also on the seismic design of reinforced concrete             |  |  |
|             | structures. Finally the course includes computer                      |  |  |
|             | applications and engineering drawing of reinforced                    |  |  |
|             | concrete details.                                                     |  |  |
| Textbook    | 1- ACI DESIGN HANDBOOK, Design of Structural                          |  |  |
|             | Reinforced Concrete Elements in Accordance with ACI                   |  |  |
|             | 318M-05, ACI SP-17M(09), American Concrete Institute.                 |  |  |
|             | 2- DESIGN AIDS, prepared by the instructor in                         |  |  |
|             | accordance with the Saudi Building Code (Concrete                     |  |  |
|             | Structures Requirements, SBC 304 and Concrete                         |  |  |
|             | Structures Commentary, SBC 304C).                                     |  |  |
| References  | 1- Hasson, M. N., "Structural Concrete- Theory and                    |  |  |
|             | Design", 3rd Edition, ADDISONWesley,                                  |  |  |
|             | 2005.<br>2. Soudi Building Code, Congrete Structures                  |  |  |
|             | 2- Saudi Building Code, Concrete Structures                           |  |  |
|             | Requirements, SBC 304.<br>3- Saudi Building Code (Concrete Structures |  |  |
|             | commentary, SBC 304C.                                                 |  |  |
|             | 4- Saudi Building Code, Loads and Forces                              |  |  |
|             | Requirements, SBC 301.                                                |  |  |
| Course      | 1- Identify the fundamentals of serviceability limit state,           |  |  |
| learning    | especially, deflection control.                                       |  |  |
| Objectives  | 2- Classify between different types of concrete elements              |  |  |
| (C.L.O.)    | based on internal applied force or moment.                            |  |  |
| (0.2.0.)    | 3- Design of prestressed concrete beams and estimation                |  |  |
|             | of prestressing losses                                                |  |  |
|             | 4- Prepare detailed design and workshop drawings to be                |  |  |
|             | execute in the field.                                                 |  |  |
|             | 5- Create small programs or spread sheets for analysis                |  |  |
|             | and design of concrete sections and elements.                         |  |  |
|             |                                                                       |  |  |

Descriptive1- Calculation of gross, cracked, and effective moments of<br/>inertia.

**BSCE Program** 



|                               | 2- Check of short term deflection according to ACI and SBC codes.                     |  |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
|                               | 3- Check of Long term deflection according to ACI and SBC                             |  |  |  |  |
|                               | codes.                                                                                |  |  |  |  |
|                               | 4- Introduction to prestressed concrete and allowable stresses.                       |  |  |  |  |
|                               | 5- Analysis of prestressed concrete simple beams.<br>6- Losses in prestressing force. |  |  |  |  |
|                               | 7- Seismic design of beams for flexure.                                               |  |  |  |  |
|                               | 8- Seismic design of beams for shear.                                                 |  |  |  |  |
|                               | 9- Seismic design of columns.<br>10 Seismic design of beam-column joints.             |  |  |  |  |
|                               | 11- Design spread sheets for analysis and design of concrete                          |  |  |  |  |
|                               | sections and elements.                                                                |  |  |  |  |
|                               | 12- Semester Project                                                                  |  |  |  |  |
| Experimental                  | This course does not include experimental work.                                       |  |  |  |  |
| Work                          |                                                                                       |  |  |  |  |
| Design<br>Activities/Projects | A project of a seismic design for a reinforced concrete building                      |  |  |  |  |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                                                                                           | Program<br>Outcomes<br>(P.O.) |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Course learning<br>objective-1            | <ol> <li>Calculation of gross, cracked, and effective<br/>moments of inertia.</li> <li>Check of short term deflection according to<br/>ACI and SBC codes.</li> <li>Check of Long term deflection according to<br/>ACI and SBC codes.</li> </ol> | [ a, e ]                      |
| Course learning<br>objective-2            | <ol> <li>Seismic design of beams for flexure.</li> <li>Seismic design of beams for shear.</li> <li>Seismic design of columns.</li> <li>Seismic design of beam-column joints.</li> </ol>                                                         | [ c, i, k ]                   |
| Course learning objective-3               | <ol> <li>Introduction to prestressed concrete and<br/>allowable stresses.</li> <li>Analysis of prestressed concrete simple<br/>beams.</li> <li>Losses in prestressing force.</li> </ol>                                                         | [ c, i, k ]                   |
| Course learning objective-4               | Preparing project shop drawings for all concrete elements in plans and cross sections                                                                                                                                                           | [ a, i, k ]                   |
| Course learning objective-5               | Preparing and design spread sheets for analysis and design of concrete sections and elements.                                                                                                                                                   | [ a, c, e, i, k ]             |

| <b>Course Contribution to</b> | Engineering science | 50 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 50 % |



| Course Code   | CE 424                           |      |      |      |
|---------------|----------------------------------|------|------|------|
| Course Title  | Advanced Steel Structures Design |      |      |      |
| Year / Level  | 4/9                              |      |      |      |
| Hours         | Credit                           | Lec. | Lab. | Tut. |
| nours         | 3                                | 3    | -    | -    |
| Prerequisites | CE 421                           |      |      |      |

| Course<br>Description                     | Analyze and design crane track girders and roof beams (purlins). Design of sections subjected to bending moment and normal force (frame elements). Design of bolted connections subject to different types of straining actions, (shear, tension, bending moment, individually and combination of these forces and moments). Design of hinged and fixed steel bases. Drawing of all details of members and connections. Computer application is used in the design.                                                                                                                                                                                                                                                       |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook                                  | "Lectures in The Design of Steel Structures", prepared by the instructor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| References                                | <ol> <li>ASIC Manual of Steel Construction.</li> <li>Salmon and Johnson "Steel Structures – Design and Behavior", Harper and Row publishers, Copies 1971 – 1989.</li> <li>"Structural Steel Design", (4th Edition) by Jack C. McCormac, (Hardcover - Jun 8, 2007).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Course learning<br>Objectives<br>(C.L.O.) | <ol> <li>Analyze roof beams and crane track girders.</li> <li>Design of beams subject to static and moving loads, such as; floor beams, roof beams and crane track girders.</li> <li>Design of frame elements, (sections subject to normal force and bending moment).</li> <li>Design of bolted connections subject to an individual shearing force, tension, bending moment, torsion and combinations of these forces and moments.</li> <li>Design of hinged and fixed steel bases.</li> <li>Develop complete workshop drawings of steel structures including all details of sections and connections.</li> <li>Design of roof and column bracing members</li> <li>Apply computer applications in the design.</li> </ol> |

| Descriptive<br>Course Topics1- Design of roof beams, (purlines).<br>2- Design of crane track girder.<br>3- Design of frame elements, (beam-column elements).<br>4- Introduction to types of the bolted connections with their concepts an<br>assumptions.<br>5- Design of connections subject to shearing forces.<br>6- Design of connections subject to eccentric shearing forces, (the case |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية المندس قسم الهندسة المدنية

|                               | shearing force and torsion)                                                                                                                               |  |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                               | 7- Design of connections subject to tensile forces.                                                                                                       |  |  |  |  |  |
|                               | 8- Design of connections subject to combined shearing and tension forces.                                                                                 |  |  |  |  |  |
|                               | 9- Design of connections subject to bending moment.                                                                                                       |  |  |  |  |  |
|                               | 10- Design of connections subject to combined shearing and tension forces and                                                                             |  |  |  |  |  |
|                               | bending moment.                                                                                                                                           |  |  |  |  |  |
|                               | 11- Design of hinged base of column.                                                                                                                      |  |  |  |  |  |
|                               | 12- Design of fixed base of column.                                                                                                                       |  |  |  |  |  |
|                               | 13- Drawing of the details of members, connections, bases,etc                                                                                             |  |  |  |  |  |
|                               | 14- Design of roof and column bracing members.                                                                                                            |  |  |  |  |  |
| Experimental<br>Work          | This course does not include any experimental work.                                                                                                       |  |  |  |  |  |
| Design<br>Activities/Projects | This course does not include projects. Lectures, assignments and home works in<br>the design prepare students to be able to perform the capstone project. |  |  |  |  |  |

#### Grade Distribution:

| Final Term | Second<br>Mid-Term | First<br>Mid-Term | Quiz | Homework | Work          |
|------------|--------------------|-------------------|------|----------|---------------|
| 50%        | 15%                | 15%               | 8%   | 12%      | Maximum Grade |

#### **Relationship of course to Program Outcomes (PO):**

|     | Program Outcomes               |   |   |   |   |   |   |   |   |   |   |   |   |   |         |
|-----|--------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---------|
| Pro | Program Criteria ABET Outcomes |   |   |   |   |   |   |   |   |   |   |   |   |   |         |
| 0   | n                              | m | l | k | j | i | h | g | f | e | d | c | b | a | CIE 312 |
|     |                                |   |   | 5 | - | - | - | - | - | 6 | - | 8 | - | 7 |         |

| Course learning<br>Objectives (C.L.O.) |                                                                                     |             |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------|-------------|--|--|
| C.L.O. (1)                             | An ability to analyze beams in the cases of static and moving loads.                | [ a, e, c ] |  |  |
| C.L.O. (2)                             | An ability to design beams in the cases of static and moving loads.                 | [ a, e, c ] |  |  |
| C.L.O. (3)                             | An ability to design frame elements.                                                | [ a, c, k ] |  |  |
| C.L.O. (4)                             | An ability to design connections at different types of loads and straining actions. | [ c, e ]    |  |  |
| C.L.O. (5)                             | An ability to design hinged and fixed steel bases.                                  | [ a, c, k ] |  |  |
| C.L.O. (6)                             | An ability to develop technical workshop drawings.                                  | [ a, k ]    |  |  |
| C.L.O. (7)                             | An ability to analyze and design bracing members.                                   | [ a, c ]    |  |  |
| C.L.O. (8)                             | An ability to use computer applications in the design.                              | [ a, c, k ] |  |  |

| Course Contribution to       | Engineering science | 20 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 80 % |



|                   | Course Syllabus                                       |                                                                                                                                           |                |          |           |          |                |  |  |  |
|-------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-----------|----------|----------------|--|--|--|
|                   |                                                       | Course Code                                                                                                                               |                | CE 4     | 36        |          |                |  |  |  |
|                   |                                                       | Course Title                                                                                                                              | Soi            | Stabi    | lization  |          |                |  |  |  |
|                   |                                                       | Year / Level                                                                                                                              |                | 4/9      | )         |          |                |  |  |  |
|                   |                                                       | Hours                                                                                                                                     | Credit         | Lec.     | Lab.      | Tut.     |                |  |  |  |
|                   |                                                       | nours                                                                                                                                     | 3              | 3        | -         | -        |                |  |  |  |
|                   |                                                       | Prerequisites                                                                                                                             |                | CE 3     | 32        |          |                |  |  |  |
|                   |                                                       | ·                                                                                                                                         |                |          | _         |          |                |  |  |  |
| Course            | -                                                     | This course is i                                                                                                                          |                |          |           |          |                |  |  |  |
| Descript          | ion                                                   | improvement. T                                                                                                                            |                |          |           |          |                |  |  |  |
|                   |                                                       | improvement ar                                                                                                                            |                |          |           |          |                |  |  |  |
|                   |                                                       | mechanical and physical and ch                                                                                                            |                |          |           |          |                |  |  |  |
|                   |                                                       | mechanical impr                                                                                                                           |                |          |           |          |                |  |  |  |
|                   |                                                       | grouting. The us                                                                                                                          |                |          |           |          |                |  |  |  |
|                   |                                                       | soil by granular                                                                                                                          |                |          |           |          |                |  |  |  |
| Textboo           | ok                                                    | 8- "Engineering I                                                                                                                         |                |          |           |          |                |  |  |  |
|                   |                                                       | Hausmann, M                                                                                                                               |                |          |           |          |                |  |  |  |
|                   |                                                       | N.Y., USA, 19                                                                                                                             |                |          |           |          |                |  |  |  |
| Reference         | ces                                                   | 7- "Geotechnical                                                                                                                          | •              | •        |           |          | ices", by      |  |  |  |
|                   |                                                       | Donald P. Coduto, (Hardcover - Jul 24, 1998).                                                                                             |                |          |           |          |                |  |  |  |
|                   |                                                       | <ul> <li>8- Applied Analysis in Geotechnics", by Fethi Azizi 2000,<br/>E&amp;FN Spon, Taylor and Francis, London and New York.</li> </ul> |                |          |           |          |                |  |  |  |
| Course            |                                                       | -                                                                                                                                         |                |          |           |          |                |  |  |  |
| Course<br>learnin |                                                       | <ol> <li>Identificat</li> <li>Studying</li> </ol>                                                                                         |                | •        |           | •        |                |  |  |  |
| Objectiv          | -                                                     | influencin                                                                                                                                | •••            | inpiov   | emento    | anu iau  | ,1013          |  |  |  |
| (C.L.O.           |                                                       | 3- Studying                                                                                                                               | 0              | s of me  | chanica   | I and hy | /dro           |  |  |  |
| <b>X</b>          | •                                                     | improvem                                                                                                                                  |                |          |           |          |                |  |  |  |
|                   |                                                       | 4- Studying                                                                                                                               | the fundame    | entals c | of physic | al and o | chemical       |  |  |  |
|                   |                                                       | •                                                                                                                                         | nents of soil. |          |           |          |                |  |  |  |
|                   |                                                       | 5- Studying                                                                                                                               | shallow and    | deep r   | nechani   | ical imp | rovements      |  |  |  |
|                   |                                                       | of soil.                                                                                                                                  | nonto hu odi   |          |           |          |                |  |  |  |
|                   |                                                       | <ol> <li>6- Improver</li> <li>7- Understar</li> </ol>                                                                                     |                |          |           |          | vriale for     |  |  |  |
|                   |                                                       | soil impro                                                                                                                                | -              | e or ge  | osynthe   | ale mate |                |  |  |  |
|                   |                                                       | 8- Understar                                                                                                                              |                | zation   | of soil b | v aranu  | ar stone       |  |  |  |
|                   |                                                       |                                                                                                                                           | other differe  |          |           | , 9      |                |  |  |  |
|                   |                                                       | 9- Studying                                                                                                                               | Vacuum and     | d surch  | arge pre  | eloading | methods        |  |  |  |
|                   |                                                       |                                                                                                                                           | oil improvem   |          |           |          |                |  |  |  |
|                   | 10-Understanding Vertical drains and PVDs application |                                                                                                                                           |                |          |           |          |                |  |  |  |
|                   |                                                       | 11-Studying Using micro-piles and soil nails for soil                                                                                     |                |          |           |          |                |  |  |  |
|                   |                                                       | reinforcement.<br>12-Conducting computer applications.                                                                                    |                |          |           |          |                |  |  |  |
|                   |                                                       |                                                                                                                                           | ig computer    | applica  | auons.    |          |                |  |  |  |
| _                 | I -                                                   |                                                                                                                                           |                |          |           | -        |                |  |  |  |
| Descriptive       |                                                       | - Introduction to                                                                                                                         |                |          |           |          |                |  |  |  |
| Course Topics     |                                                       | <ul> <li>Factors influer</li> <li>Concepts of m</li> </ul>                                                                                |                |          |           |          |                |  |  |  |
|                   | 3                                                     | <ul> <li>Concepts of m</li> </ul>                                                                                                         |                | anu ny   |           | overne   | 50115 01 5011. |  |  |  |
| DSCE Drogrom      |                                                       |                                                                                                                                           |                |          |           |          |                |  |  |  |

