

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

Department Name: Chemical Engineering Department

Faculty Name: Nasser Zouli

	2019-2020	
Paper Title	A Systematic Framework for Optimizing a Sweeping Gas Membrane Distillation (SGMD)	
Journal Name	Membranes	
Link of the paper	https://www.mdpi.com/2077-0375/10/10/254	
Abstract	The present work has undertaken a meticulous glance on optimizing the performance of an SGMD configuration	
	utilized a porous poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) membrane. This was carried	
	out by conducting a systematic framework for investigating and optimizing the pertinent parameters such as	
	sweeping gas flow rate, feed temperature, feed concentration and feed flow rate on the permeate flux. For this	
	purpose, the Taguchi method and design of experiment techniques were harnessed to statistically determine	
	optimum operational conditions. Besides that, a comprehensive surface and permeation characterization was	
	conducted against the hand-made membranes. Results showcased that the membrane performance was ultimately	
	controlled by the feed temperature and was nearly (~680) % higher when the temperature raised from 45 to 65 °C.	
	Also, to a lesser extent, the system was dominated by the feed flow rate. As the adopted feed flow rate increases	
	(from 0.2 to 0.6 L/min), around 47.5% increment was bestowed on water permeability characteristics. In contra,	

34.5% flux decline was witnessed when higher saline feed concentration (100 g/L) was utilized. In the meantime,
with raising the sweeping gas flow rate (from 120 to 300 L/h), the distillate was nearly 129% higher. Based on
Taguchi design, the maximum permeate flux (17.3 and 17 kg/m ² ·h) was secured at 35 g/L, 0.4 L/min, 65 °C and
300 L/h, for both commercial and prepared membranes, respectively

	2019-2020	
Paper Title	Fe3O4 nanoparticles decorated multi-walled carbon nanotubes based magnetic nanofluid for heat transfer	
	application	
Journal Name	Materials Letters	
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0167577X20307485	
Abstract	The synthesis of magnetic multi-walled carbon nanotubes (MWCNTs)-iron oxide (Fe ₃ O ₄) nanocomposite (NC)	
	provides many interesting traits in individual moieties unfolding new opportunities for a wide range of	
	applications. Several preparation techniques have been employed in the recent past to synthesize MWCNTs-	
	Fe ₃ O ₄ NCs. Herein, we report the synthesis of Fe ₃ O ₄ nanoparticles (NPs) decorated MWCNTs NC for heat	
	transfer application. The NC was synthesized via co-precipitation method with a high-quality yield. The magnetic	
	characterization of the as-synthesized NC exhibited saturation magnetization and was found to be 34.86 emu/g.	
	Finally, magnetic nanofluids were prepared by dispersing different amounts of the as-synthesized NC into mineral	

oil, which is rarely reported. A ~50% enhancement in the thermal conductivity of the magnetic nanofluid was
observed with loading of ~0.5 g/L of NC, which is better than the results reported so far for various nanofluids

	2019-2020
Paper Title	Uranium (VI) ions uptake from liquid wastes by solanum incanum leaves: biosorption, desorption and recovery
Journal Name	Alexandria Engineering Journal
Link of the paper	https://www.sciencedirect.com/science/article/pii/S1110016820301125
Abstract	Nuclear energy and its technologies can be used in several fields besides generating electricity, such as
	agriculture, food, medicine, space exploration and desalination [1]. Besides the great benefit in the fields of
	nuclear technology, it produces radioactive waste that harms all environmental life and it is restricted by
	government agencies to protect human health and the environment [2], [3], [4]. Radioactive waste varies
	according to its radioactivity, as short, medium and high radioactivity, short radioactive wastes are subjected to
	treatment and then discharged into the environment [5], [6]. This treatment carried out by placing these wastes in
	glass containers until their radioactivity is lowered. For medium and high radioactive wastes, disposal requires
	stricter measures and storage in geological layers. Despite the high cost-effectiveness of nuclear energy in
	providing electricity, the danger of radioactive materials and the difficulty of disposing of nuclear waste, this
	requires relying on non-polluting energy alternatives, such as solar, wind, hydro, geothermal, etc. [7], [8].

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحـدة الجـودة

Uranium is an imperative constituent in nuclear fuel manufacturing and also, is the main element of radioactive waste that needs to remove before disposal. There are specialized processes in the treatment of liquid radioactive wastes such as evaporation, precipitation, extraction, and adsorption [9], [10], [11], [12]. In low influent concentrations of radioactive elements, adsorption is an effective process in the removal and recovery of radioactive elements from the liquid phase [13]. There are many adsorbents used in the adsorption process, such activated carbon, agriculture byproducts, polymers, biomass and as nanomaterials [14], [15], [16], [17], [18], [19], [20], [21], [22]. The selection of adsorbents used in the adsorption process depends on their effectiveness and also on the possibility of reducing their volume after saturated with pollutants so that it can be easily disposed of using the burial process. *Solanum incanum* is a plant grows naturally in southern Saudi Arabia and has some uses in leather tanning. Economically, this plant has medicinal properties in reducing the risk of high blood pressure and stroke and heart disease. Also, leaves and stems are useful as green compost. The aim of this work is the use of solanum incanum leaves (SNL) as a new biodegradation agriculture material to remove and recover U (VI) from the liquid wastes in a batch system. Biosorption operating parameters, isotherms and kinetics were studied. Also, the reusability of SNL and recovery of U (VI) were investigated.

2020-2021	
Paper Title	One-pot preparation of CdO/ZnO core/shell nanofibers: An efficient photocatalyst

Journal Name	Alexandria Engineering Journal
Link of the paper	https://www.sciencedirect.com/science/article/pii/S111001682030613X
Abstract	Herein, CdO/ZnO core/shell nanofibers (NFs) were fabricated by one-pot electrospinning technique form a
	solution composed of poly(vinyl alcohol), zinc acetate dihydrate, and cadmium acetate dihydrate. CdO/ZnO
	core/shell NFs exhibits an excellent photo-degradation of methylene blue (MB) under sunlight irradiation
	compared to pristine ZnO NFs. As 98.4% and 42.4% of MB dye was de-colorized during 210 min using
	CdO/ZnO core/shell NFs and pristine ZnO NFs, respectively. The photo-degradation reaction of MB with
	CdO/ZnO core/shell NFs followed the pseudo-first-order relation.