| KINGDOM OF SAUDI ARABIA             | 1)               | المملكة العربية السعودية |
|-------------------------------------|------------------|--------------------------|
| Ministry of Higher Education        |                  | وزارة التعليم العالي     |
| Jazan University                    | 2006             | جامعة جازان              |
| College of Engineering              | C                | كلية الهندسية            |
| <b>Civil Engineering Department</b> | JAZAN UNIVERSITY | قسم الهندسية المدنية     |
|                                     |                  |                          |

|                               | <ul> <li>4- Fundamentals of physical and chemical improvements of soil.</li> <li>5- Cement stabilization involving mix design.</li> <li>6- Lime stabilization of soil and overcome the problem of expansive soil.</li> <li>7- Shallow and deep compaction of soil.</li> <li>8- Vacuum-surcharge combined preloading methods for soft soil improvements.</li> <li>9- Vertical drains and PVDs applications.</li> </ul> |  |  |  |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                               | 10-Using micro-piles and soil nails for soil reinforcement.<br>11-Computer applications.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Experimental<br>Work          | This course does not include experimental work.                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Design<br>Activities/Projects | Lectures.                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |

| Course learning | Student Learning Outcomes                       | Program        |
|-----------------|-------------------------------------------------|----------------|
| Objectives      | (S.L.O.)                                        | Outcomes       |
| (C.L.O.)        | (0.1.0.)                                        | (P.O.)         |
| Course learning | Identification of the principles of soil        | [ a, k ]       |
| objective-1     | improvements.                                   |                |
| Course learning | Studying the types of improvements and          | [a, e, k ]     |
| objective-2     | factors influencing them.                       |                |
| Course learning | Studying the concepts of mechanical and         | [ a, b, k ]    |
| objective-3     | hydro improvements.                             |                |
| Course learning | Studying the fundamentals of physical and       | [ a, b, e, k ] |
| objective-4     | chemical improvements of soil.                  |                |
| Course learning | Studying shallow and deep mechanical            | [ a, b, e, k ] |
| objective-5     | improvements of soil.                           |                |
| Course learning | Understanding Improvements by admixture         | [ a, b, e, k ] |
| objective-6     | and grouting.                                   |                |
| Course learning | Understanding the use of geosynthetic           | [ a, b, e, k ] |
| objective-7     | materials for soil improvement.                 |                |
| Course learning | Understanding Stabilization of soil by granular | [ a, b, e, k ] |
| objective-8     | stone piles and other different piles.          |                |
| Course learning | Studying Vacuum and surcharge preloading        | [ a, b, e, k ] |
| objective-9     | methods for soft soil improvements.             |                |
| Course learning | Understanding Vertical drains and PVDs          | [ a, b, e, k ] |
| objective-10    | applications.                                   |                |
| Course learning | Studying Using micro-piles and soil nails for   | [ a, b, e, k ] |
| objective-11    | soil reinforcement.                             |                |
| Course learning | Conducting computer applications.               | [ a, b, e, k ] |
| objective-12    |                                                 |                |

| <b>Course Contribution to</b> | Engineering science | 80 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 20 % |



| ſ                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>urse Sylla</u>                                                                                                                                                                                                    | <u>bus</u>                                                                                                                      |                                                                                                                                          | -                                                                                                                                                         |                                                                                                                                                               |                                                                                                                                               |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | Course Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      | CE 43                                                                                                                           | 37                                                                                                                                       |                                                                                                                                                           |                                                                                                                                                               |                                                                                                                                               |
|                                              | Course Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | So                                                                                                                                                                                                                   | il Dyna                                                                                                                         | amics                                                                                                                                    |                                                                                                                                                           |                                                                                                                                                               |                                                                                                                                               |
|                                              | Year / Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4/9                                                                                                                                                                                                                  |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                               |                                                                                                                                               |
|                                              | Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Credit                                                                                                                                                                                                               | Lec.                                                                                                                            | Lab.                                                                                                                                     | Tut.                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                               |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                    | 3                                                                                                                               | -                                                                                                                                        | -                                                                                                                                                         |                                                                                                                                                               |                                                                                                                                               |
| l                                            | Prerequisites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      | CE 43                                                                                                                           | 36                                                                                                                                       |                                                                                                                                                           |                                                                                                                                                               |                                                                                                                                               |
| Course<br>Description                        | This course is inten<br>and soil dynamics,<br>element under ear<br>analysis. The cou<br>harmonic motion,<br>freedom system wi<br>the course is conce<br>dynamic elastic cor<br>factors affecting<br>constants. Studying<br>displacement meth<br>retaining walls durin<br>In addition to study<br>of liquefaction. Eva<br>studies. Factors a<br>liquefaction. Compu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nature of dy<br>thquake loa<br>rse involves<br>free and f<br>th and with<br>rning the dy<br>nstants. Pois<br>shear mod<br>dynamic e<br>ods for ac<br>ng earthqua<br>ing the lique<br>luation of lic<br>affecting lic | namic<br>ding, s<br>s the<br>orced<br>out da<br>namic<br>sson's<br>lulus,<br>arth pr<br>tive a<br>kes. M<br>efactior<br>quefact | loads, s<br>seismic<br>theory<br>vibratio<br>mping,<br>soil prop<br>ratio, Li<br>elastic<br>essure:<br>nd pass<br>odificatio<br>of soils | stress co<br>force fo<br>of vibra<br>on of a<br>vibration<br>perties:<br>quefacti<br>modulu<br>pseudo<br>sive cas<br>on of Co<br>s: definit<br>e in field | onditions<br>or pseudo<br>ation: de<br>single<br>n isolatio<br>dynamic<br>ion paran<br>us and<br>static mo<br>se. Beha<br>pulomb's<br>ion, mec<br>l. Vibratio | on soil<br>o static<br>finition,<br>degree<br>n. Also<br>moduli,<br>neters,<br>elastic<br>ethods,<br>vior of<br>theory.<br>hanism<br>on table |
| Textbook                                     | 9- "Hand book of<br>Vaidyanathan, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f Machine                                                                                                                                                                                                            | found                                                                                                                           | ations"                                                                                                                                  | by Sri                                                                                                                                                    | nivasulu,                                                                                                                                                     | P. &                                                                                                                                          |
| References                                   | 10-"Soil Dynamics<br>(Galgotia publica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and Mach                                                                                                                                                                                                             | nine F                                                                                                                          |                                                                                                                                          | ons", b                                                                                                                                                   | y Swam                                                                                                                                                        | nisaran,                                                                                                                                      |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>Identification of soil dynamics parameters.</li> <li>Definition the nature of dynamic loads, stress conditions on soil element under earthquake loading.</li> <li>Definition of the theory of vibration, harmonic motion, free and forced vibration of a single degree freedom system with and without damping, vibration isolation</li> <li>Definition factors affecting shear modulus, elastic modulus and elastic constants.</li> <li>Calculation the dynamic earth pressure: pseudo static methods, displacement methods for active and passive case.</li> <li>Understanding the behavior of retaining walls during earthquakes.</li> <li>Understanding the modification of Coulomb's theory.</li> <li>Studying the liquefaction zone in field.</li> <li>Evaluation of liquefaction using Standard Penetration Resistance data.</li> <li>Understanding the factors affecting liquefaction and measures</li> </ol> |                                                                                                                                                                                                                      |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                               |                                                                                                                                               |



| Descriptive                   | 1- Introduction to soil dynamics.                                          |
|-------------------------------|----------------------------------------------------------------------------|
| Course Topics                 | 2- Theory of vibration.                                                    |
| -                             | 3- Dynamic soil properties                                                 |
|                               | 4- Factors affecting shear modulus, elastic modulus and elastic constants. |
|                               | 5- Dynamic earth pressure                                                  |
|                               | <ol><li>Behavior of retaining walls during earthquakes.</li></ol>          |
|                               | 7- Liquefaction mechanism of soils.                                        |
|                               | 8- Liquefaction zone.                                                      |
|                               | 9- Factors affecting liquefaction and measures for antiliquefaction.       |
| Experimental                  | This course does not include experimental work.                            |
| Work                          |                                                                            |
| Design<br>Activities/Projects | This course does not include design activities or projects.                |

| Course learning                | Student Learning Outcomes                                                                                                       | Brogram             |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Objectives                     | (S.L.O.)                                                                                                                        | Program<br>Outcomes |
| (C.L.O.)                       | (0.2.0.)                                                                                                                        | (P.O.)              |
| Course learning<br>objective-1 | 1- Identification of soil dynamics parameters.                                                                                  | [a, k]              |
| Course learning<br>objective-2 | <ol> <li>Definition the nature of dynamic loads,<br/>stress conditions on soil element under<br/>earthquake loading.</li> </ol> | [a, e, k ]          |
| Course learning objective-3    | 3- Definition of the theory of vibration,<br>harmonic motion, free and forced vibration<br>of a single degree freedom system.   | [ a, b, k ]         |
| Course learning<br>objective-4 | <ol> <li>Definition factors affecting shear modulus,<br/>elastic modulus and elastic constants.</li> </ol>                      | [ a, b, e, k ]      |
| Course learning<br>objective-5 | 5- Calculation the dynamic earth pressure:<br>pseudo static methods, displacement<br>methods for active and passive case.       | [ a, b, e, k ]      |
| Course learning<br>objective-6 | <ol> <li>Understanding the behavior of retaining<br/>walls during earthquakes.</li> </ol>                                       | [ a, b, e, k ]      |
| Course learning objective-7    | 7- Understanding the modification of Coulomb's theory.                                                                          | [ a, b, e, k ]      |
| Course learning objective-8    | <ol> <li>Studying the liquefaction of soils and its mechanism.</li> </ol>                                                       | [ a, b, e, k ]      |
| Course learning objective-9    | 9- Evaluation of liquefaction zone in field.                                                                                    | [ a, b, e, k ]      |
| Course learning objective-10   | 10-Evaluation of liquefaction Standard Penetration Resistance data.                                                             | [ a, b, e, k ]      |
| Course learning objective-11   | 11-Understanding the factors affecting liquefaction                                                                             | [ a, b, e, k ]      |

| Course Contribution to | Engineering science | 80 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 20 % |



| Course Code   | CE 438                            |      |      |      |  |
|---------------|-----------------------------------|------|------|------|--|
| Course Title  | Advance Foundation<br>Engineering |      |      |      |  |
| Year / Level  | 4/10                              |      |      |      |  |
| Hours         | Credit                            | Lec. | Lab. | Tut. |  |
| nours         | 3 3                               |      |      |      |  |
| Prerequisites | CE 436                            |      |      |      |  |

| Course<br>Description<br>Textbook<br>References | This Course of advance foundation engineering help students to<br>understand in depth the procedure of site construction and ground<br>improvement techniques includes: constructions of stone columns,<br>retaining walls, sheet piles and method of reinforcing earth.<br>1- Principles of Foundation Engineering, Braja M. Das<br>6. Foundation Analysis and Design, Joseph E. Bowels. Reinforced<br>Earth, Ingold T.S., Tomas Telford, London.                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>learning<br>Objectives<br>(C.L.O.)    | <ol> <li>General knowledge about the interaction between soil and<br/>structure and understanding how to design and construct<br/>different types of ground improvement techniques.</li> <li>Familiarity to know the methods of dewatering and drainage<br/>in the field and methods of supporting soil by using sheet<br/>piles.</li> <li>Knowing about deep foundations, types, materials and<br/>different technologies concern constructions.</li> <li>Understand the methods of calculating lateral earth pressures and<br/>analyzing stability of retaining walls.</li> <li>Familiarity with different types of stone columns and<br/>knowing the methods of design.</li> <li>Awareness of methods of reinforcing earth structures.</li> </ol> |

| Descriptive                   | 1. Drainage and dewatering : Types and methods of construction              |
|-------------------------------|-----------------------------------------------------------------------------|
| Course Topics                 | 2. Sheet piles                                                              |
|                               | Anchored sheet piles                                                        |
|                               | 3. Well foundation                                                          |
|                               | Types (open end & closed or box, pneumatic, drilled) and shapes             |
|                               | 4. Retaining walls                                                          |
|                               | Types, Lateral earth pressure, Analysis for stability, design of cantilever |
|                               | 5. Reinforced Soil Structure                                                |
|                               | Definition, Mechanism, Applications, Design of reinforced earth wall        |
| Experimental<br>Work          | This course does not include experimental work.                             |
| Design<br>Activities/Projects | This course does not include design activities or projects.                 |
| BSCE Program                  | 88                                                                          |



| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                       | Program Outcomes<br>(P.O.) |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Course learning<br>objective-1            | General knowledge about the interaction between<br>soil and structure and understanding how to design<br>and construct different types of ground<br>improvement techniques. | [a]                        |
| Course learning<br>objective-2            | Familiarity to know the methods of dewatering<br>and drainage in the field and methods of<br>supporting soil by using sheet piles.                                          | [a,e]                      |
| Course learning<br>objective-3            | Knowing about deep foundations, types, materials and different technologies concern constructions.                                                                          | [a,c,e]                    |
| Course learning<br>objective-4            | Understand the methods of calculating lateral earth pressures and analyzing stability of retaining walls.                                                                   | [a,c,e]                    |
| Course learning<br>objective-5            | Familiarity with different types of stone columns<br>and knowing the methods of construction and<br>design.                                                                 | [a,c,e]                    |
| Course learning<br>objective-6            | Awareness of methods of reinforcing earth structures.                                                                                                                       | [a,e]                      |

| <b>Course Contribution to</b> | Engineering science | 50 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 50 % |



|             | Course Code                                                                         |                | CE 44   | ю          |          |                             |
|-------------|-------------------------------------------------------------------------------------|----------------|---------|------------|----------|-----------------------------|
|             | Course Title                                                                        | Paven          | nent Ev | valuatio   | on       |                             |
|             | Year / Level                                                                        |                | 4/9     |            | -        |                             |
|             | Hours                                                                               | Credit         | Lec.    | Lab.       | Tut.     |                             |
|             |                                                                                     | 3              | 3       | -          | -        |                             |
|             | Prerequisites                                                                       |                | CE 34   | 2          |          |                             |
| Course      | Highway paving ma                                                                   | terials: desi  | an of a | sphalt p   | aving    |                             |
| Description | mixtures; pavemen                                                                   |                | •       |            | •        | and supervision;            |
| •           | categorize commo                                                                    | •              | • •     |            |          | •                           |
|             | correction activates                                                                |                |         |            |          |                             |
| Textbook    | Highway Enginee                                                                     |                |         | ght and    | d Kare   | n K. Dixon, 7 <sup>th</sup> |
|             | Edition, John Wile                                                                  |                |         |            |          |                             |
| References  |                                                                                     |                | ighway  | and        | Franspo  | ortation Officials          |
|             | (AASHTO) Specific                                                                   | ations and     |         |            |          |                             |
|             | Guides, 2002.<br>2. Y. H. Huang, Pavement Analysis and Design, Prentice Hall, 1993. |                |         |            |          |                             |
|             | 3. R. Horonjeff and F. X. Mckelvey, Planning and Design of Airports,                |                |         |            |          |                             |
|             | McGraw Hill, Inc., 4                                                                |                |         | lannig     |          | orgin of Amporto,           |
| Course      | 1. To understand p                                                                  |                |         | ng, tern   | ninology | /, and concepts.            |
| learning    | 2. To understand t                                                                  |                |         |            |          |                             |
| Objectives  | 3. To recognize th                                                                  | e different t  | ypes o  | f flexible | e paver  | nents as well as            |
| (C.L.O.)    | rigid pavements.                                                                    |                |         |            |          |                             |
|             | 4. To get to know and understand the engineering properties and                     |                |         |            |          |                             |
|             | characteristics of th<br>materials that conce                                       |                | monto   | nginoo     |          |                             |
|             | 5. To understand                                                                    |                |         | •          |          | granular and                |
|             | bituminous material                                                                 | •              |         | liaaton    |          | , grandar, and              |
|             | analysis and desigr                                                                 | •              |         |            |          |                             |
|             | 6. To understand                                                                    |                | nt Sup  | er pave    | e aggre  | egate tests and             |
|             | requirements.                                                                       |                |         |            |          | _                           |
|             | 7. To be familiar                                                                   | with the S     | Super p | pave as    | sphalt b | oinder tests and            |
|             | specifications.                                                                     | ala af flar 11 |         |            |          | and attraction of the       |
|             | 8. To conduct analy                                                                 |                |         |            |          | ses, strains, and           |
|             | deflections in one-,<br>9. To conduct ana                                           |                |         |            |          | sos strains and             |
|             | deflections.                                                                        | iyala ul riyit | i pavel |            | 51165    | ses, suairis, ariu          |
|             |                                                                                     |                |         |            |          |                             |

| Descriptive   | 1. Introduction                                 |    |
|---------------|-------------------------------------------------|----|
| Course Topics | 2. Soils and Base Materials in Pavement Design. |    |
| _             | 3. Super pave Aggregate Tests.                  |    |
|               | 4. Asphalt Binder Testing and Evaluation .      |    |
|               | 5. Super pave Asphalt Binder Tests.             |    |
|               | 6. Marshall Mix Design Method.                  |    |
|               | 7. Planning and Design of Airports.             |    |
| BSCE Program  |                                                 | 90 |



| Experimental                  | None                                     |
|-------------------------------|------------------------------------------|
| Work                          |                                          |
| Design<br>Activities/Projects | Group Design Projects and Presentations. |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                             | Program<br>Outcomes<br>(P.O.) |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Course learning<br>objective-1            | To understand testing and evaluation of soil, granular, and bituminous materials for pavement.                                    | [ a, b , c ]                  |
| Course learning<br>objective-2            | To be familiar with the Super pave asphalt binder tests and specifications.                                                       | [ a, ,k, b ]                  |
| Course learning<br>objective-3            | To conduct analysis of flexible pavements for<br>stresses, strains, and deflections in one-, two-<br>, and three-layered systems. | [ a ,k, b ]                   |
| Course learning objective-4               | To conduct analysis of rigid pavements for stresses, strains, and deflections.                                                    | [ a, e, k ]                   |

| <b>Course Contribution to</b> | Engineering science | 60 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 40 % |



| Course Code   | CE 447                 |      |      |      |
|---------------|------------------------|------|------|------|
| Course Title  | Construction and       |      |      |      |
|               | Maintenance of Highway |      |      |      |
| Year / Level  | 4/ 9                   |      |      |      |
| Hours         | Credit                 | Lec. | Lab. | Tut. |
| TIOUI S       | 3                      | 3    | -    | -    |
| Prerequisites | CIE 446                |      |      |      |

| Course        | Essential terminologies and concepts of preservation existing                                                     |
|---------------|-------------------------------------------------------------------------------------------------------------------|
| Description   | highway asphalt pavements; characterizing flexible pavement                                                       |
|               | distresses and identifying possible cause of distresses; relating                                                 |
|               | pavement distress types and distress severity to cost-effective                                                   |
|               | repair alternatives; simple procedure to inventory pavement                                                       |
| Tauthaala     | conditions and select maintenance methods                                                                         |
| Textbook      | Highway Engineering. Paul H. Wright and Karen K. Dixon, 7 <sup>th</sup> Edition, John Wiley & Sons, Inc.          |
| References    | 1. Traffic and Highway Engineering, Nicholas Garber and Lester                                                    |
|               | Hoel, 2 <sup>nd</sup> Edition, PWS Publishing Company, 1997.                                                      |
|               | 2. Highway Capacity Manual, Special Report 209, Transportation                                                    |
|               | Research Board, 2000.                                                                                             |
| Course        | 1. Define the common. terminologies used in pavement                                                              |
| learning      | maintenance and rehabilitation                                                                                    |
| Objectives    | 2. Identify various types of maintenance activates and explain the                                                |
| (C.L.O.)      | major differences between corrective maintenance activities and                                                   |
|               | rehabilitation concepts                                                                                           |
|               | 3. Accrue practical information on the subject of surface                                                         |
|               | treatments overview including of crack sealing materials and                                                      |
|               | application methods; and pothole patching decisions<br>4. Accrue essential information on milling, recycling; and |
|               | constructing non-structural overlays                                                                              |
|               | 5. Accrue practical knowledge on surface treatments for low-volume                                                |
|               | roads and parking facilities                                                                                      |
|               | <ol> <li>Implement simple procedure to inventory pavement conditions and</li> </ol>                               |
|               | select maintenance methods                                                                                        |
|               |                                                                                                                   |
| Description   |                                                                                                                   |
| Descriptive   | INTRODUCTION                                                                                                      |
| Course Topics | 1. Definition of Flexible Pavement Maintenance and the                                                            |
|               | concept of serviceability Definition of Preventive Maintenance VS                                                 |
|               | Rehabilitation                                                                                                    |

2. Identification of pavement distresses and Severity

- 3. Characterization of Flexible Pavement Distresses
- 4. Identification of Possible Causes of Flexible Pavement Distresses
- 5. Categorization of Maintenance Activates
- 6 .Recommended Treatment Practices For Pothole Patching and



|                               | Repair Crack Treatments for Surface Defects<br>7. Milling and surface leveling treatments<br>8.Design of overlays to restore the pavement structural capacity |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental<br>Work          | None                                                                                                                                                          |
| Design<br>Activities/Projects | Group Design Projects and Presentations.                                                                                                                      |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                                             | Program<br>Outcomes<br>(P.O.) |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Course learning<br>objective-1            | Identify various types of maintenance<br>activates and explain the major differences<br>between corrective maintenance activities<br>and rehabilitation concepts                  | [ a, b , c ]                  |
| Course learning objective-2               | Accrue practical information on the subject of<br>surface treatments overview including of<br>crack sealing materials and application<br>methods; and pothole patching decisions. | [ a, b ]                      |
| Course learning objective-3               | Accrue essential information on milling, recycling; and constructing non-structural overlays.                                                                                     | [ a, b ]                      |
| Course learning objective-4               | Implement simple procedure to inventory pavement conditions and select maintenance methods.                                                                                       | [ a, e, k ]                   |

| <b>Course Contribution to</b> | Engineering science | 60 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 40 % |



| Course Code   | CE 448         |      |      |      |
|---------------|----------------|------|------|------|
| Course Title  | Traffic Safety |      |      |      |
| Year / Level  | 4/10           |      |      |      |
| Hours         | Credit         | Lec. | Lab. | Tut. |
| Tiours        | 3              | 3    | -    | -    |
| Prerequisites | CE 446         |      |      |      |

| Course        | Traffic Engineering studies and measurement; traffic flow              |  |  |
|---------------|------------------------------------------------------------------------|--|--|
| Description   | theory and queuing theory; highway capacity analysis; parking          |  |  |
|               | analysis and layout design; traffic signs, marking and                 |  |  |
|               |                                                                        |  |  |
|               | channelization; signalized intersection design and operation;          |  |  |
|               | roundabout design and management; ITS applications in traffic          |  |  |
|               | engineering; computer application in traffic engineering.              |  |  |
| Textbook      | Traffic Engineering, 3 <sup>rd</sup> Edition, Roger P. Roess, Elena S. |  |  |
|               | Prassas, and William R. McShane, Prentice Hall, 2004.                  |  |  |
| References    | 3. Traffic and Highway Engineering, Nicholas Garber and Lester         |  |  |
|               | Hoel, 2 <sup>nd</sup> Edition, PWS Publishing Company, 1997.           |  |  |
|               | 4. Highway Capacity Manual, Special Report 209, Transportation         |  |  |
|               | Research Board, 2000.                                                  |  |  |
| Course        | 1.Explain traffic system components and functions. Describe the        |  |  |
| learning      | characteristics of traffic stream parameters and analyze their         |  |  |
| Objectives    | functional implications on traffic operation.                          |  |  |
| -             | •                                                                      |  |  |
| (C.L.O.)      | 2. Identify different traffic flow parameters and queue                |  |  |
|               | characteristics, Explain macroscopic and microscopic                   |  |  |
|               | relationships among the parameters.                                    |  |  |
|               | 3. Analyze highway capacity for urban and rural roads, Apply the       |  |  |
|               | capacity and level of service concepts highway                         |  |  |
|               | performance analysis, planning and design.                             |  |  |
|               | 4.Perform speed, volume and delay studies, parking study and           |  |  |
|               | Analyze traffic data. Prepare Traffic Study Reports.                   |  |  |
|               | 5.Describe functional parameters of signalized intersection and,       |  |  |
|               | Design signal phases and roundabout.                                   |  |  |
|               |                                                                        |  |  |
|               | 6. Define application of Intelligent Transport System (ITS)            |  |  |
|               | and Demonstrate expertise on usage of computer models in Traffic       |  |  |
|               | operation and management.                                              |  |  |
|               |                                                                        |  |  |
| Descriptive   | 1. Introduction, scope and responsibilities of Traffic Engineering.    |  |  |
| Course Topics |                                                                        |  |  |

| Dooonpuro     | 1. Indicadedicin, coope and reopenciended of Traine Engineering .    |  |  |
|---------------|----------------------------------------------------------------------|--|--|
| Course Topics | 2. Characteristics of traffic stream parameters .                    |  |  |
|               | 3. Analysis of Traffic flow parameters, application of traffic flow  |  |  |
|               | theory and queuing theory.                                           |  |  |
|               | 4. Highway Capacity Analysis and application in planning and design. |  |  |
|               | 5. Traffic Study: Speed-Flow-Density data collection and analysis.   |  |  |
|               | 6. Parking Study- Demand assessment and facility design.             |  |  |
|               | 7. Signalized intersection design and performance analysis.          |  |  |
|               |                                                                      |  |  |



|                               | <ol> <li>Roundabout design and traffic operation management</li> <li>ITS Application in Traffic Engineering.</li> <li>Application of computer models. (HCS, SIDRA ,SYNCHRO)</li> </ol> |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental<br>Work          | Traffic Study: Speed-Flow-Density data collection and analysis.                                                                                                                        |
| Design<br>Activities/Projects | Prepare Traffic Study Reports.                                                                                                                                                         |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                        | Program<br>Outcomes<br>(P.O.) |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Course learning<br>objective-1            | Describe the characteristics of traffic stream parameters and analyze their functional implications on traffic operation.                                    | [ a, b , c ]                  |
| Course learning<br>objective-2            | Identify different traffic flow parameters and queue characteristics.                                                                                        | [b]                           |
| Course learning<br>objective-3            | Analyze highway capacity for urban and rural roads.                                                                                                          | [ a, b ]                      |
| Course learning<br>objective-4            | Perform speed, volume and delay studies, parking study and Analyze traffic data.                                                                             | [ a, e, k ]                   |
| Course learning<br>objective-5            | Describe functional parameters of signalized intersection and, Design signal phases and roundabout.                                                          | [a,e, k]                      |
| Course learning<br>objective-6            | Define application of Intelligent Transport<br>System (ITS) and Demonstrate expertise on<br>usage of computer models in Traffic operation<br>and management. | [ a , b, k ]                  |

| <b>Course Contribution to</b> | Engineering science | 80 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 20 % |



| Course Code   | CE 456       |      |      |      |
|---------------|--------------|------|------|------|
| Course Title  | Ground water |      |      |      |
| Year / Level  | 4/9          |      |      |      |
| Hours         | Credit       | Lec. | Lab. | Tut. |
|               | 3            | 3    | -    | -    |
| Prerequisites | CIE 352      |      |      |      |

| Course<br>Description                        | The objective of the course is to provide to the students a<br>quantitative understanding of the hydraulics of subsurface fluid<br>flow. The theoretical concepts will be reinforced through solving<br>real-world design and analysis problems. The importance of study<br>of subsurface flow will be emphasized since about one-third of the<br>world's fresh water resources exist in the form of groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                              | Further, the subsurface water forms a critical input for the sustenance of life and vegetation in arid zones. The course will cover various aspects of groundwater related to its exploration, development, and utilization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Textbook                                     | Todd, D, K, Larry W. M. Groundwater Hydrology, John Wiley & Sons, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| References                                   | <ol> <li>Bauwer, H. Groundwater Hydrology. Mc-Graw Hill,<br/>Kogakusha, Tokyo. 1978</li> <li>Bear, J. Hydraulics of Groundwater, Mc-Graw Hill, New York,<br/>1979</li> <li>Davis, S. N., and DeWiest, R.J.M. Hydrogeology, John Wiley<br/>and Sons, New York</li> <li>Fetter Jr., C.W. Applied Hydrogeology (4th Edition), Prentice<br/>Hall, 2000.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>Qualitatively categorize the various forms of subsurface water</li> <li>Understand the types of aquifers and their properties</li> <li>Understand the porous media properties that control groundwater<br/>flow and transport, including porosity, hydraulic conductivity, and<br/>compressibility</li> <li>Appreciate the importance of groundwater in the management and<br/>augmentation of water resources of a region</li> <li>Understand and apply Darcy's law for solving groundwater<br/>movement problems</li> <li>Identify geological formations as potential aquifers for groundwater<br/>development</li> <li>Solve basic problems related to confined and unconfined aquifers</li> <li>Understand the concept of continuity of motion governing unsteady<br/>and steady groundwater flow in a homogeneous isotropic confined<br/>aquifer</li> <li>Understand expressions for the steady state radial flow into a well<br/>under both confined and unconfined aquifer conditions</li> <li>Understand different types of pump tests, and analyze pump test data<br/>to determine aquifer properties</li> </ol> |  |  |  |