2020-2021	
Paper Title	Performance Evaluation of Polyethersulfone Membranes for Competitive Removal of Cd2+, Co2+, and Pb2+ Ions
	from Simulated Groundwater
Journal Name	Geofluids
Link of the paper	https://www.hindawi.com/journals/geofluids/2021/6654477/
Abstract	This paper presents studying the performance of three types of polyethersulfone (PES) membrane for the simultaneous removal of Co ²⁺ ions, Cd ²⁺ ions, and Pb ²⁺ ions from binary and ternary aqueous solutions. Co ²⁺ ions,
	Cd ²⁺ ions, and Pb ²⁺ ions with two different initial concentrations (e.g., 10 and 50 ppm) were selected as examples

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحـدة الجـودة

of heavy metals that contaminate the groundwater as a result of geological and human activities. This study investigated the effect of types of PES membrane and metal ions concentration on the separation process. For the binary aqueous solutions, the permeation flux of the PES2 membranes was higher for the separation process of solutions containing 50 ppm of Cd²⁺ ions and 10 ppm of Co²⁺ ions (24.7 L/m²·h) and Pb²⁺ ions (23.7 L/m²·h). All the metals in the binary solutions had high rejection when their initial concentration was lower than the initial concentration of the other metal present in the same solution. Using PES2, the maximum rejection of Cd²⁺ ions was 61.3% when the initial concentrations were 50 ppm Pb²⁺ ions: 10 ppm Cd²⁺ ions and 55.4% for Pb²⁺ ions when the initial concentrations were 10 ppm Pb²⁺ ions: 50 ppm Cd²⁺ ions. For the ternary aqueous solutions, the rejection and the permeation flux of the PES membranes increased with decreasing the heavy metal initial concentration. Using PES2, the maximum permeation flux was 21.6 L/m²·h when the initial concentration of the metals was 10 ppm; and the maximum rejection of the metals obtained at initial concentration of 10 ppm was 50.5% for Co²⁺ ions, 48.3% for Cd²⁺ ions, and 40% for Pb²⁺ ions. The results of the filtration process using PES2 of simulated contaminated-groundwater indicated the efficient treatment of groundwater containing Co²⁺, Cd²⁺, and Pb²⁺ ions

2020-2021	
Paper Title	Development and validation of a mathematical model to predict the thermal behaviour of nanofluids
Journal Name	Heat and Mass transfer

Link of the paper	https://link.springer.com/article/10.1007/s00231-020-02927-5
Abstract	With a single-phase approach, a 3D mathematical model was developed through Computational Fluid Dynamics
	(CFD) techniques, coupling the momentum and heat transfer balances for the study of the thermal behaviour of
	nanofluids. The local heat transfer coefficient and thermal boundary layer thickness of CuO/water, Fe2O3/water
	and Al2O3/water nanofluids, have been predicted and compared with those experimentally determined at three
	volume concentration of nanoparticles (ϕ =0.01%, 0.03% and 0.05%), at T = 25 °C and T = 55 °C for laminar and
	turbulent flow conditions, using a newly developed sophisticated noninvasive heat transfer coefficient probe that
	is flush mounted on the inner wall of the test section. Such conditions have been used for the mathematical model,
	considering the effects of the nanoparticle materials and volume concentrations through effective thermophysical
	properties. The predicted results from the mathematical model show a good agreement with the trend and the
	experimental observations. The enhancement of the heat transfer coefficient and reduction of the thermal
	boundary layer when increasing the volume concentration of the nanofluids and when increasing the flow rates
	have been properly predicted by the mathematical model results, showing average absolute relative errors between
	1.7% and 8.4%. The model exhibits an enhancement in the agreement between the experimental measurements
	and the predicted results when comparing with other models found in literature.

	2020-2021	
Paper Title	Carbon-coated Fe ₃ O ₄ core–shell super-paramagnetic nanoparticle-based ferrofluid for heat transfer applications	
Journal Name	Journal of Colloid and Interface Science	
Link of the paper	https://pubs.rsc.org/en/content/articlelanding/2021/na/d1na00061f#!divAbstract	
Abstract	Herein, we report the investigation of the electrical and thermal conductivity of Fe ₃ O ₄ and Fe ₃ O ₄ @carbon	
	(Fe ₃ O ₄ @C) core-shell nanoparticle (NP)-based ferrofluids. Different sized Fe ₃ O ₄ NPs were synthesized via a	
	chemical co-precipitation method followed by carbon coating as a shell over the Fe ₃ O ₄ NPs via the hydrothermal	
	technique. The average particle size of Fe ₃ O ₄ NPs and Fe ₃ O ₄ @C core–shell NPs was found to be in the range of	
	\sim 5–25 nm and \sim 7–28 nm, respectively. The thickness of the carbon shell over the Fe ₃ O ₄ NPs was found to be in	
	the range of ~1-3 nm. The magnetic characterization revealed that the as-synthesized small average-sized	
	Fe ₃ O ₄ NPs (ca. 5 nm) and Fe ₃ O ₄ @C core–shell NPs (ca. 7 nm) were superparamagnetic in nature. The electrical	
	and thermal conductivities of Fe ₃ O ₄ NPs and Fe ₃ O ₄ @C core-shell NP-based ferrofluids were measured using	
	different concentrations of NPs and with different sized NPs. Exceptional results were obtained, where the	
	electrical conductivity was enhanced up to ~3222% and ~2015% for Fe ₃ O ₄ (ca. 5 nm) and Fe ₃ O ₄ @C core–shell	
	(ca. 7 nm) NP-based ferrofluids compared to the base fluid, respectively. Similarly, an enhancement in the	
	thermal conductivity of ~153% and ~116% was recorded for Fe ₃ O ₄ (ca. 5 nm) and Fe ₃ O ₄ @C core–shell (ca. 7	
	nm) NPs, respectively. The exceptional enhancement in the thermal conductivity of the bare Fe ₃ O ₄ NP-based	
	ferrofluid compared to that of the Fe ₃ O ₄ @C core-shell NP-based ferrofluid was due to the more pronounced	

	effect of the chain-like network formation/clustering of bare Fe ₃ O ₄ NPs in the base fluid. Finally, the experimental
	thermal conductivity results were compared and validated against the Maxwell effective model. These results
	were found to be better than results reported till date using either the same or different material systems.

	2020-2021
Paper Title	Graphitic nanofibers supported NiMn bimetallic nanoalloys as catalysts for H2 generation from ammonia borane
Journal Name	International Journal of Hydrogen Energy
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0360319921032511
Abstract	Bimetallic nickel manganese nanoalloy-decorated graphitic <u>nanofibers</u> were prepared using electrospinning. The
	introduced catalysts were explored as an effective and inexpensive catalyst for H2 generation from ammonia
	borane using hydrolysis. Standard techniques were used to determine the morphology and chemical composition
	of the nanofibers. Characterization indicated successful formation of bimetallic nickel-manganese-decorated
	graphitic nanofibers. Introduced effective catalysts showed a high reusability for H ₂ generation using ammonia
	borane hydrolysis at low concentrations and temperatures. All formations of the introduced catalysts demonstrated
	a higher <u>catalytic activity</u> in H ₂ generation than nickel-decorated <u>carbon nanofibers</u> . Samples composed of 55 wt%

nickel and 45 wt% manganese showed the best catalytic activity compared with other formulations.
Initial <u>turnover frequency</u> (TOF) of this sample was 58.2 min ⁻¹ , twice the TOF of the manganese-free catalyst.
Kinetics and thermodynamics revealed that the catalyst concentration followed the pseudo-first order reaction
while the ammonia borane concentration follow the pseudo-zero order reaction, providing activation energy of
38.9 kJ mol^{-1} .