KINGDOM OF SAUDI ARABIA<br/>Ministry of Higher Education<br/>Jazan University<br/>College of Engineering<br/>Civil Engineering Departmentالمملكة العربية السعودية<br/>لعربية المعاليالمملكة العربية السعودية<br/>لعربية المعاليKINGDOM OF SAUDI ARABIA<br/>وزارة التعليم العالي<br/>لعربية المدنيةالمملكة العربية السعودية<br/>لعربية المعاليالمملكة العربية السعودية<br/>لعربية المعاليKingbom OF SAUDI ARABIA<br/>وزارة التعليم العالي<br/>لعربية المعالي<br/>لعربية المعاليالمملكة العربية السعودية<br/>لعربية العربية المعاليKingbom OF SAUDI ARABIA<br/>وزارة التعليم العالي<br/>لعربية المعالي<br/>لعربية المعالية المعالية المعالية المعالية المعاليالمملكة العربية المعاليKingbom OF SAUDI ARABIA<br/>وزارة التعليم العالي<br/>لعربية المعالية المعال

| Descriptive         | Introduction to hydrogeology, forms and classification of subsurface water,           |  |  |
|---------------------|---------------------------------------------------------------------------------------|--|--|
| Course Topics       | Characteristics of porous media, types of aquifers and their properties, porosity,    |  |  |
|                     | specific yield, specific retention-Flow hydraulics, Darcy's law, coefficient of       |  |  |
|                     | permeability, transmissibility, constant head and falling head permeameters,          |  |  |
|                     | stratification-                                                                       |  |  |
|                     | Geological formations as aquifers, compressibility of aquifers, specific storage,     |  |  |
|                     | storage coefficient- Equations of flow, confined groundwater flow between two         |  |  |
|                     | water bodies, diffusion equation, Laplace equation- Unconfined flow by Dupuit's       |  |  |
|                     | assumptions, One dimensional Dupuit's flow with and without recharge-                 |  |  |
|                     | Wells, steady flow into a well - confined flow and unconfined flow, Thiem's           |  |  |
|                     | equation, pumping tests, determination of aquifer properties through pumping tests    |  |  |
|                     | -Recuperation test for open well, drawdown test, recovery test, well loss, artificial |  |  |
|                     | and natural recharge, estimation of recharge                                          |  |  |
| Experimental        | No Lab                                                                                |  |  |
| Work                |                                                                                       |  |  |
| Design              | This course does not include design activities or projects.                           |  |  |
| Activities/Projects |                                                                                       |  |  |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                        | Program Outcomes<br>(P.O.) |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| C.L.O.1                                   | Qualitatively categorize the various forms of subsurface water                                                                                               | [ a, k ]                   |
| C.L.O.2                                   | Understand the types of aquifers and their properties                                                                                                        | [ a, k ]                   |
| C.L.O.3                                   | Understand the porous media properties that<br>control groundwater flow and transport, including<br>porosity, hydraulic conductivity, and<br>compressibility | [ a, k ]                   |
| C.L.O.4                                   | Appreciate the importance of groundwater in the management and augmentation of water resources of a region                                                   | [ a, k ]                   |
| C.L.O.5                                   | Understand and apply Darcy's law for solving groundwater movement problems                                                                                   | [ a, e]                    |
| C.L.O.6                                   | Identify geological formations as potential aquifers for groundwater development                                                                             | [ a, e ]                   |
| C.L.O.7                                   | Solve basic problems related to confined and unconfined aquifers                                                                                             | [ a, e ]                   |
| C.L.O.8                                   | Understand the concept of continuity of motion<br>governing unsteady and steady groundwater flow<br>in a homogeneous isotropic confined aquifer              | [ a, e , k]                |
| C.L.O.9                                   | Understand expressions for the steady state radial<br>flow into a well under both confined and<br>unconfined aquifer conditions                              | [ a, e ]                   |
| C.L.O.10                                  | Understand different types of pump tests, and<br>analyze pump test data to determine aquifer<br>properties                                                   | [ a, e, k]                 |

| <b>Course Contribution to</b> | Engineering science | 80 % |
|-------------------------------|---------------------|------|
| <b>Professional Branches</b>  | Engineering design  | 20 % |



| Course Code   | CE457              |      |      |      |
|---------------|--------------------|------|------|------|
| Course Title  | Harbor and Coastal |      |      |      |
|               | Engineering        |      |      |      |
| Year / Level  | 4/9                |      |      |      |
| Hours         | Credit             | Lec. | Lab. | Tut. |
| nouis         | 3                  | 3    | -    | -    |
| Prerequisites | CE 456             |      |      |      |

| -           |                                                                    |  |  |
|-------------|--------------------------------------------------------------------|--|--|
| Course      | This course deals with planning and design of harbors elements. It |  |  |
| Description | includes the hydrodynamics of waves, wind, tidal, and the wave     |  |  |
| •           |                                                                    |  |  |
|             | forces on the coastal structures. Design of breakwaters, berths is |  |  |
|             | presented through the course                                       |  |  |
| Textbook    | Harbors, Navigational Channels, Estuaries, and Environmental       |  |  |
|             | Effects: Handbook of Coastal & Ocean Engineering, by John B.       |  |  |
|             | Herbich (Hardcover Jan 27, 1992                                    |  |  |
| D.(         |                                                                    |  |  |
| References  | 1- Source and distribution of sediments at Brunswick Harbor &      |  |  |
|             | vicinity", Georgia (Technical memorandum United States             |  |  |
|             | Coastal Engineering Research Center) by James Neiheisel            |  |  |
|             |                                                                    |  |  |
|             | (Unknown Binding - 1965).                                          |  |  |
|             | 2- Handbook of Coastal and Ocean Engineering", Vol. I, II, III,    |  |  |
|             | John Herbich, Gulf Publishing Company, 1990                        |  |  |
|             |                                                                    |  |  |
| Course      | 1- To learn and review fundamentals of wave mechanics              |  |  |
| learning    | wave forces, and tidal on the coastal structure.                   |  |  |
| Objectives  |                                                                    |  |  |
| -           | 2- To become familiar with the use of statistical and              |  |  |
| (C.L.O.)    | probability analysis for wave forecasting                          |  |  |
|             | 3- To understand the processes of coastal wave                     |  |  |
|             | transformation, and the effects of these transformations           |  |  |
|             | on the nearshore environment                                       |  |  |
|             |                                                                    |  |  |
|             | 4- Planning and designing harbors.                                 |  |  |
|             | 5- Design the coastal structures                                   |  |  |

| Descriptive<br>Course Topics  | Harbor planning and construction. Theory of periodic waves. Wave energy.<br>Power. Refraction, diffraction and reflection. Winds. Tides and waves.<br>Wave-structure interaction. Wave forces on structures. Design of coastal<br>structures. Coastal zone processes. Long shore sediment transport.<br>Computer applications. |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental<br>Work          | No Lab                                                                                                                                                                                                                                                                                                                         |
| Design<br>Activities/Projects | This course does not include design activities or projects.                                                                                                                                                                                                                                                                    |



| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                    | Program Outcomes<br>(P.O.) |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| C.L.O.1                                   | To learn and review fundamentals of wave<br>mechanics wave forces, and tidal on the coastal<br>structure                                 | a, k                       |
| C.L.O.2                                   | To become familiar with the use of statistical and<br>probability analysis for wave forecasting                                          | a, k                       |
| C.L.O.3                                   | To understand the processes of coastal wave<br>transformation, and the effects of these<br>transformations on the near shore environment | a, e                       |
| C.L.O.4                                   | Planning and designing harbors                                                                                                           | k, g, e                    |
| C.L.O.5                                   | Design the coastal structures                                                                                                            | c, g, e                    |
| C.L.O.5                                   | Design the coastal structures                                                                                                            | c, g, e                    |

| Course Contribution to       | Engineering science | 75%  |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 25 % |



| Course Code   | CE458                    |      |      |      |
|---------------|--------------------------|------|------|------|
| Course Title  | Water Resources Planning |      |      |      |
| Year / Level  | 4/10                     |      |      |      |
| Hours         | Credit                   | Lec. | Lab. | Tut. |
|               | 3                        | 3    | -    | -    |
| Prerequisites | CE456                    |      |      |      |

| Course<br>Description | This course is designed to provide an up-to-date broad coverage of<br>pertinent topics concerning water resource planning and<br>management. Modern computer-based modeling and analysis<br>methods that have greatly increased capabilities for solving water<br>resources engineering problems will be discussed. Water<br>resources engineering concepts and methods will be addressed<br>from the perspective of practical applications in water management<br>and associated environmental and infrastructure management.<br>Simulation and optimization models for the management and<br>planning of water resource systems will be discussed. Design and<br>analysis of water distribution as well as hydropower systems will |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook              | be an important component of the course.<br>Wurbs, Ralph, James, W. P., Water Resources Engineering,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | Prentice Hall, 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| References            | <ol> <li>Mays, L. W. Water Resources Engineering, Wiley, 2010</li> <li>Swamee, P. K., and Sharma, A. K. Design of Water<br/>Supply Pipe Networks, John Wiley &amp; Sons, 2008</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Course                | 1. To familiarize students with sustainable management of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| learning              | resources especially under the impacts of climate change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Objectives            | 2. To prepare students to protect, develop, and manage available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (C.L.O.)              | water resources effectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | 3. To familiarize students with modern techniques for effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | water resources management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | 4. To impart knowledge that would enable students to design and analyze water distribution systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | 5. To focus on state-of-the-art computer-based methods for the design of water distribution systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | 6. To create awareness among students regarding energy-related environmental issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | 7. To impart knowledge related to application of optimization models in the management, design, and operation of water resource systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 8. To prepare students for professional practice in the field with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | unlimited challenges and opportunities for serving society                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | 9. To provide comprehensive coverage of fundamental concepts and techniques that lays the foundation for life-long learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | 10. To enhance the student's learning experience via numerous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | examples and homework problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان ä كلية المندس قسم الهندسة المدنية

| Descriptive<br>Course Topics  | <ul> <li>Principles of water resources management, sustainability and management of water resources under the impacts of climate change.</li> <li>Hydrologic processes, surface runoff, reservoir and stream flow routing, Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design.</li> <li>Design and analysis of water distribution systems, illustrative examples Reservoir operations – optimization using linear programming and dynamic programming, simulation models for reservoir systems operation</li> <li>Hydroelectric projects - hydropower development in Saudi Arabia, major hydroelectric projects in Saudi Arabia, comparison with thermal and nuclear plants, environmental issues related to hydropower production, firm and secondary power, power duration curves, reliability of hydropower</li> </ul> |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | production, illustrative examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Experimental<br>Work          | No lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Design<br>Activities/Projects | This course does not include design activities or projects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                      | Program Outcomes<br>(P.O.) |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| C.L.O.1                                   | To familiarize students with sustainable management of water resources.                                                                    | a,k                        |
| C.L.O.2                                   | To prepare students to protect, develop, and<br>manage available water resources effectively                                               | a,e,k                      |
| C.L.O.3                                   | To familiarize students with modern techniques for effective water resources management                                                    | a, e                       |
| C.L.O.4                                   | To impart knowledge that would enable students<br>to design and analyze water distribution systems                                         | a,k,c                      |
| C.L.O.5                                   | To focus on state-of-the-art computer-based<br>methods for the design of water distribution<br>systems                                     | a,k,c                      |
| C.L.O.6                                   | To create awareness among students regarding energy-related environmental issues                                                           | a,k                        |
| C.L.0.7                                   | To impart knowledge related to application of<br>optimization models in the management, design,<br>and operation of water resource systems | a,e,g                      |
| C.L.O.8                                   | To prepare students for professional practice in the field with unlimited challenges                                                       | A,g,k                      |
| C.L.O.9                                   | To provide comprehensive coverage of<br>fundamental concepts and techniques that lays the<br>foundation for life-long learning             | a,e,g                      |
| C.L.O.10                                  | To enhance the student's learning experience via<br>numerous examples and homework problems                                                | a,e,g                      |

| Course Contribution to       | Engineering science | 80 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 20 % |



| Course Code   | CE 466                          |      |      |      |
|---------------|---------------------------------|------|------|------|
| Course Title  | Water and waste water treatment |      |      |      |
| Year / Level  | 4/9                             |      |      |      |
| Hours         | Credit                          | Lec. | Lab. | Tut. |
| nours         | 3                               | 3    | -    | -    |
| Prerequisites | CE 352                          |      |      |      |