	2020-2021
Paper Title	Insights on the role of supporting electrospun carbon nanofibers with binary metallic carbides for enhancing their capacitive deionization performance
Journal Name	Journal of Materials Research and Technology
Link of the paper	https://www.sciencedirect.com/science/article/pii/S2238785421011170
Abstract	Recent development in desalination technology can be progressed in terms of fabricated nanomaterials and
	operating parameters, as one among energy-storing systems including fuel cells, capacitors, batteries, and so on.
	Regarding the examined nanomaterials, embedded CoCr ₇ C ₃ nanoparticles onto carbon nanofibers
	(CoCr ₇ C ₃ @CNFs) were prepared using a facile electrospinning technique. Characterization techniques, such as
	XRD, FESEM, TEM, HRTEM, STEM, and EDX, were served to define the crystallinity, morphology and
	chemical composition of the synthesized nanofibers. XRD chart demonstrated the formation of Cr ₇ C ₃ species

along with deposited metallic cobalt in this nanomaterial. The morphological study revealed the uniform
distribution of metallic cobalt and Cr ₇ C ₃ nanoparticles onto the fibrous CNFs structure. The electrochemical
performance of CoCr ₇ C ₃ @CNFs was studied in 1.0 M NaCl solution at 5 mV s ⁻¹ to record a specific capacitance
of 250 F g ⁻¹ . Electrochemical impedance spectroscopy measurements indicated better electron transfer properties
after introducing CoCr ₇ C ₃ to the CNFs structure. Furthermore, its outstanding electrosorption capacity of
20.40 mg g ⁻¹ might encourage the preparation of additional nanocomposites for future capacitive deionization
(CDI) technology.

	2020-2021
Paper Title	Insights on the role of supporting electrospun carbon nanofibers with binary metallic carbides for enhancing their capacitive deionization performance
Journal Name	Journal of Materials Research and Technology
Link of the paper	https://www.sciencedirect.com/science/article/pii/S2238785421011170
Abstract	Recent development in desalination technology can be progressed in terms of fabricated <u>nanomaterials</u> and operating parameters, as one among energy-storing systems including fuel cells, capacitors, batteries, and so on.

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

Regarding the examined nanomaterials, embedded $CoCr_7C_3$ nanoparticles onto carbon nanofibers ($CoCr_7C_3@CNFs$) were prepared using a facile electrospinning technique. Characterization techniques, such as XRD, FESEM, TEM, HRTEM, STEM, and EDX, were served to define the crystallinity, morphology and chemical composition of the synthesized nanofibers. XRD chart demonstrated the formation of Cr_7C_3 species along with deposited metallic cobalt in this nanomaterial. The morphological study revealed the uniform distribution of metallic cobalt and Cr_7C_3 nanoparticles onto the fibrous CNFs structure. The electrochemical performance of $CoCr_7C_3@CNFs$ was studied in 1.0 M NaCl solution at 5 mV s⁻¹ to record a specific capacitance of 250 F g⁻¹. Electrochemical impedance spectroscopy measurements indicated better electron transfer properties after introducing $CoCr_7C_3$ to the CNFs structure. Furthermore, its outstanding electrosorption capacity of 20.40 mg g⁻¹ might encourage the preparation of additional nanocomposites for future capacitive deionization (CDI) technology.

2020-2021	
Paper Title	Electro-desalination of saline solutions by multiwall carbon nanotube electrodes
Journal Name	Journal of Saudi Chemical Society
Link of the paper	https://www.sciencedirect.com/science/article/pii/S1319610321001332
Abstract	Electrodes of multiwall carbon nanotube (MWCNT) with polytetrafluoroethylene (PTFE)
	binding were prepared for NaCl removal from water in the electrosorption system. SEM,
	XRD and BET analysis were used to characterize the prepared electrodes. The optimum

electrosorption parameters (electrosorption temperature, NaCl concentration,
electrosorption time, and potential) were studied. The maximum electrosorption capacity
(15.64 mg/g) was obtained at -1.0 V, 100 min, and 30 °C. The electrosorption capacity of
electrodes decreased from 15.64 mg/g to 6.15 mg/g with the temperature rise from 30 to
50 °C. Also, the kinetics of electrosorption NaCl by Electrodes was investigated by pseudo-
first-order and pseudo-second-order. The results indicated that the electrosorption data will
fit with the pseudo-first-order model indicating the physio-electrosorption of NaCl by
Electrodes with activation energy was 19.45 kJ mol-1. The regeneration result indicated the
exceptional and stable reusability of MWCNT/PTFE in the NaCl

	2020-2021
Paper Title	Active adsorption performance of planetary ball milled Saudi Arabian bentonite clay for the removal of copper ions from aqueous solution
Journal Name	EPL (Europhysics Letters)
Link of the paper	https://iopscience.iop.org/article/10.1209/0295-5075/ac1960/meta
Abstract	We report the role of local bentonite clay in the removal of Cu ²⁺ ions from aqueous solution. The fine bentonite

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

clay powder was analysed by XRD, FTIR, SEM and DLS analysis techniques. Further, the adsorption experiments were carried out by varying many factors such as weight and size of bentonite clay, residence time, pH of the solution, stirring rate, temperature, and flow rate. The optimum conditions for effective removal of Cu²⁺ ions was 1 g dose of bentonite and 63 μ m size of bentonite, 50 minutes of residence time and 50 °C temperature at pH 3 with a flow rate of 1 L/min. The data fitted well the Freundlich model and a maximum adsorption capacity of 61.72 mg/g has been obtained. The value of Gibbs free energy changes (ΔG°), enthalpy changes (ΔH°) and entropy changes (ΔS°) were found to be -3819.86 J mol $^{-1}$ K $^{-1}$, +15079.10 J mol $^{-1}$ K $^{-1}$ and +58.60 J mol $^{-1}$ K $^{-1}$, respectively.

Google Scholar link

https://scholar.google.com/citations?hl=en&user=57a2-04AAAAJ

Research gate link

https://www.researchgate.net/profile/Nasser-Zouli

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

Scopus link

https://www.scopus.com/authid/detail.uri?authorId=57194175488

Faculty Name: Ahmed Abutaleb

2019-2020	
Paper Title	Removal and recovery of U(VI) from aqueous effluents by flax fiber: Adsorption, desorption and batch adsorber
	proposal
Journal Name	Journal of Advanced Research
Link of the paper	https://www.sciencedirect.com/science/article/pii/S2090123219301699
Abstract	Flax fiber (Linen fiber), a valuable and inexpensive material was used as sorbent material in the uptake of
	uranium ion for the safe disposal of liquid effluent. Flax fibers were characterized using BET, XRD, TGA, DTA
	and FTIR analyses, and the results confirmed the ability of flax fiber to adsorb uranium. The removal efficiency
	reached 94.50% at pH 4, 1.2 g adsorbent dose and 100 min in batch technique. Adsorption results were fitted well

to the Langmuir isotherm. The recovery of U (VI) to form yellow cake was investigated by precipitation using
NH_4OH (33%). The results show that flax fibers are an acceptable sorbent for the removal and recovery of U (VI)
from liquid effluents of low and high initial concentrations. The design of a full scale batch unit was also proposed
and the necessary data was suggested.

	2019-2020
Paper Title	Uranium (VI) ions uptake from liquid wastes by solanum incanum leaves: biosorption, desorption and recovery
Journal Name	Alexandria Engineering Journal
Link of the paper	https://www.sciencedirect.com/science/article/pii/S1110016820301125
Abstract	Nuclear energy and its technologies can be used in several fields besides generating electricity, such as
	agriculture, food, medicine, space exploration and desalination [1]. Besides the great benefit in the fields of
	nuclear technology, it produces radioactive waste that harms all environmental life and it is restricted by
	government agencies to protect human health and the environment [2], [3], [4]. Radioactive waste varies
	according to its radioactivity, as short, medium and high radioactivity, short radioactive wastes are subjected to
	treatment and then discharged into the environment [5], [6]. This treatment carried out by placing these wastes in
	glass containers until their radioactivity is lowered. For medium and high radioactive wastes, disposal requires
	stricter measures and storage in geological layers. Despite the high cost-effectiveness of nuclear energy in

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحـدة الجـودة

providing electricity, the danger of radioactive materials and the difficulty of disposing of nuclear waste, this requires relying on non-polluting energy alternatives, such as solar, wind, hydro, geothermal, etc. [7], [8]. Uranium is an imperative constituent in nuclear fuel manufacturing and also, is the main element of radioactive waste that needs to remove before disposal. There are specialized processes in the treatment of liquid radioactive wastes such as evaporation, precipitation, extraction, and adsorption [9], [10], [11], [12]. In low influent concentrations of radioactive elements, adsorption is an effective process in the removal and recovery of radioactive elements from the liquid phase [13]. There are many adsorbents used in the adsorption process, such activated carbon, agriculture as byproducts, polymers, biomass and nanomaterials [14], [15], [16], [17], [18], [19], [20], [21], [22]. The selection of adsorbents used in the adsorption process depends on their effectiveness and also on the possibility of reducing their volume after saturated with pollutants so that it can be easily disposed of using the burial process. *Solanum incanum* is a plant grows naturally in southern Saudi Arabia and has some uses in leather tanning. Economically, this plant has medicinal properties in reducing the risk of high blood pressure and stroke and heart disease. Also, leaves and stems are useful as green compost. The aim of this work is the use of solanum incanum leaves (SNL) as a new biodegradation agriculture material to remove and recover U (VI) from the liquid wastes in a batch system. Biosorption operating parameters, isotherms and kinetics were studied. Also, the reusability of SNL and recovery of U (VI) were investigated.

2019-2020	
Paper Title	UV light enabled photocatalytic activity of α-Fe2O3 nanoparticles synthesized via phase transformation
Journal Name	Materials Letters
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0167577X19313795
Abstract	In this work, hematite $(\alpha\text{-Fe}_2\text{O}_3)$ nanoparticles (NPs) were synthesized by co-precipitation method involving chemical precipitation of aqueous salts of iron $(\text{Fe}^{2+}/\text{Fe}^{3+})$ using NaOH aqueous solution. The synthesis of α -Fe ₂ O ₃ NPs via phase transformation and its photocatalytic application under ultra violet (UV) light is rarely reported. The maximum removal of methylene blue (MB) dye (92%) was achieved at pH 10 and 200 mg amount of catalyst, whereas the concentration of dye was 10 ppm. The removal percentage of MB dye was found to vary

with pH of the solution, concentrations of dye, and amount of α -Fe ₂ O ₃ NPs for certain interval of time. Moreover,
plot of $ln(C_t/C_0)$ Vs time exhibited almost a linear relationship between them which suggested the pseudo-first
order kinetics reaction of photocatalytic degradation of MB.

	2019-2020	
Paper Title	Electrospun carbon nanofiber-encapsulated NiS nanoparticles as an efficient catalyst for hydrogen production from hydrolysis of sodium borohydride	
Journal Name	International Journal of Hydrogen Energy	
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0360319919324528	
Abstract	Carbon nanofibers (CNFs) incorporating NiS nanoparticles (NPs), namely NiS@CNFs were prepared by one-step electrospinning and successfully employed as a catalyst for hydrogen production from hydrolytic dehydrogenation of sodium borohydride (SBH). As-prepared NiS@CNFs, composed of polyacrylonitrile (PAN), nickel acetate, and ammonium sulfide, was calcined at 900 °C in argon atmosphere, and characterized using standard surface	

science techniques. The combined results revealed the growth of NiS NPs inside the CNFs, hence confirmed the
presence of elemental Ni, S, and C. The as-prepared NiS@CNFs catalyst has a significantly higher surface area
(650.92 m ² /g) than the reported value of 376 m ² /g. Importantly, this catalyst exhibited a much higher catalytic
performance, for H ₂ production from SBH, than that of Ni@CNFs, as evidenced by its low activation energy
(~25.11576 kJ/mol) and their R_{max} values of 2962 vs. 1770 mL/g·min. Recyclability tests on using NiS@CNFs
catalyst showed quantitatively production (~100% conversion) of H ₂ from SBH and retained up to 70% of its
initial catalytic activity after five successive cycles. The low cost and high catalytic performance of the designed
NiS@CNFs catalyst enable facile H ₂ production from readily available hydrogen storage materials.

	2019-2020
Paper Title	A Comprehensive Review Covering Conventional and Structured Catalysis for Methanol to Propylene
	Conversion.
Journal Name	Catalysis Letter
Link of the paper	https://link.springer.com/article/10.1007/s10562-019-02914-4
Abstract	The conversion of methanol to propylene is a value-added process and has gained extreme significance because of
	high demand for propylene in the production of petrochemicals. The demand for propylene is increasing due to

increasing usage of polypropylene. During the last two decades, propylene demand growth has far overtaken ethylene demand growth and it is predicted to be more than double in the next 20 years. The Dalian Institute of Chemical Physics has been working for the last three decades in the R&D of the methanol to olefins reaction and have developed MTP technology. The catalytic materials used in methanol to propylene conversion include SAPO-34 (small-pore molecular sieves), ZSM-5 (medium-pore zeolites) and its modified forms. Limited research has also been done using large pore zeolites such as mordenite and beta. High-silica EU-1 zeolite has been found as an efficient catalyst for MTP conversion. The use of SAPO-18, ZSM-23 and CON-type zeolite for MTP reaction has also been discussed. Methanol to propylene research has been carried using structured catalysts including ceramic based honeycomb or monolith and silicon carbide foam. The major difference in process design between SAPO-34 and H-ZSM-5 is that the SAPO-34 is used in fluidized bed process while H-ZSM-5 catalyst is used in fixed bed process. SAPO-34 is a selective catalyst for olefins but deactivates fast and thus requires frequent regeneration. The H-ZSM-5 is less selective for olefins but shows less deactivation and thus quite stable. A number of structured supports such as monolith, foam, and mesh have been researched for coating with the active zeolite based catalysts. The structured catalysts have the advantage to reduce the diffusional limitations of pellet catalyst system and have exhibited excellent results in terms of activity and selectivity for olefins as well as in reducing aromatics formation. The results obtained in our research using zeolite coated structured catalysts have shown significant increase in propylene selectivity. The significant findings of our work has been published and patented with US Patent and Trademark Office (USPTO).