| 0                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Description                        | The design of physical unit operations and chemical and biological unit<br>process for water and wastewater treatment are emphasized. The<br>primary goals are to provide detailed coverage of the procedures that are<br>used to design water and wastewater plants for municipalities and<br>introduce students to the engineering and scientific principles on which<br>these are based.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Textbook                                     | H, S. Peavy, D, R. Rowe, G, Tchobanoglous, Environmental Engineering, McGraw-Hill, NY, 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| References                                   | <ol> <li>Reynolds, T. D., and P. A. Richards. Unit Operations and<br/>Processes in Environmental Engineering. 2nd ed. Boston, MA:<br/>PWS Publishing Company, 1996. ISBN: 0534948847.</li> <li>Mara, D. Domestic Wastewater Treatment in Developing<br/>Countries. London, UK: Earthscan, 2003. ISBN: 1844070190.</li> <li>Viessman, W., Jr., and M. J. Hammer. Water Supply and<br/>Pollution Control. 7th ed. Pearson Education, Inc., Upper<br/>Saddle River, NJ: Pearson Prentice Hall, 2005. ISBN:<br/>0131409700.</li> <li>Tchobanoglous, G., F. L. Burton, and H. D.<br/>Stensel. Wastewater Engineering: Treatment and Reuse. 4th ed.<br/>Metcalf and Eddy Inc., New York, NY: McGraw-Hill, 2003.<br/>ISBN: 0070418780.</li> <li>MWH Staff. Water Treatment: Principles and Design. 2nd ed.<br/>New York, NY: Wiley, 2005. ISBN: 0471110183</li> </ol> |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>To provide knowledge of water and waster characteristics and<br/>treatment technologies</li> <li>To impart knowledge related to physical, chemical and<br/>biological methods of water and wastewater treatment</li> <li>To introduce microbial ecology and theory of growth kinetics<br/>for application to biological treatment methods</li> <li>To introduce the basic principles of sludge treatment including<br/>thickening, digestion, dewatering, sludge drying, and<br/>composting</li> <li>To equip the students with a knowledge of natural wastewater<br/>treatment systems</li> <li>To focus on state-of-the-art desalination techniques and their<br/>applications in arid areas with scarcity of freshwater resources</li> <li>To enhance the student's learning experience via numerous<br/>examples and homework problems</li> </ol> |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية المندسد قسم الهندسة المدنية

|               | <ul> <li>8. To provide students with the capability to identify, formulate and solve water and wastewater engineering problems</li> <li>9. To prepare students for professional practice in a field with unlimited challenges and opportunities for serving the society</li> <li>10.To provide comprehensive coverage of water treatment technologies techniques that lays a foundation for lifelong learning</li> </ul> |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Descriptive   | Water Demand - Estimation of water and wastewater quantity, population                                                                                                                                                                                                                                                                                                                                                   |
| Course Topics | forecasting methods; water demand for various purposes; patterns in water<br>and wastewater demand variation                                                                                                                                                                                                                                                                                                             |
|               | Water Supply/Distribution Systems, wastewater collection                                                                                                                                                                                                                                                                                                                                                                 |
|               | <b>systems</b> - Philosophy of treatment; Unit operations and processes; Physical, chemical and biological methods                                                                                                                                                                                                                                                                                                       |
|               | Domestic Wastewater Treatment - wastewater characteristics;                                                                                                                                                                                                                                                                                                                                                              |
|               | primary, secondary and tertiary treatment;<br>Physical Unit Processes - Screening; Commutation; Grit Removal;                                                                                                                                                                                                                                                                                                            |
|               | Equilization; Sedimentation;                                                                                                                                                                                                                                                                                                                                                                                             |
|               | <b>Introduction to Microbiology</b> - Microbial ecology and Growth kinetics; Types of microorganisms; aerobic vs. anaerobic processes                                                                                                                                                                                                                                                                                    |
|               | <b>Biological Unit Processes</b> - Aerobic treatment; Suspended growth                                                                                                                                                                                                                                                                                                                                                   |
|               | aerobic treatment processes; Activated sludge process and its modifications; Tricking filters and Rotating biological contactors;                                                                                                                                                                                                                                                                                        |
|               | Anaerobic treatment; suspended growth, attached growth, fluidized bed                                                                                                                                                                                                                                                                                                                                                    |
|               | and sludge blanket systems;                                                                                                                                                                                                                                                                                                                                                                                              |
|               | <b>SludgeTreatment</b> - Thickening; Digestion; Dewatering; Sludge drying; Composting                                                                                                                                                                                                                                                                                                                                    |
|               | Wastewater Treatment Plant Characteristics - Sequencing of unit                                                                                                                                                                                                                                                                                                                                                          |
|               | operations and processes; Plant layout; Hydraulic considerations.                                                                                                                                                                                                                                                                                                                                                        |
|               | <b>Natural Wastewater Treatment Systems</b> - Ponds and Lagoons;<br>Wetlands and Root-zone systems.                                                                                                                                                                                                                                                                                                                      |
|               | Surface and Ground Water Treatment for Potable Water Supply -                                                                                                                                                                                                                                                                                                                                                            |
|               | Water Characteristics; desalination methods, sequencing of unit operations and processes;                                                                                                                                                                                                                                                                                                                                |
|               | <b>Chemical Unit Processes</b> - Coagulation-Flocculation; Filtration;                                                                                                                                                                                                                                                                                                                                                   |
|               | Disinfections; Aeration and Gas transfer; Precipitation; Softening;                                                                                                                                                                                                                                                                                                                                                      |
| Experimental  | Adsorption and Ion exchange; Membrane processes.<br>For each laboratory session, students are divided into groups of 3 – 5 members to                                                                                                                                                                                                                                                                                    |
| Work          | carry out experiments. Where several tests are done concurrently, students should                                                                                                                                                                                                                                                                                                                                        |
|               | coordinate themselves to perform test and analysis in designated time. Each student will submit a separate report.                                                                                                                                                                                                                                                                                                       |
|               | Experiments on water and wastewater consists of the following exercises:                                                                                                                                                                                                                                                                                                                                                 |
|               | Measurements of chloride, sulphate, pH, conductivity, turbidity, total dissolved                                                                                                                                                                                                                                                                                                                                         |
|               | solids, suspended solids, volatile solids, dissolved oxygen, alkalinity, hardness,                                                                                                                                                                                                                                                                                                                                       |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلبة العندسية قسم الهندسة المدنية

|                               | total and fecal coliforms, biochemical oxygen demand, chemical oxygen demand,<br>and ammonia and total nitrogen. Chlorine demand test and jar test are also<br>conducted. |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design<br>Activities/Projects | This course does not include design activities or projects.                                                                                                               |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                  | Program Outcomes<br>(P.O.) |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| C.L.O.1                                   | To provide knowledge of water and waster characteristics and treatment technologies                                                    | a,k                        |
| C.L.O.2                                   | To impart knowledge related to physical, chemical<br>and biological methods of water and wastewater<br>treatment                       | a,e                        |
| C.L.O.3                                   | To introduce microbial ecology and theory of<br>growth kinetics for application to biological<br>treatment methods                     | a,e,k                      |
| C.L.O.4                                   | To introduce the basic principles of sludge<br>treatment including thickening, digestion,<br>dewatering, sludge drying, and composting | a,e                        |
| C.L.O.5                                   | To equip the students with a knowledge of natural wastewater treatment systems                                                         | a, k                       |
| C.L.O.6                                   | To focus on state-of-the-art desalination<br>techniques and their applications in arid areas with<br>scarcity of freshwater resources  | a, k                       |
| C.L.O.7                                   | To enhance the student's learning experience via numerous examples and homework problems                                               | a, k                       |
| C.L.O.8                                   | To provide students with the capability to identify,<br>formulate and solve water and wastewater<br>engineering problems               | a,e,k                      |
| C.L.O.9                                   | To prepare students for professional practice in a<br>field with unlimited challenges and opportunities<br>for serving the society     | a,e,g                      |
| C.L.O.10                                  | To provide comprehensive coverage of water<br>treatment technologies techniques that lays a<br>foundation for lifelong learning        | a,k                        |

| Course Contribution to       | Engineering science | 80 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 20 % |



| Course Code   | CE467               |          |         |       |
|---------------|---------------------|----------|---------|-------|
| Course Title  | Design of Water and |          | 1       |       |
|               | Wastewa             | ter Trea | tment P | lants |
| Year / Level  | 4/9                 |          |         |       |
| Hours         | Credit              | Lec.     | Lab.    | Tut.  |
| Tiou 5        | 3                   | 3        | -       | -     |
| Prerequisites |                     | CE46     | 6       |       |

| Course<br>Description                        | Fundamental principles and current practices in water processing,<br>municipal wastewater treatment, and sludge processing. Characteristics<br>of surface and ground waters, and municipal wastewater. Concepts and<br>design of different unit operations and processes for the treatment of<br>water/wastewater. Drinking water standards. Wastewater reuse and<br>disposal criteria. Properties of sludge generated from treatment<br>processes, treatment and utilization. Laboratory experiments related to<br>water and wastewater quality and quality control. Field trips to<br>water/wastewater treatment plants. |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook                                     | Mines,R., Lackey,L.,"Introduction to Environmental Engineering", Prentice-Hall,2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| References                                   | <ol> <li>Metcalf &amp; Eddy, "Wastewater Engineering: Treatment and Reuse", 4th<br/>Edition or later (2003 or later)</li> <li>APHA, AWWA, and WEF. "Standard Methods for the Examination of<br/>Water and Wastewater", 20th edition, APHA, Washington, DC. (1998).</li> </ol>                                                                                                                                                                                                                                                                                                                                              |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>Understand the engineering and science principles for the design of<br/>water and wastewater treatment systems,</li> <li>Design water/wastewater treatment facilities,</li> <li>Understand the operation and maintenance aspects of water and<br/>wastewater treatment units,</li> <li>Measure different physical, chemical, and microbiological<br/>parameters of water and wastewater.</li> <li>Conduct laboratory experiments to determine chemical requirements<br/>and assess performance aspects for different water and wastewater<br/>processing means.</li> </ol>                                        |

| Descriptive<br>Course Topics                                                      | <ol> <li>Water Chemistry and Analysis (2 hours)</li> <li>Water Quality Parameters and Measurements (7 hours)</li> <li>Water Sources and Quality, and Drinking Water Standards Wastewater<br/>Disposal and Reuse Criteria (1 hours).</li> <li>Water Treatment Processes: treatment objectives, coagulation and flocculation,<br/>sedimentation, filtration, softening, iron and manganese taste and odor control,<br/>demineralization (RO), chlorination, chloramination, ozonation, control of<br/>disinfection by-products, (8 hours)</li> <li>Wastewater Treatment Processes: characteristics and composition of municipal<br/>wastewater, wastewater treatment objectives and effluent requirements/standards,<br/>preliminary treatment (screen, shredders, grit chambers, equalization), primary</li> </ol> |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| treatment (primary clarification), secondary treatment (biological filtration, ac |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان ä كلية المندس قسم الهندسة المدنية

|                     | <ul><li>sludge, oxidation ponds) (7 hours).</li><li>6. Wastewater Reclamation &amp; Reuse (2 hours)</li><li>7.Characteristics and Treatment of Water/Wastewater Sludge (3 hours)</li></ul> |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Experimental        | No lab                                                                                                                                                                                     |  |  |
| Work                |                                                                                                                                                                                            |  |  |
| Design              | This course does not include design activities or projects.                                                                                                                                |  |  |
| Activities/Projects | ~ I /                                                                                                                                                                                      |  |  |

| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                                                | Program Outcomes<br>(P.O.) |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| C.L.O.1                                   | Understand the engineering and science principles for the design of water and wastewater treatment systems                                           | a,k                        |
| C.L.O.2                                   | Design water/wastewater treatment facilities                                                                                                         | a, e                       |
| C.L.O.3                                   | Understand the operation and maintenance aspects of water and wastewater treatment units                                                             | a, e                       |
| C.L.O.4                                   | Measure different physical, chemical, and microbiological parameters of water and wastewater                                                         | a, k                       |
| C.L.O.5                                   | Conduct laboratory experiments to determine chemical requirements and assess performance aspects for different water and wastewater processing means | b, k                       |

| Course Contribution to       | Engineering science | 80 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 20 % |



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلية الهندسة قسم الهندسة المدنية

| Course Code   | CE 468                |      |      |      |
|---------------|-----------------------|------|------|------|
| Course Title  | Municipal Solid Waste |      |      |      |
|               | Management            |      |      |      |
| Year / Level  | 4/10                  |      |      |      |
| Hours         | Credit                | Lec. | Lab. | Tut. |
| nours         | 3                     | 3    | -    | -    |
| Prerequisites | CE 466                |      |      |      |

| Course<br>Description                        | Sources, composition and properties of municipal solid<br>wastes. Functional elements of solid waste management<br>systems. Integrated solid waste management. Materials<br>separation and processing technologies. Thermal,<br>biological and chemical conversion technologies. Reuse<br>and Recycling of recovered materials. Landfilling of solid<br>waste. |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Textbook                                     | Tchobanoglous G., Theisen H., and Vigil S. "Integrated Solid Waste Management: Engineering Principles and Management Issues", International Edition, McGraw-Hill · Inc., New York, 1993.                                                                                                                                                                       |  |  |
| References                                   | Williams P. T. "Waste Treatment and Disposal", John Wiley & Sons, Chichester, England, UK., 1999                                                                                                                                                                                                                                                               |  |  |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>Identifying the types and Composition of Municipal Solid<br/>wastes</li> <li>Clarifying the hazardous wastes in municipal solid waste</li> <li>Understanding to Materials Processing and Recovery</li> <li>Analysis the transfer and transport of solid waste</li> <li>Evaluating the recycling of solid waste materials</li> </ol>                   |  |  |

| Descriptive         | 1-Sources, Types and Composition of Municipal Solid wastes (3 hours) |  |  |  |
|---------------------|----------------------------------------------------------------------|--|--|--|
| Course Topics       | 2. Characteristics of Municipal Solid Waste (3 hours)                |  |  |  |
| •                   | 3. Hazardous Wastes in Municipal Solid Waste (2 hours).              |  |  |  |
|                     | 4. Generation and Collection Rates of Solid Waste (3 hours)          |  |  |  |
|                     | 5. Waste Handling & Separation, Storage and Processing at the Source |  |  |  |
|                     | (3 hours).                                                           |  |  |  |
|                     | 6. Collection of Solid Waste (6 hours)                               |  |  |  |
|                     | 7. Materials Processing and Recovery (6 hours)                       |  |  |  |
|                     | 8. Waste Conversion/Transformation Technologies (6 hours)            |  |  |  |
|                     | 9. Waste Transfer and Transport (4 hours)                            |  |  |  |
|                     | 10. Recycling of Solid Waste Materials (3 hours)                     |  |  |  |
|                     | 11. Disposal of Solid Waste and Residuals (6 hours)                  |  |  |  |
| Experimental        | No Lab                                                               |  |  |  |
| Work                |                                                                      |  |  |  |
| Design              | This course does not include design activities or projects.          |  |  |  |
| Activities/Projects |                                                                      |  |  |  |



| Course learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                              | Program Outcomes<br>(P.O.) |
|-------------------------------------------|--------------------------------------------------------------------|----------------------------|
| C.L.O.1                                   | Identifying the types and Composition of<br>Municipal Solid wastes | a, k                       |
| C.L.O.2                                   | Clarifying the hazardous wastes in municipal solid waste           | e, k                       |
| C.L.O.3                                   | Understanding to Materials Processing and Recovery                 | a, e                       |
| C.L.O.4                                   | Analysis the transfer and transport of solid waste                 | a, e, k                    |
| C.L.O.5                                   | Evaluating the recycling of solid waste materials                  | e, k                       |

| Course Contribution to       | Engineering science | 80 % |
|------------------------------|---------------------|------|
| <b>Professional Branches</b> | Engineering design  | 20 % |