2020-2021	
Paper Title	Fabrication of electrospun nickel sulphide nanoparticles onto carbon nanofibers for efficient urea electro-
	oxidation in alkaline medium
Journal Name	International Journal of Hydrogen Energy
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0360319921002871
Abstract	To design and synthesize a noble-metal free electrocatalyst with increased efficiency and stability during urea
	electro-oxidation in alkaline solution is still an important challenge in the electrocatalytic field. In this work,
	carbon nanofibers were decorated with nickel sulphide nanoparticles [NiS@CNFs] through the electrospinning

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

technique with subsequent heating into an argon atmosphere at 900 °C for 2 h. This formed nanomaterial was extensively characterized through X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Raman spectroscopy and N₂ adsorption-desorption measurements. A conductive network of intertwined CNFs was clearly detected by FE-SEM analysis technique with varied diameters in the range of 0.6–1 μm. A highly porous nature could be suggested after incorporating NiS nanospecies resulting in increased specific surface area and valuable <u>electrocatalytic activity</u> for urea molecules electro-oxidation. The <u>pore size distribution</u> curves showed a decreased average pore diameter for NiS@CNFs nanocomposite by 2.53 folds when compared to that at CNFs. The electroactivity of NiS@CNFs nanomaterial for catalyzing urea electro-oxidation was investigated using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy measurements. Increased activity of this nanocatalyst was registered when urea molecules were added in increased concentrations into KOH solution. Lowered resistance values were also obtained describing the charge transfer process to confirm the feasibility of the studied reaction at NiS@CNFs surface. Moreover, its drawn chronoamperogram showed a stable performance during operation for long periods revealing a lowered catalytic decay. Accordingly, the aforementioned results of our fabricated nanomaterial could provide a good guide for fabricating suitable electrocatalysts for various electrocatalytic purposes.

	2020-2021	
Paper Title	One-pot preparation of CdO/ZnO core/shell nanofibers: An efficient photocatalyst	
Journal Name	Alexandria Engineering Journal	
Link of the paper	https://www.sciencedirect.com/science/article/pii/S111001682030613X	
Abstract	Herein, CdO/ZnO core/shell nanofibers (NFs) were fabricated by one-pot electrospinning technique form a	
	solution composed of poly(vinyl alcohol), zinc acetate dihydrate, and cadmium acetate dihydrate. CdO/ZnO	
	core/shell NFs exhibits an excellent photo-degradation of methylene blue (MB) under sunlight irradiation	
	compared to pristine ZnO NFs. As 98.4% and 42.4% of MB dye was de-colorized during 210 min using	
	CdO/ZnO core/shell NFs and pristine ZnO NFs, respectively. The photo-degradation reaction of MB with	
	CdO/ZnO core/shell NFs followed the pseudo-first-order relation.	

	2020-2021	
Paper Title	The effect of steam curing regimes on the chloride resistance and pore size of high-strength green concrete	
Journal Name	Construction and Building Materials	
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0950061821001690	
Abstract	Since diminishing the consumption of cement has many benefits, ongoing research on the incorporation of the	
	industrial/agricultural wastes as an alternative or partial substitution for cement is of paramount significance. This	
	study aims to examine the effect of steam curing regimes (SCRs) on the chloride resistance and microstructure of	
	high-strength green concrete (HSGC). To this end, palm oil fuel ash, a type of waste from the palm oil industry,	
	was treated so that ultrafine palm oil fuel ash (U-POFA) could be obtained. U-POFA was utilized as a partial	
	substitute of the mass of cement at 0%, 20%, 40%, and 60% to produce HSGC. Varying steam curing	
	temperatures (50 °C, 65 °C, and 80 °C) and varying periods (6, 11, and 16 h) were applied to the HSGC.	
	Moreover, a steam curing cycle that did not exceed 24 h was applied. The tests performed on the HSGC samples	

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

included compressive strength (CS), rapid chloride permeability, and rapid chloride migration. The evaluation of the microstructure of the HSGC samples was undertaken via Mercury Intrusion Porosimetry (MIP) in addition to scanning electron microscopy with energy dispersive x-ray. The results showed that the application of SCRs with a high volume with UPOFA resulted in enhanced CS, chloride resistance, and microstructure properties of HSGC at an early age of 3 days and a later age of 360 days. Such enhancement in the concrete properties mainly depends on the cement replacement rates by U-POFA, temperature, and the steam curing period. It was, therefore, concluded that U-POFA played a key role in reducing the negative impact, which might have been caused by the utilization of varying SCRs.

	2020-2021
Paper Title	Thermal conductivity enhancement for CuO nanoflakes in oil-based and oil blend-based nanofluids
Journal Name	Journal of the Chinese Chemical Society
Link of the paper	https://onlinelibrary.wiley.com/doi/abs/10.1002/jccs.202100005
Abstract	We report the synthesis and characterization of copper oxide (CuO) nanoflakes (Nflks) for thermal conductivity
	analysis. The synthesized Nflks were used for the preparation of oil- based and oil blend- based nanofluids. A
	dynamic light scattering study was carried out for aqueous suspension of CuO Nflks. The size distribution data
	show the two peaks emerged at 178.2 ± 31.77 nm and 861.7 ± 248.6 nm. The zeta potential was investigated, and
	the peak was observed at -46.4 ± 14.3 mV. The average thermal conductivity coefficients were calculated for
	mineral oil, sunflower oil, and oil blend, which were found to be 0.086, 0.105, and 0.099 W/mK, respectively.
	Furthermore, thermal conductivity enhancement was calculated, and the maximum percent enhancement was
	recorded for sunflower oil- based nanofluid, which was found to be ~20.68% at 0.46 vol%. At similar vol%, the
	enhancement in thermal conductivity in oil blend- based and mineral oil- based nanofluids was found to be 16.14

	and 15.73%, respectively. The oil- based nanofluids are promising in electronics and modern computational
	devices to minimize the heating effect.