#### **Course Syllabus**

| Course Code   | CE 476                              |      |      |      |
|---------------|-------------------------------------|------|------|------|
| Course Title  | Advanced Methods of<br>Construction |      |      |      |
| Year / Level  | 4/9                                 |      |      |      |
| Hours         | Credit                              | Lec. | Lab. | Tut. |
| Tiours        | 3 3                                 |      |      |      |
| Prerequisites | CE 371                              |      |      |      |

| Course<br>Description | The course will introduce unique construction methods involved with<br>several types of complex construction projects. The construction process<br>will be discussed as a system to provide a background for examining various<br>types of projects including modern concretes and infrastructurs, temporary<br>structures, high-rise construction, deep foundations construction, dams,<br>bridges, tunneling and shotcretes, and other complex construction issues. |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Textbook              | - Handouts and other reference materials are available from the course website at:http://courses.washington.edu/cm510/                                                                                                                                                                                                                                                                                                                                                |  |  |
| References            | <ul> <li>Recommended Text: P.K. Mehta and P.J.M. Monteiro "Concrete :<br/>Microstructure, Properties, and Materials," Third Edition, MacGraw Hill,<br/>2006 (second edition is on two-hour reserve at both Engineering and<br/>Architecture Libraries).</li> </ul>                                                                                                                                                                                                    |  |  |

| Descriptive          | 1-Introduction to Concrete as a Construction Material             |  |
|----------------------|-------------------------------------------------------------------|--|
| <b>Course Topics</b> | 2-Alaskan Way Viaduct Replacement project; Progress in Concrete   |  |
|                      | Technology;                                                       |  |
|                      | 3- Site Improvement and Deep Foundations, Ground Freezing; Bridge |  |
|                      | Construction                                                      |  |
|                      | 4- Field Trip to Spokane Street Swing Bridge                      |  |
|                      | 5- Dams, Cofferdams, Construction Dewatering, Shotcrete           |  |
|                      | 6- High-Rise Construction                                         |  |
|                      | 7- Tunneling                                                      |  |
|                      | 8- Pavement Construction                                          |  |
|                      | 9- IDX Tower, Presentations                                       |  |
|                      | 10- Thanksgiving Holiday                                          |  |
| Experimental         | This course does not include experimental work.                   |  |
| Work                 |                                                                   |  |
| Design               | This course does not include design activities or projects.       |  |
| Activities/Projects  |                                                                   |  |

| <b>Course Contribution to</b> | Engineering science | 100 % |
|-------------------------------|---------------------|-------|
| <b>Professional Branches</b>  | Engineering design  | 00 %  |



# Course Syllabus

| Course Code   | CE 477                                    |      |      |      |
|---------------|-------------------------------------------|------|------|------|
| Course Title  | Construction Organization<br>and Planning |      |      |      |
| Year / Level  | 4/9                                       |      |      |      |
| Hours         | Credit                                    | Lec. | Lab. | Tut. |
| nours         | 3                                         | 3    | -    | -    |
| Prerequisites | CE 476                                    |      |      |      |

| Course<br>Description                        | This course examines the management focus of the design and/or<br>construction company and how corporate management is different<br>from, yet relates to, and impacts project management. The company<br>creates the framework within which projects may consistently achieve<br>excellent performance or they may struggle to complete behind<br>schedule, over budget, and not meet the customer's requirements.<br>What makes the difference?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook                                     | <ul> <li>Construction Project Management, 2/e, by Frederick E. Gould<br/>and Nancy E. Joyce, Published by Prentice Hal.</li> <li>Case Studies in Building Design and Construction by Robert<br/>Dorsey, published by Prentice Hall</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| References                                   | <ul> <li>Management: Quality and Competitiveness by Ivancevich,<br/>Lorenzi, Skinner, and</li> <li>Crosby, published by Irwin Skyscraper by Karl Sabbagh,<br/>published by Viking (plus videos)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>The management of a construction firm, design firm, construction<br/>project, and specific project operational tasks, including the<br/>interrelationships between each of these three levels of<br/>organization.</li> <li>Planning and strategy, including determining the objectives of a<br/>design firm, a construction firm, and a development firm.</li> <li>Marketing of construction organization services, and competitive<br/>negotiation in the industry.</li> <li>Project planning. Construction Organizations – General<br/>Contractors, DesignBuilders, Owner-Builders, Construction<br/>Managers.</li> <li>Detailed organization planning for operations and support,<br/>including required resources.</li> <li>The organizational structure of a construction firm, design firm, and<br/>development firm at both the office level and project field level.</li> <li>The organization of a construction operation including the design of<br/>the specific tasks to be performed.</li> <li>Selecting project delivery systems.</li> </ol> |

| KINGDOM OF S<br>Ministry of Higl<br>Jazan Un<br>College of E<br>Civil Engineerin | ner Education<br>iversity<br>ngineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  | <ol> <li>9. The objectives of control, and the design and development of a<br/>management information system for a firm and a project.</li> <li>10.Conflict resolution and dispute resolution in the construction<br/>industry.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Descriptive<br>Course Topics                                                     | <ol> <li>Class orientation and introduction. Summary of case studies.<br/>Management of Design &amp; Construction Organizations</li> <li>The Construction Industry - Types of Industry, Industry Sectors.</li> <li>Organizing and Leading the Construction Project Organizing<br/>and Managing. Legal Forms of Organizations. Leadership</li> <li>Project Delivery Methods Managing, Assessing and Minimizing<br/>Project Risks. Delivery Methods. Contract Types. Contract<br/>Changes</li> <li>Project Chronology Project Initiation. Feasibility Analysis.<br/>Financing.</li> <li>Construction Services During Design - Finding the Right<br/>Construction</li> <li>Bidding and Procurement - Qualification of Bidders. Work<br/>Packages.Construction Documents. Bidding, Contractual, &amp;<br/>Technical Information.</li> <li>Construction and Closeout - Subcontracts. Staffing. Job Start.<br/>Completion.</li> <li>Estimating Project Costs. Project Planning and Scheduling.<br/>Controlling Project Cost, Time and Quality.</li> <li>Job Site Administration - Communication. Submittals. Payme<br/>Applications. Changes to the Work.</li> </ol> |
| Experimental<br>Work                                                             | This course does not include experimental work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Design<br>Activities/Projects                                                    | This course does not include design activities or projects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| <b>Course Contribution to</b> | Engineering science | 100 % |
|-------------------------------|---------------------|-------|
| <b>Professional Branches</b>  | Engineering design  | 00 %  |



| Course Syllabus |                                   |       |      |      |  |
|-----------------|-----------------------------------|-------|------|------|--|
| Course Code     |                                   | CE 48 | 36   |      |  |
| Course Title    | survey Measurements<br>adjustment |       |      |      |  |
| Year / Level    | 4/9                               |       |      |      |  |
| Hours           | Credit                            | Lec.  | Lab. | Tut. |  |
| nours           | 3                                 | 3     | -    | -    |  |
| Prerequisites   | CE 382                            |       |      |      |  |

| Course<br>Description | This course is intended to introduce the fundamentals of errors and<br>methods for analyzing them. The first three chapters are devoted to the<br>subject of error propagation in the various types of traditional surveying<br>measurements. Then chapters follow that describe observation weighting<br>and introduce the least-squares method for adjusting observations. Least-<br>squares adjustments often require the formation and solution of nonlinear<br>equations. Procedures for linearizing nonlinear equations by Taylor's<br>theorem are therefore important in adjustment computations, and this topic |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                       | is also presented. Application of least squares in adjusting basic types of<br>surveys are then presented in separate chapters. Adjustment of level nets,<br>trilateration, triangulation and traverses are included.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Textbook              | • Adjustment Computations Spatial Data Analysis, (4th Edition) by Charles D. Ghilani and Paul R. Wolf (Hardcover - Jan 10, 2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| References            | Mikhail, E. M. [1998]: Observations and Least Squares. IEP-A dun-Donnelley Publisher.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Course                | 1- Distinguish between direct and indirect measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| learning              | 2- Define precision and accuracy as they pertain to survey data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Objectives            | 3- Describe the basic error propagation equation and the concept of Least                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| (C.L.O.)              | Squares in both equal-weight and weighed cases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                       | 4- Evaluate error propagation model for surveying networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                       | 5- Recognize the stochastic model as it is used in the context of Least                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                       | Squares.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                       | 6- Evaluate the observation equations of different surveying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                       | measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                       | 7- Solve the different survey problems (leveling – triangulation - traverse network) using the method of Least Squares adjustment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                       | 8- Compute error ellipse parameters from adjustment covariance matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

8- Compute error ellipse parameters from adjustment covariance matrix.
9- Calculate the adjusted parameters and their covariance matrix of the network point coordinates.

| Descriptive   | 1- Propagation of Random Errors in Indirectly Measured Quantities           |  |
|---------------|-----------------------------------------------------------------------------|--|
| Course Topics |                                                                             |  |
|               | Encountered Specific Functions - Standard Deviation of a Sum - Standard     |  |
|               | Deviation in a Series - Standard Deviation of the Mean - Error Sources in   |  |
|               | Horizontal Angles - Effects of Leveling Errors in Angle Observations Errors |  |



|                               | in Electronic Distance Observations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | <b>2- Error Propagation in Traverse Surveys</b><br>Derivation of Estimated Error in Latitude and Departure - Derivation of<br>Estimated Standard Errors in Course Azimuths - Computing and Analyzing<br>Polygon Traverse Misclosure – Computing and Analyzing Link Traverse<br>Misclosure Errors.                                                                                                                                                                                                                                                                                                                                                  |
|                               | <b>3- Error Propagation in Elevation Determination</b><br>Systematic Errors in Differential Leveling - Earth Curvature and Refraction -<br>Combined Effects of Systematic Errors on Elevation Differences - Random<br>Errors in Differential Leveling - Instrument Leveling Errors Rod Plumbing<br>Error - Estimated Errors in Differential Leveling - Error Propagation in<br>Trigonometric Leveling.                                                                                                                                                                                                                                             |
|                               | <b>4- Weights of Observations</b><br>Weighted Mean - Relation between Weights and Standard Errors -<br>Statistics of Weighted Observations - Standard Deviation - Standard Error<br>of Weight <i>w</i> and Standard - Error of the Weighted Mean - Weights in Angle<br>Observations - Weights in Differential Leveling - Practical Examples                                                                                                                                                                                                                                                                                                        |
|                               | <b>5- Principles of Least Squares</b><br>Fundamental Principle of Weighted Least Squares - Stochastic Model -<br>Functional Model - Observation Equations- Elementary Example of<br>Observation Equation Adjustment - Systematic Formulation of the Normal<br>Equations - Equal-Weight Case - Weighted Case - Advantages of the<br>Systematic Approach - Using Matrices to Form the Normal Equations -<br>Equal-Weight Case - Weighted Case - Least Squares Solution of Nonlinear<br>Systems - Least Squares Fit of Points to a Line or Curve - Least Squares<br>Adjustment Using Conditional Equations - Examples Using Observation<br>Equations. |
|                               | 6- Adjustment of Level Nets<br>Observation Equations – Unweighted Example – Weighted Example -<br>Reference Standard Deviation – Formulation of the Normal Equations –<br>Covariance matrix of the adjusted parameters – Standard Deviations of<br>Computed Quantities.                                                                                                                                                                                                                                                                                                                                                                            |
|                               | <b>7- Adjustment of Horizontal Surveys</b><br>Distance Observation Equations – Trilateration Adjustment Example –<br>traverse network adjustment – Computer Solution of a Trilaterated<br>Quadrilateral – Formulation of the Normal Equations – Iteration Termination<br>- Method of Maximum Iterations – Covariance Matrix of the Adjusted<br>Parameters.                                                                                                                                                                                                                                                                                         |
| Experimental<br>Work          | This course does not include experimental work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Design<br>Activities/Projects |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DSCE Drogram                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### **BSCE Program**



المملكة العربية السعودية وزارة التعليم العالي جامعة جازان كلبة العندسية قسم الهندسة المدنية