	2020-2021
Paper Title	Enhanced electro-adsorption desalination performance of graphene by TiC
Journal Name	Separation and Purification Technology
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S1383586620320761
Abstract	Capacitive deionization (CDI) process is aiming to desalinate water samples by electrosorption of salty ions on the
	surfaces of electrodes with opposite charges. Therefore, the choice of the electrode material has its main role in
	controlling the overall efficiency of synthesized CDI cell. In this work, graphene nanoflakes (GNFs) were
	examined as an interesting carbon-based material in CDI technology. Their electrochemical and desalination
	characteristics were significantly enhanced by introducing TiC nanoparticles in different wt.% values [5, 10 and
	20] through the application of microwave irradiation followed by hydrothermal treatment. The morphology,
	crystal structure, porosity, composition and hydrophilic nature of fabricated nanomaterials were investigated using
	scanning and transmission electron microscopes (SEM, TEM), X-ray diffractometer (XRD), N2 adsorption -
	desorption isotherms, energy dispersive X-ray analyzer (EDX) and water contact angle measurements,

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

respectively. Electrochemical studies revealed outperformed specific capacitance values of TiC incorporated graphene nanoflakes by 5.53, 14.47 and 7.64 folds for those containing 5, 10 and 20 wt% TiC, respectively when compared to the estimated one using GNFs at 5 mV s⁻¹. An excellent salt removal efficiency value of 91% was calculated when 10 wt% TiC was added to GNFs with electrosorption capacity of 22.8 mg g⁻¹ at conductivity value of 1 mS cm⁻¹. Galvanostatic charge–discharge experiments revealed good reversible performance of this nanomaterial with high stability over 30 cycles. These obtained results could elect TiC incorporated GNFs as suitable candidates for water desalination using CDI technology.

	2020-2021
Paper Title	Influence of steam curing regimes on the properties of ultrafine POFA-based high-strength green concrete
Journal Name	Journal of Building Engineering
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S2352710221000607
Abstract	This paper investigated the influence of steam curing regimes on the properties of high-strength green concrete
	(HSGC) containing varying quantities of ultra-fine palm oil fuel ash (U-POFA) from 0%, 20%, 40% and 60%
	from the mass of Portland cement. The HSGC specimens were steam cured at 50 °C, 65 °C, and 80 °C for 16 h in
	order to evaluate the effect of curing temperatures. Besides, the HSGC specimens were also cured at 80 °C for 6,
	11 and 16 h in order to investigate the effect of curing period. The influence of different temperatures and periods
	of steam curing on the development of the compressive strength (CS) and microstructure of the HSGC was
	investigated at 1, 3, 7, 28, 90, 180 and 360 days. The results showed that replacing 20%, 40% and 60% of
	ordinary Portland cement (OPC) with U-POFA exhibited a decrease in the CS in early ages up to 7 days, whereas
	the long-term CS at 360 days improved by 5.4%, 10% and 9.2%, respectively in comparison to the control
	concrete mixture. It was also found that the application of steam curing regime at 80 °C for 16 h contributed
	towards increasing the strength of concrete by 193% at 1 day for HSGC containing 60% U-POFA when compared

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

to normally cured specimen. The trends in CS development were complimented with microstructural analyses based on TGA, XRD and SEM/EDX. It was observed that steam curing has a significant influence on microstructures of matrix in early ages. However, it can be concluded that the partial replacement of U-POFA has positive impacts on the long-term properties of the HSGC at 360 days.

	2020-2021
Paper Title	Chapter 8 - Aerogel and its composites for sensing, adsorption, and photocatalysis
Journal Name	Advances in Aerogel Composites for Environmental Remediation
Link of the paper	https://www.sciencedirect.com/science/article/pii/B9780128207321000084
Abstract	The aerogels are porous with low density structures and have been explored in the range of applications including
	catalysis, thermal insulators, solar energy uses, piezoelectric, energy conversions-storage, low-temperature glass
	formation, sensors, adsorption, and photocatalysis. A variety of aerogels with unusual architect have been
	developed such as organic aerogels, nonsilica oxide aerogels, chalcogenide aerogels, carbon aerogels, and others.
	In the present chapter, we have tried to compile a brief research associated with the development of aerogels and
	their composites and used in the various applications of present need of water pollution and its remediation.
	Additionally, we have discussed the problems with the different examples of aerogels as sensors, adsorbents, and
	photocatalysts.

Journal Name Polymers Link of the paper Abstract Hydrogen (environmer)	w.mdpi.com/2073-4360/13/14/2290 (H ₂) is a promising renewable energy source that can replace fossil fuels since it can solve several ntal and economic issues. However, the widespread usage of H ₂ is constrained by its storage and safety
Link of the paper https://www Abstract Hydrogen (environment)	(H ₂) is a promising renewable energy source that can replace fossil fuels since it can solve several
Abstract Hydrogen (environmer	(H ₂) is a promising renewable energy source that can replace fossil fuels since it can solve several
environmer	
considered However, to generated H polymers. H presented, v hydrolysis	ny researchers consider solid materials with an excellent capacity for H ₂ storage and generation as the r most H ₂ -related issues. Among solid materials, ammonia borane (abbreviated hereafter as AB) is one of the best hydrogen storage materials due to its extraordinary H ₂ content and small density. The process must be conducted in the presence of efficient catalysts to obtain a reasonable amount of H ₂ . Electrospun nanofibrous catalysts are a new class of efficient catalysts that involves the usage of Here, a comprehensive review of the ceramic-supported electrospun NF catalysts for AB hydrolysis is with a special focus on catalytic and photolytic performance and preparation steps. Photocatalytic AB was discussed in detail due to its importance and promising results. AB photocatalytic hydrolysis sunder light were also explained. Electrospun catalysts show excellent activity for AB hydrolysis with

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

the first-order reaction of NF catalysts.

2020-2021

Paper Title	Systematic exploration of electrospun polyvinylidene fluoride (PVDF)/multi-walled carbon nanotubes'
	(MWCNTs) composite nanofibres for humidity sensing application
Journal Name	Journal of Taibah University for Science
Link of the paper	https://www.tandfonline.com/doi/full/10.1080/16583655.2021.1964232
Abstract	In this paper, the electrospinning technique was used to obtain multi-walled carbon nanotubes (MWCNTs)
	supported on electrospun polyvinylidene fluoride (PVDF) nanofibres (NFs) (PVDF/MWCNTs), a composite-
	based mat of NFs. The surface morphology of the PVDF/MWCNTs NFs was analysed by a field effect scanning
	electron microscope. The thickness of the NFs mat varies with the time and concentration of MWCNTs. The
	contact angle (CA) measurement shows that 2.5 wt% of MWCNTs in NF mat shows 61° CA which suggests the
	hydrophilic nature of the prepared NF mat. Fourier transform infrared and Raman spectroscopy revealed the
	implantation of MWCNTs in PVDF matrix and side wall attachment with polymer chain. X-ray diffraction and
	FTIR studies show that as the MWCNT content increases, the α-phase in PVDF decreases, indicating that
	MWCNT has a strong effect on phase transformation. Consequently, the NFs show an almost linear capacitive
	response. They showed that the high-capacitive changes in PVDF/MWCNTs' NFs are achieved at 2.5 wt%
	MWCNTs' addition at different humidity levels. The sensitivity of the PVDF/MWCNTs' (2.5 wt%) NF mat-based
	capacitive sensor exhibits high sensitivity ~0.71pF/%RH. Hence, PVDF/MWCNTs' NFs perform attention-
	grabbing properties for the humidity sensing application.