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                                     | Program<br>Outcomes<br>(P.O.) |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Course<br>learning<br>objective-1            | 1- Distinguish between direct and indirect measurements.                                                                  | [ a, e ]                      |
| Course<br>learning<br>objective-2            | 2- Define precision and accuracy as they pertain to survey data.                                                          | [ a, e ]                      |
| Course<br>learning<br>objective-3            | 3- Describe the basic error propagation equation and the concept of Least Squares in both equal-weight and weighed cases. | [ a, e ]                      |
| Course<br>learning<br>objective-4            | 4- Evaluate error propagation model for surveying networks.                                                               | [ a, e, k ]                   |
| Course<br>learning<br>objective-5            | 5- Recognize the stochastic model as it is used in the context of Least Squares.                                          | [ a, e ]                      |
| Course<br>learning<br>objective-6            | 6- Evaluate the observation equations of different surveying measurements.                                                | [ a, e, k ]                   |
| Course<br>learning<br>objective-7            | 7- Solve the different survey problems (leveling – traverse network) using the method of Least Squares adjustment.        | [ a, e, k ]                   |
| Course<br>learning<br>objective-8            | 8- Compute error ellipse parameters from adjustment covariance matrix.                                                    | [ a, e, k ]                   |
| Course<br>learning<br>objective-9            | 9- Calculate the adjusted parameters and their covariance matrix of the network point coordinates.                        | [ a, e, k ]                   |

| Course Contribution to | Engineering science | 70 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 30 % |



|                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                | ourse Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | Course Code                                                                                                                                                                                                                                                                                                                             | CE 487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                              | Course Title                                                                                                                                                                                                                                                                                                                            | Geodesy and Geomatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              | Year / Level                                                                                                                                                                                                                                                                                                                            | 4/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              | Hours                                                                                                                                                                                                                                                                                                                                   | Credit Lec. Lab. Tut.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              | Dronomicitor                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                              | Prerequisites                                                                                                                                                                                                                                                                                                                           | CIE 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Course<br>Description                        | to the<br>determination of the fig<br>a basic for positioni<br>coordinate system, g<br>coordinate systems,<br>computation of geod<br>procedures used in<br>traditionally been the<br><i>trilateration</i> , leveling an<br>In addition, The student<br>obtaining spatial data a<br>review of code differentia<br>and mapping data colle | by introducing the history of geodesy that is related<br>gure of the earth. Coordinate Systems in Geodesy is<br>ing systems in geodesy; it is consists of earth<br>geodetic coordinate system, celestial and natural<br>geodetic datum and its transformation, and<br>letic coordinate from geocentric coordinate. Field<br>horizontal and vertical control surveys have<br>ground methods of <i>triangulation</i> , <i>precise traversing</i> ,<br>nd combinations of these basic approaches.<br>t uses the Global Positioning System (GPS) as a tool for<br>and coordinate information. He will be provided with a<br>al GPS and its applications, especially as it relates to GIS<br>ection. The student will then explore the use of carrier<br>is to collect data for geodetic control, topographic surveys, |
| Textbook                                     | phase GPS data sets.<br>formats for use by other<br>Elementary Surve                                                                                                                                                                                                                                                                    | etary software to process and analyze code and carrier<br>The student will be able to export this data in various<br>software packages.<br>eying: An Introduction to Geomatics", (12th Edition)<br>ilani and Paul R. Wolf (2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| References                                   | GPS Theory, Algo                                                                                                                                                                                                                                                                                                                        | by part 1, by Rapp, R.H. , Columbus, Ohio, 1991.<br>Dirithms and Applications, (2 <sup>nd</sup> Edition) by <i>Guochang Xu</i> ,<br>Derlin Heidelberg (2007).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>Explain geodetic pri</li> <li>Convert earth coord</li> <li>Distinguish betweer</li> <li>Adjust the triangular</li> <li>Describe GPS system</li> </ol>                                                                                                                                                                          | he course, the students should be able to:<br>incipals, and coordinate Systems.<br>dinate system to geodetic coordinate system.<br>In intersection and resection process.<br>tion and trilateration geodetic networks.<br>em, software, and applications.<br>In GPS and traditional surveying.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Descriptive   | 1- Geodetic Position Computations                                         |
|---------------|---------------------------------------------------------------------------|
| Course Topics | Figure of the Earth – Scope of Geodesy – The Ellipsoid and Geoid – Geoid  |
|               | Undulation and Deflection of the Vertical – Coordinate systems in geodesy |
|               | - Geodetic datum - Flat Earth Coordinate System - Celestial Coordinate    |
|               | System – Natural Coordinate System – Geodetic Datum – Datum Shift and     |
| BSCE Program  | m 115                                                                     |



| Experimental<br>Work<br>Design | This course does not include experimental work.<br>This course does not include design activities or projects.                                                                                                                                                                                                                                                                                                  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | 6- GPS Kinematic Surveys<br>Planning of Kinematic Surveys – Initialization – Equipment Used in<br>Kinematic Surveys – Methods Used in Kinematic Surveys – Performing<br>Post-Processed Kinematic Surveys – Communication in Real-Time<br>Kinematic Surveys – Real-Time Networks – Performing Real-Time<br>Kinematic Surveys – Machine Control – Errors in Kinematic Surveys –<br>Mistakes in Kinematic Surveys. |
|                                | <b>5- GPS Static Surveys</b><br>Field Procedures in Satellite Surveys – Planning Satellite Surveys –<br>Performing Static Surveys – Data Processing and Analysis – Sources of<br>Errors in Satellite Surveys – Mistakes in Satellite Surveys                                                                                                                                                                    |
|                                | <ul> <li>4- Setting out (dimensional control)</li> <li>Responsibility on site – Responsibility of the setting-out engineer – Protection and</li> <li>referencing – Basic setting-out procedures using coordinates – Use of grids</li> <li>– Setting out buildings – Controlling verticality – Controlling grading excavation – Rotating lasers – Route location.</li> </ul>                                     |
|                                | <b>3- Triangulation and Trilateration</b><br>Principle of triangulation – Objective of triangulation surveys – Classification<br>of triangulation system – Triangulation figures and layouts – Combination<br>of all above systems – Layout of primary triangulation for large countries –<br>Criteria for selection of the layout of triangles – Well-conditioned triangles –<br>strength of figure.           |
|                                | <ul> <li>2- Intersection and Resection</li> <li>Intersection by solution of triangle – Intersection using the observed angles</li> <li>– Intersection from two baselines – Resection – Angular resections – Distance resections – Free stationing.</li> </ul>                                                                                                                                                   |
|                                | Transformation – Computation of Geodetic Coordinate from Cartesian<br>Coordinate – Geodetic Positioning - Satellite Positioning System.                                                                                                                                                                                                                                                                         |

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                  | Program<br>Outcomes<br>(P.O.) |
|----------------------------------------------|--------------------------------------------------------|-------------------------------|
| Course<br>learning<br>objective-1            | Explain geodetic principals, and coordinate Systems.   | [ a, e, k ]                   |
| Course                                       | Convert earth coordinate system to geodetic coordinate | [ a, e ]                      |
| BSCE Progr                                   | am                                                     | 116                           |



| learning<br>objective-2           | system                                                        |             |
|-----------------------------------|---------------------------------------------------------------|-------------|
| Course<br>learning<br>objective-3 | Distinguish between intersection and resection process.       | [ a, e, k ] |
| Course<br>learning<br>objective-4 | Adjust the triangulation and trilateration geodetic networks. | [ a, e, k ] |
| Course<br>learning<br>objective-5 | Describe GPS system, software, and applications.              | [ a, e, k ] |
| Course<br>learning<br>objective-6 | Integration between GPS and traditional surveying.            | [ a, k ]    |

| Course Contribution to | Engineering science | 70 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 30 % |



# Course Syllabus

| Course Code   | CIE 488        |      |      |      |
|---------------|----------------|------|------|------|
| Course Title  | Remote Sensing |      |      |      |
| Year / Level  | 4 / 10         |      |      |      |
| Hours         | Credit         | Lec. | Lab. | Tut. |
| Tiou 5        | 3              | 3    | -    | -    |
| Prerequisites | CIE 486        |      |      |      |

| Course<br>Description                        | This lecture course provides an overview of Geographic Information<br>Systems technology. Topics include fundamental concepts, terminology,<br>and technologies associated with GIS, applications of GIS, the role of GIS<br>in spatial data management, data modeling, concepts of file and database<br>systems, spatial data models, architecture of GIS software, methods of<br>data collection and input, manipulation and analysis features of GIS,<br>general management issues.<br>In addition, remote sensing is defined as the science of acquiring, processing,<br>and interpreting images, and related data, obtained from aircraft and satellites                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook                                     | <ul> <li>that record the interaction between matter and electromagnetic radiation.</li> <li>Geographical Information Systems: An Introduction, Julie Delaney, 2000, Publisher: Oxford Univ Pr, ISBN: 0195507894</li> <li>Remote Sensing and Image Interpretation (5th edition), Thomas M. Lillesand, Ralph W. Kiefer, Jonathan W. Chipman, 2003, Publisher: John Wiley &amp; Sons Inc, ISBN: 0471152277</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| References                                   | <ul> <li>Geoinformation: Remote Sensing, Photogrammetry and Geographical<br/>Information Systems, Gottfried Konecny, 2002, Publisher: Taylor &amp;<br/>Francis, ISBN: 0415237955</li> <li>Introduction to Remote Sensing (3rd edition), James B. Campbell, 2002,<br/>Publisher: Guilford Pr, ISBN: 1572306408</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>Identify the basic types of maps and geographic data used with GIS.</li> <li>Explain how geographic data and geographic information systems are used.</li> <li>Contrast and compare raster and vector data structures and operations.</li> <li>Describe the procedure for collecting and locations for accessing data for GIS.</li> <li>Perform database query and simple spatial analysis with GIS software.</li> <li>Examine and understand the relationship between scatter plots and the spectral response of land cover targets.</li> <li>Discuss how to use ground truth, scatter plots, and spatial patterns in imagery to create a land cover map.</li> <li>Demonstrate understanding of multi-spectral scanning, and operating Earth Resource Satellites</li> <li>Calculate the height of land objects (buildings, towers, trees, hills, etc.) using an aerial/space photograph.</li> <li>Generate digital orthophotos using scanned aerial/space photographs.</li> </ol> |