	2020-2021
Paper Title	Thermal conductivity enhancement for CuO nanoflakes in oil-based and oil blend-based nanofluids
Journal Name	Journal of the Chinese Chemical Society
Link of the paper	https://onlinelibrary.wiley.com/doi/abs/10.1002/jccs.202100005
Abstract	We report the synthesis and characterization of copper oxide (CuO) nanoflakes (Nflks) for thermal conductivity analysis. The synthesized Nflks were used for the preparation of oil-based and oil blend-based nanofluids. A dynamic light scattering study was carried out for aqueous suspension of CuO Nflks. The size distribution data show the two peaks emerged at 178.2 ± 31.77 nm and 861.7 ± 248.6 nm. The zeta potential was investigated, and the peak was observed at -46.4 ± 14.3 mV. The average thermal conductivity coefficients were calculated for mineral oil, sunflower oil, and oil blend, which were found to be 0.086, 0.105, and 0.099 W/mK, respectively. Furthermore, thermal conductivity enhancement was calculated, and the maximum percent enhancement was recorded for sunflower oil-based nanofluid, which was found to be $\sim 20.68\%$ at 0.46 vol%. At similar vol%, the enhancement in thermal conductivity in oil blend-based and mineral oil-based nanofluids was found to be 16.14
	and 15.73%, respectively. The oil-based nanofluids are promising in electronics and modern computational devices to minimize the heating effect.

	2020-2021
Paper Title	A comprehensive and updated review of studies on the oxidation of cyclohexane to produce ketone-alcohol (KA) oil
Journal Name	Reviews in Chemical Engineering
Link of the paper	https://www.degruyter.com/document/doi/10.1515/revce-2020-0059/html
Abstract	Oxidation of cyclohexane is an essential chemical reaction for the industrial manufacture of cyclohexanol and cyclohexanone. These two compounds, together known as ketone–alcohol (KA) oil, are the main feedstock for nylon 6 and nylon 6,6 productions. Several types of catalysts and reaction conditions have been used for cyclohexane oxidation. This paper presents a thorough literature review of catalytic materials used for cyclohexane oxidation to produce KA oil using oxygen, air and other oxidizing agents as well as utilizing different solvents. This review covers research and development reported over the years 2014–2020. This review aims to comprehend the type of catalysts, solvents, oxidants and other reaction parameters used for the oxidation of cyclohexane. Three types of cyclohexane oxidation processes namely thermocatalytic, photocatalytic and microwave-assisted catalytic have been reported. The results of the review showed that metal and metal oxide

جامعة جازان كلية الهندسة وكالة التطوير وحدة الجودة

loaded silica catalysts performed excellently and provided high selectivity of KA oil and cyclohexane conversion. The use of peroxides is not feasible due to their high price compared to air and oxygen. Gold nanoparticles supported on silica performed with high selectivity and good conversion. The use of hydrochloric acid as an additive was found very effective to enhance the photocatalytic oxidation of cyclohexane. Water on the catalyst surface enhanced the reactivity of the photocatalysts since it helps in the generation of hydroxyl radicals.

2020-2021

Paper Title	Polarized fiber mats for catalyst support structures
Journal Name	<u>US.patent</u>
Link of the paper	https://patents.google.com/patent/US10994263B2/en
Abstract	A polymer-catalyst assembly includes polarized polymeric nanofibers retaining a plurality of catalytic metallic
	nanoparticles. A method of making the polarized polymer-catalyst assembly may include providing a fiber mat
	having polymeric nanofibers retaining a plurality of catalytic metallic nanoparticles, stretching the fiber mat in a
	uniaxial direction, simultaneous with the step of stretching, thermally heating the fiber mat, simultaneous with the
	steps of stretching and thermally heating, subjecting the fiber mat to an electric field, whereby the simultaneous
	steps of stretching, thermally heating, and subjecting thereby form a polarized fiber mat.

	2020-2021
Paper Title	Colloidal Fe3O4 nanoparticles-based oil blend ferro-nanofluid for heat transfer application
Journal Name	The European Physical Journal Plus
Link of the paper	https://epjplus.epj.org/articles/epjplus/abs/2021/07/13360_2021_Article_1711/13360_2021_Article_1711.html
Abstract	The thermal conductivity enhancement of oil blend-based ferro-nanofluids for heat transfer application is rarely
	reported. Herein, highly stable ferro-nanofluids were prepared by dispersing oleic acid coated Fe ₃ O ₄ NPs into the
	blend of sunflower oil and mineral oil at varying volume ratios. The maximum thermal conductivity enhancement
	of $\sim 91\%$ was obtained for M10 (base fluid) oil blend-based ferro-nanofluid at 0.6 vol% of Fe ₃ O ₄ NPs as
	compared to the pure mineral oil. The dispersed NPs into the oil blend-based ferro-nanofluid executed Brownian
	motion which led to the collisions between the NPs as well as with the molecules of the oil blend. The formation
	of a chain like network by small-sized NPs effectively led to a larger volume fraction of NPs, which caused the
	enhancement of the thermal conductivity of oil blend-based ferro-nanofluids. Moreover, a nano-adsorption layer
	of oil blend was formed on the surfaces of NPs, which served as a bridge for the heat exchange between NPs and
	oil blend. The experimental results were validated against a similar pre-existing thermal conductivity
	enhancement model. Hence, this study provides a more efficient method to prepare oil-based ferro-nanofluids
	with a tunable thermal conductivity for heat transfer applications.

	2020-2021
Paper Title	An Updated Comprehensive Literature Review of Phenol Hydrogenation Studies
Journal Name	Catalysis Letters
Link of the paper	https://link.springer.com/article/10.1007/s10562-021-03714-5
Abstract	Cyclohexanone is an important industrial intermediate to produce nylons. The main industrial routes for cyclohexanone manufacture used cyclohexane and phenol as feedstock. The selective hydrogenation of phenol to cyclohexanone comprises one-step and two-step processes. This review presents a detailed analysis of the research findings available in the open literature for phenol hydrogenation to produce cyclohexanone and cyclohexanol and covers the research conducted during 2014–2020 using conventional and modern catalysts. This review aims to disseminate the knowledge of the current research conducted for phenol hydrogenation and provide a comprehensive resource for researchers working in this field. This review has included and discussed both methods of thermocatalytic and electrocatalytic hydrogenation of phenol. Most of the studies have used carbon or carbon–nitrogen supported catalysts loaded with Pd. The carbon and carbon–nitrogen materials were

derived from different sources including polymers, activated carbon, and MOF. Oxygen treatment was found to
produce highly active and stable catalysts. The high performance was found associated with the high surface area
of the catalyst and uniformly dispersed metal nanoparticles. The acidic conditions exhibited an increase in catalyst
performance. Alkali-promoted precious metal-loaded catalysts performed better than un-promoted catalysts.