| <ul> <li>Data - Nonspatial Data - Data Format Conversions - Creating GIS Databases - Metadata - GIS Analytical Functions - GIS Applications - Data Sources</li> <li><b>2.</b> GIS and Spatial Data Management Spatial/geometric data use in CAD - Computer mapping, and Compute graphics - Spatial data use in GIS with CAD, mapping, computer graphics Distinguish between GIS and LIS (LRIS)</li> <li><b>3.</b> Data Modeling Data modeling - conceptual, logical, physical - Spatial and attribute data Scales of measurement - Dimensions - Multiple representation - Discrete versus continuous - Spatial relationships</li> <li><b>4.</b> Geo-Referencing and Spatial Data Models Spatial referencing - Types of spatial referencing - Types of geo-referencing frameworks Field and object methods - Vector data models - Topology Files - records and fields - The file processing environment; database management systems - Relational data model</li> <li><b>5.</b> Raster Data Model Data organization - Data capture and input technology - Technical Issues in data conversion - Data validation and quality</li> <li><b>6.</b> Introduction to Remote Sensing</li> <li>What is remote sensing - Basic concepts of electromagnetic waves and reflection - Electro-magnetic energy - Energy interaction in the atmosphere - Electro- magnetic energy interactions with the main surface materials</li> <li><b>7.</b> Sensors and Sensor Platforms</li> <li>Passive sensors - Active sensors - Air borne and Space borne remote sensing platforms</li> <li><b>8.</b> Multi spectral Sensing and Earth Resource Satellites Multi spectral, Thermal, and Hyper spectral Sensing - Different kinds of scanners The processes, across-track and along track scanning - Hyper-spectral scanner images are acquired physically - Multi spectral scanner basic operating principles - Thermal scanning and its basic principles of radiation - Hyper-spectral scanner images are acquired physically - Multi spectral scanner basic operating principles - Themal scanner basic contrelices fraction - Hyper-spectra</li></ul> | Descriptive   | 1- INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spatial/geometric data use in CAD - Computer mapping, and Compute graphics - Spatial data use in GIS with CAD, mapping, computer graphics Distinguish between GIS and LIS (LRIS)         3. Data Modeling         Data modeling - conceptual, logical, physical - Spatial and attribute data Scales of measurement - Dimensions - Multiple representation - Discrete versus continuous - Spatial relationships         4. Geo-Referencing and Spatial Data Models         Spatial referencing - Types of spatial referencing - Types of geo-referencing frameworks Field and object methods - Vector data models - Topology Files - records and fields - The file processing environment; database management systems - Relational data model         5. Raster Data Model         Data organization - Data modeling - Assigning values to cells - Geo referencing - Advantages and disadvantages - Data compression techniques - Public and private data - Primary and secondary data Remote Sensing - Data capture and input technology - Technical Issues in data conversion - Data validation and quality         6 - Introduction to Remote Sensing         What is remote sensing - Basic concepts of electromagnetic waves and reflection - Electromagnetic energy interactions with the main surface materials         7 - Sensors and Sensior Platforms         Passive sensors - Active sensors - Air borne and Space borne remote sensing platforms         8. Multi spectral Sensing and Earth Resource Satellites         Multi spectral Sensing and Earth Resource Satellites         Multi spectral Sensing and Hath Resource Satellites of radiation - Hyper-spectra scannir images are acquired physically - Multi spectral                                                                                                                                                                                                                                                                                                                                                                                        | Course Topics | Land Information Systems - GIS Data Sources and Classifications - Spatial<br>Data - Nonspatial Data - Data Format Conversions - Creating GIS<br>Databases - Metadata - GIS Analytical Functions - GIS Applications - Data<br>Sources                                                                                                                                                                                              |
| Data modeling - conceptual, logical, physical - Spatial and attribute data<br>Scales of measurement - Dimensions - Multiple representation - Discrete<br>versus continuous - Spatial relationships         4. Geo-Referencing and Spatial Data Models<br>Spatial referencing - Types of spatial referencing - Types of geo-referencing<br>frameworks Field and object methods - Vector data models - Topology<br>Files - records and fields - The file processing environment; database<br>management systems - Relational data model         5. Raster Data Model         Data organization - Data modeling - Assigning values to cells - Geo<br>referencing - Advantages and disadvantages - Data compression<br>techniques - Public and private data - Primary and secondary data<br>Remote Sensing - Data capture and input technology - Technical Issues in<br>data conversion - Data validation and quality         6-Introduction to Remote Sensing         What is remote sensing - Basic concepts of electromagnetic waves and<br>reflection - Electromagnetic energy - Energy interaction in the atmosphere<br>- Electro- magnetic energy interactions with the main surface materials         7. Sensors and Sensor Platforms         Passive sensors - Active sensors - Air borne and Space borne remote<br>sensing platforms         8- Multi Spectral Sensing and Earth Resource Satellites<br>Multi spectral, Thermal, and Hyper spectral Sensing - Different kinds of scanners<br>The processes, across-track and along track scanning - How multi spectra<br>scanner images are acquired physically - Multi spectral Scenner basic operating<br>principles - Thermal scanning and its basic principles of radiation - Hyper-spectra<br>scanner ing - Earth Resource Satellites Operating in the Optical Spectrum - Different<br>kinds of earth resources satellites and their usefulness.                                                                                                                                                                                                                          |               | Spatial/geometric data use in CAD - Computer mapping, and Computer graphics - Spatial data use in GIS with CAD, mapping, computer graphics -                                                                                                                                                                                                                                                                                      |
| Spatial referencing - Types of spatial referencing - Types of geo-referencing frameworks Field and object methods - Vector data models - Topology Files - records and fields - The file processing environment; database management systems - Relational data model         5. Raster Data Model       Data organization - Data modeling - Assigning values to cells - Geo referencing - Advantages and disadvantages - Data compression techniques - Public and private data - Primary and secondary data Remote Sensing - Data capture and input technology - Technical Issues in data conversion - Data validation and quality         6. Introduction to Remote Sensing         What is remote sensing - Basic concepts of electromagnetic waves and reflection - Electromagnetic energy - Energy interaction in the atmosphere - Electro- magnetic energy interactions with the main surface materials         7. Sensors and Sensor Platforms         Passive sensors - Active sensors - Air borne and Space borne remote sensing platforms         8. Multi Spectral Sensing and Earth Resource Satellites         Multi spectral, Thermal, and Hyper spectral Sensing - Different kinds of scanners The processes, across-track and along track scanning - How multi spectra scanner images are acquired physically - Multi spectral scanner basic operating principles of radiation - Hyper-spectra scanner images are acquired physically of Multi spectral Spectrum - Different kinds of earth resources satellites Operating in the Optical Spectrum - Different kinds of earth resources satellites operating in the Optical Spectrum - Different kinds of earth resources satellites operating in the Optical Spectrum - Different kinds of earth resources satellites Operating in the Optical Spectrum - Different kinds of earth resources satellites operating in the Optical                                                                                                                                                                                                                                     |               | Data modeling - conceptual, logical, physical - Spatial and attribute data - Scales of measurement – Dimensions - Multiple representation - Discrete                                                                                                                                                                                                                                                                              |
| Data organization - Data modeling - Assigning values to cells - Geo<br>referencing - Advantages and disadvantages - Data compression<br>techniques – Public and private data - Primary and secondary data<br>Remote Sensing - Data capture and input technology - Technical Issues in<br>data conversion - Data validation and quality6- Introduction to Remote Sensing<br>What is remote sensing - Basic concepts of electromagnetic waves and<br>reflection - Electromagnetic energy - Energy interaction in the atmosphere<br>– Electro- magnetic energy interactions with the main surface materials7- Sensors and Sensor Platforms<br>Passive sensors - Active sensors - Air borne and Space borne remote<br>sensing platforms8- Multi Spectral Sensing and Earth Resource Satellites<br>Multi spectral, Thermal, and Hyper spectral Sensing - Different kinds of scanners<br>The processes, across-track and along track scanning - How multi spectral<br>scanner images are acquired physically - Multi spectral Scanner basic operating<br>principles - Thermal scanning and its basic principles of radiation - Hyper-spectra<br>scanning - Earth Resource Satellites Operating in the Optical Spectrum - Different<br>kinds of earth resources satellites and their usefulness.Experimental<br>WorkThis course does not include experimental work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Spatial referencing - Types of spatial referencing - Types of geo-referencing frameworks Field and object methods - Vector data models – Topology - Files - records and fields - The file processing environment; database                                                                                                                                                                                                        |
| What is remote sensing - Basic concepts of electromagnetic waves and<br>reflection - Electromagnetic energy - Energy interaction in the atmosphere<br>- Electro- magnetic energy interactions with the main surface materials7- Sensors and Sensor Platforms<br>Passive sensors - Active sensors - Air borne and Space borne remote<br>sensing platforms8- Multi Spectral Sensing and Earth Resource Satellites<br>Multi spectral, Thermal, and Hyper spectral Sensing - Different kinds of scanners<br>The processes, across-track and along track scanning - How multi spectral<br>scanner images are acquired physically - Multi spectral scanner basic operating<br>principles - Thermal scanning and its basic principles of radiation - Hyper-spectral<br>scanning - Earth Resource Satellites Operating in the Optical Spectrum - Different<br>kinds of earth resources satellites and their usefulness.Experimental<br>WorkThis course does not include experimental work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Data organization - Data modeling - Assigning values to cells - Geo-<br>referencing - Advantages and disadvantages - Data compression<br>techniques – Public and private data - Primary and secondary data -<br>Remote Sensing - Data capture and input technology - Technical Issues in                                                                                                                                          |
| reflection - Electromagnetic energy - Energy interaction in the atmosphere<br>– Electro- magnetic energy interactions with the main surface materials7- Sensors and Sensor Platforms<br>Passive sensors - Active sensors - Air borne and Space borne remote<br>sensing platforms8- Multi Spectral Sensing and Earth Resource Satellites<br>Multi spectral, Thermal, and Hyper spectral Sensing - Different kinds of scanners<br>The processes, across-track and along track scanning - How multi spectral<br>scanner images are acquired physically - Multi spectral scanner basic operating<br>principles - Thermal scanning and its basic principles of radiation - Hyper-spectra<br>scanning - Earth Resource Satellites Operating in the Optical Spectrum - Different<br>kinds of earth resources satellites and their usefulness.Experimental<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 6- Introduction to Remote Sensing                                                                                                                                                                                                                                                                                                                                                                                                 |
| Passive sensors - Active sensors - Air borne and Space borne remote<br>sensing platforms8- Multi Spectral Sensing and Earth Resource Satellites<br>Multi spectral, Thermal, and Hyper spectral Sensing - Different kinds of scanners<br>The processes, across-track and along track scanning - How multi spectral<br>scanner images are acquired physically - Multi spectral scanner basic operating<br>principles - Thermal scanning and its basic principles of radiation - Hyper-spectral<br>scanning - Earth Resource Satellites Operating in the Optical Spectrum - Different<br>kinds of earth resources satellites and their usefulness.Experimental<br>WorkThis course does not include experimental work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | What is remote sensing - Basic concepts of electromagnetic waves and reflection - Electromagnetic energy - Energy interaction in the atmosphere – Electro- magnetic energy interactions with the main surface materials                                                                                                                                                                                                           |
| Multi spectral, Thermal, and Hyper spectral Sensing - Different kinds of scanners<br>The processes, across-track and along track scanning - How multi spectral<br>scanner images are acquired physically - Multi spectral scanner basic operating<br>principles - Thermal scanning and its basic principles of radiation - Hyper-spectral<br>scanning - Earth Resource Satellites Operating in the Optical Spectrum - Different<br>kinds of earth resources satellites and their usefulness.Experimental<br>WorkThis course does not include experimental work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | Passive sensors - Active sensors - Air borne and Space borne remote                                                                                                                                                                                                                                                                                                                                                               |
| Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Multi spectral, Thermal, and Hyper spectral Sensing - Different kinds of scanners -<br>The processes, across-track and along track scanning - How multi spectral<br>scanner images are acquired physically - Multi spectral scanner basic operating<br>principles - Thermal scanning and its basic principles of radiation - Hyper-spectral<br>scanning - Earth Resource Satellites Operating in the Optical Spectrum - Different |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -             | This course does not include experimental work.                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | This course does not include design activities or projects                                                                                                                                                                                                                                                                                                                                                                        |
| Activities/Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                          | Program<br>Outcomes<br>(P.O.) |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|
| Course<br>learning<br>objective-1            | Identify the basic types of maps and geographic data used with GIS.                                            | [ a, e ]                      |
| Course<br>learning<br>objective-2            | Explain how geographic data and geographic information systems are used.                                       | [ a, e ]                      |
| Course<br>learning<br>objective-3            | Contrast and compare raster and vector data structures and operations.                                         | [ a, e, k ]                   |
| Course<br>learning<br>objective-4            | Describe the procedure for collecting and locations for accessing data for GIS.                                | [ a, e ]                      |
| Course<br>learning<br>objective-5            | Perform database query and simple spatial analysis with GIS software.                                          | [ a, e, k ]                   |
| Course<br>learning<br>objective-6            | Examine and understand the relationship between scatter plots and the spectral response of land cover targets. | [ a, e, k ]                   |
| Course<br>learning<br>objective-7            | Discuss how to use ground truth, scatter plots, and spatial patterns in imagery to create a land cover map.    | [ a, e ]                      |
| Course<br>learning<br>objective-8            | Demonstrate understanding of multi-spectral scanning, and operating Earth Resource Satellites                  | [ a, e ]                      |
| Course<br>learning<br>objective-9            | Calculate the height of land objects (buildings, towers, trees, hills, etc.) using an aerial/space photograph. | [ a, e, k ]                   |
| Course<br>learning<br>objective-10           | Generate digital orthophotos using scanned aerial/space photographs                                            | [ a, k ]                      |

| Course Contribution to | Engineering science | 70 % |
|------------------------|---------------------|------|
| Professional Branches  | Engineering design  | 30 % |



| <b>Course Code</b> | CE 498                           |      |      |      |
|--------------------|----------------------------------|------|------|------|
| Course Title       | Senior Design project (1)        |      |      |      |
| Year / Level       | 5/9                              |      |      |      |
| Hours              | Credit                           | Lec. | Lab. | Tut. |
| nours              | 1                                | 1    | 3    | -    |
| Prerequisites      | ENG 357, CE 261, CE 282, CE 316, |      |      |      |
|                    | CE 317, CE 332, CE 342           |      |      |      |

# Senior Design project

| Course<br>Description | In addition to teaching the basic concepts of civil<br>engineering, this course is designed to help the senior student to<br>prepare his proposal for the final project. Topics include:<br>analytical calculations, analysis, design, and preparing drawings<br>and details of the project. |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Textbook              | Each supervisors of a project prepare lecture notes for their project.                                                                                                                                                                                                                       |  |
| References            | Each supervisors of a project determine references for their project.                                                                                                                                                                                                                        |  |
| Course                | 1-Revision of the civil engineering knowledge taught in the early                                                                                                                                                                                                                            |  |
| learning              | semesters.                                                                                                                                                                                                                                                                                   |  |
| Objectives            | 2 – Application of these knowledge in a real applicable project.                                                                                                                                                                                                                             |  |
| (C.L.O.)              |                                                                                                                                                                                                                                                                                              |  |

| Descriptive                | 1- Definition of the project.                                   |  |
|----------------------------|-----------------------------------------------------------------|--|
| <b>Course Topics</b>       | 2- Analysis of the main elements of the project.                |  |
| _                          | 3- Design of the main elements of the project.                  |  |
|                            | 4- Drawing details of the main elements of the project.         |  |
|                            | 5- Surveying of quantities.                                     |  |
| Experimental               | Civil Engineering project may include experimental works or     |  |
| Work                       | not.                                                            |  |
| Design                     | Application on simple design project related to the contents of |  |
| <b>Activities/Projects</b> | the subject.                                                    |  |

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                     | Program Outcomes<br>(P.O.) |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------|
| Course<br>learning<br>objective-1            | The ability of Remembering and recalls the principles of design, including the different design elements. | [ a ]                      |
| Course<br>learning<br>objective-2            | The ability of Developing civil engineering design skills.                                                | [ c]                       |
| Course<br>learning<br>objective-3            | The ability of recognizing the relationship between<br>analysis and design of different elements of the   | [ a]                       |



|                                   | project components.                                                                    |       |
|-----------------------------------|----------------------------------------------------------------------------------------|-------|
| Course<br>learning<br>objective-4 | The ability of dealing with the civil character and its uses in projects.              | [ d ] |
| Course<br>learning<br>objective-5 | The ability of Understanding the basics of analysis using computer software.           | [ b ] |
| Course<br>learning<br>objective-6 | The ability of utilizing and recalling theories of design a civil engineering project. | [ c ] |

| <b>Course Contribution to</b> | <b>Engineering Science</b> | 30 % |
|-------------------------------|----------------------------|------|
| <b>Professional Branches</b>  | Engineering Design         | 70 % |



| Course Code   | CE 499                    |      |      |      |
|---------------|---------------------------|------|------|------|
| Course Title  | Senior Design project (2) |      |      |      |
| Year / Level  | 5 / 10                    |      |      |      |
| Hours         | Credit                    | Lec. | Lab. | Tut. |
| Hours         | 3                         | -    | 1    | 6    |
| Prerequisites | CE 498                    |      |      |      |

| Course<br>Description                        | Designing of graduation project for which the student had<br>prepared a program and chose a location during the first<br>semester – The project should be both complex and<br>comprehensive to show student ability to utilize the experience<br>gained during the study period in the department – the student<br>should be able to meet project objectives. |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Textbook                                     | Each supervisors of a project prepare lecture notes for their project.                                                                                                                                                                                                                                                                                        |
| References                                   | Each supervisors of a project determine references for their project.                                                                                                                                                                                                                                                                                         |
| Course<br>learning<br>Objectives<br>(C.L.O.) | <ol> <li>Student should be able to design and implement an integrated project.</li> <li>The student will be qualified to the practice its role in the community as a civil engineer.</li> <li>Student should be able to compete with his colleagues in the preparation of good civil work.</li> </ol>                                                         |

| Descriptive                | 1. Definition of the design process with its various stages.    |  |  |
|----------------------------|-----------------------------------------------------------------|--|--|
| <b>Course Topics</b>       | 2. Analysis of each element of the project.                     |  |  |
| _                          | 3. Design of each element of the project.                       |  |  |
|                            | 4. Drawing of each element of the project.                      |  |  |
|                            | 5. Surveying of the quantities.                                 |  |  |
| Experimental               | Civil Engineering project may include experimental works or     |  |  |
| Work                       | not.                                                            |  |  |
| Design                     | Application on simple design project related to the contents of |  |  |
| <b>Activities/Projects</b> | the subject.                                                    |  |  |

| Course<br>learning<br>Objectives<br>(C.L.O.) | Student Learning Outcomes<br>(S.L.O.)                                                                     | Program Outcomes<br>(P.O.) |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------|
| Course<br>learning<br>objective-1            | The ability of Remembering and recalls the principles of design, including the different design elements. | [ a ]                      |
| Course<br>learning<br>objective-2            | The ability of Developing civil engineering design skills.                                                | [ c]                       |
| Course                                       | The ability of recognizing the relationship between                                                       |                            |

**BSCE Program** 



| learning<br>objective-3           | analysis and design of different elements of the project components.                   | [ a]  |
|-----------------------------------|----------------------------------------------------------------------------------------|-------|
| Course<br>learning<br>objective-4 | The ability of dealing with the civil character and its uses in projects.              | [ d ] |
| Course<br>learning<br>objective-5 | The ability of Understanding the basics of analysis using computer software.           | [b]   |
| Course<br>learning<br>objective-6 | The ability of utilizing and recalling theories of design a civil engineering project. | [ c ] |

| <b>Course Contribution to</b> | <b>Engineering Science</b> | 20 % |
|-------------------------------|----------------------------|------|
| <b>Professional Branches</b>  | Engineering Design         | 80 % |

#### NOTICE

Basic science courses and others courses from different colleges and department

Syllabi and Description will be taken from the colleges.



#### **References**

- 1- The national Commission for Academic Accreditation and Assessment (NCAAA), www.ncaaa.org.sa/
- 2- Accreditation Board for Engineering and Technology (ABET), Inc., www.abet.org/
- **3-** The Bachelor of Science in Civil Engineering, Civil Engineering Department, College of Engineering, Jazan University, KSA, www.jazanu.edu.sa/
- 4-The Bachelor of Science in Civil Engineering, King Fahd University of Petroleum & Minerals, KSA, www.kfupm.edu.sa/
- 5- The Bachelor of Science in Civil Engineering, College of Engineering, King Saud University, KSA, www.ksu.edu.sa/
- 8- The Bachelor of Science in Civil Engineering, College of Engineering, QassimUniversity, KSA, www.qu.edu.sa/