2020-2021	
Paper Title	Active adsorption performance of planetary ball milled Saudi Arabian bentonite clay for the removal of copper ions from aqueous solution

Journal Name	EPL (Europhysics Letters)
Link of the paper	https://iopscience.iop.org/article/10.1209/0295-5075/ac1960/meta
Abstract	We report the role of local bentonite clay in the removal of Cu ²⁺ ions from aqueous solution. The fine bentonite
	clay powder was analysed by XRD, FTIR, SEM and DLS analysis techniques. Further, the adsorption
	experiments were carried out by varying many factors such as weight and size of bentonite clay, residence
	time, pH of the solution, stirring rate, temperature, and flow rate. The optimum conditions for effective removal of
	Cu ²⁺ ions was 1 g dose of bentonite and 63 μm size of bentonite, 50 minutes of residence time and 50 °C
	temperature at pH 3 with a flow rate of 1 L/min. The data fitted well the Freundlich model and a maximum
	adsorption capacity of 61.72 mg/g has been obtained. The value of Gibbs free energy changes (ΔG°), enthalpy
	changes (ΔH°) and entropy changes (Δ S°) were found to be $-3819.86~\mathrm{J~mol^{-1}K^{-1}}$
	, $+15079.10 \text{ J} \text{ mol}^{-1} \text{K}^{-1} \text{ and } +58.60 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$, respectively.

	2020-2021	
Paper Title Insights on the role of supporting electrospun carbon nanofibers with binary metallic carbides for capacitive deionization performance	Insights on the role of supporting electrospun carbon nanofibers with binary metallic carbides for enhancing their capacitive deionization performance	
Journal Name	Journal of Materials Research and Technology	

Link of the paper	https://www.sciencedirect.com/science/article/pii/S2238785421011170
Abstract	Recent development in desalination technology can be progressed in terms of fabricated nanomaterials and
	operating parameters, as one among energy-storing systems including fuel cells, capacitors, batteries, and so on.
	Regarding the examined nanomaterials, embedded CoCr ₇ C ₃ nanoparticles onto carbon nanofibers
	(CoCr ₇ C ₃ @CNFs) were prepared using a facile electrospinning technique. Characterization techniques, such as
	XRD, FESEM, TEM, HRTEM, STEM, and EDX, were served to define the crystallinity, morphology and
	chemical composition of the synthesized nanofibers. XRD chart demonstrated the formation of Cr ₇ C ₃ species
	along with deposited metallic cobalt in this nanomaterial. The morphological study revealed the uniform
	distribution of metallic cobalt and Cr ₇ C ₃ nanoparticles onto the fibrous CNFs structure. The electrochemical
	performance of CoCr ₇ C ₃ @CNFs was studied in 1.0 M NaCl solution at 5 mV s ⁻¹ to record a specific capacitance
	of 250 F g ⁻¹ . Electrochemical impedance spectroscopy measurements indicated better electron transfer properties
	after introducing CoCr ₇ C ₃ to the CNFs structure. Furthermore, its outstanding electrosorption capacity of
	20.40 mg g ⁻¹ might encourage the preparation of additional nanocomposites for future capacitive deionization
	(CDI) technology.

	2020-2021
Paper Title	Graphitic nanofibers supported NiMn bimetallic nanoalloys as catalysts for H2 generation from ammonia borane
Journal Name	International Journal of Hydrogen Energy
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0360319921032511
Abstract	Bimetallic nickel manganese nanoalloy-decorated graphitic <u>nanofibers</u> were prepared using electrospinning. The
	introduced catalysts were explored as an effective and inexpensive catalyst for H_2 generation from $\underline{ammonia}$
	borane using hydrolysis. Standard techniques were used to determine the morphology and chemical composition
	of the nanofibers. Characterization indicated successful formation of bimetallic nickel-manganese-decorated
	graphitic nanofibers. Introduced effective catalysts showed a high reusability for H ₂ generation using ammonia
	borane hydrolysis at low concentrations and temperatures. All formations of the introduced catalysts demonstrated
	a higher <u>catalytic activity</u> in H ₂ generation than nickel-decorated <u>carbon nanofibers</u> . Samples composed of 55 wt%
	nickel and 45 wt% manganese showed the best catalytic activity compared with other formulations.
	Initial <u>turnover frequency</u> (TOF) of this sample was 58.2 min ⁻¹ , twice the TOF of the manganese-free catalyst.
	Kinetics and thermodynamics revealed that the catalyst concentration followed the pseudo-first order reaction
	while the ammonia borane concentration follow the pseudo-zero order reaction, providing activation energy of

_	
	38.9 kJ mol^{-1} .
	Solo Re mor .

	2020-2021
Paper Title	Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical
	review

Journal Name	Environmental Research
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0013935121015449
Abstract	In the last three decades, pharmaceutical research has increased tremendously to offer safe and healthy life.
	However, the high consumption of these harmful drugs has risen devastating impact on ecosystems. Therefore, it
	is worldwide paramount concern to effectively clean pharmaceuticals contaminated water streams to ensure safer
	environment and healthier life. Nanotechnology enables to produce new, high-technical material, such as
	membranes, adsorbent, nano-catalysts, functional surfaces, coverages and reagents for more effective water and
	wastewater cleanup processes. Nevertheless, nano-sorbent materials are regarded the most appropriate treatment
	technology for water and wastewater because of their facile application and a large number of adsorbents. Several
	conventional techniques have been operational for domestic wastewater treatment but are inefficient for
	pharmaceuticals removal. Alternatively, adsorption techniques have played a pivotal role in water and wastewater
	treatment for a long, but their rise in attraction is proportional with the continuous emergence of new
	micropollutants in the aquatic environment and new discoveries of sustainable and low-cost adsorbents. Recently,
	advancements in adsorption technique for wastewater treatment through nanoadsorbents has greatly increased due
	to its low production cost, sustainability, better physicochemical properties and high removal performance for
	pharmaceuticals. Herein, this review critically evaluates the performance of sustainable green nanoadsorbent for
	the remediation of pharmaceutical pollutants from water. The influential sorption parameters and interaction
	mechanism are also discussed. Moreover, the future prospects of nanoadsorbents for the remediation of

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

pharmaceuticals are also presented.

Google Scholar link

https://scholar.google.com/citations?user=YP8kAFcAAAAJ&hl=en

Research gate link

https://www.researchgate.net/profile/Ahmed-Abutaleb-3

Scopus link

https://www.scopus.com/authid/detail.uri?authorId=57190944323

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

Faculty Name: Dr. Isam Yassin Qudsieh

	2020-2021
Paper Title	CENTRAL COMPOSITE DESIGN OF ARSENIC REMOVAL FROM WATER USING CATIONIC
	CHITOSAN POLYSACCHARIDE AS A FLOCCULATING AGENT
Journal Name	Jouf University Science and Engineering Journal
Link of the paper	https://www.ju.edu.sa/en/jouf-university-science-and-engineering-journal-jusej/about-the-journal/
	https://www.ju.edu.sa/fileadmin/jouf_University_Science_and_Engineering_Journal/Journal/AUSEJ_8-1.pdf
Abstract	The presence of arsenic in the water supply can be a threat to humans if it is not treated properly. Removal of arsenic from
	water is important to ensure the healthiness of the water—that it is free from harmful heavy metal contaminants. This
	article focuses on the efficiency of chitosan in removing arsenic from water using the statistical software Design-Expert.
	The optimization was performed using central composite designs (CCD) with the following four factors: the dosage of
	chitosan, contact time, agitation speed, and pH. Each parameter has three levels (two factorial points and one center-
	point). Therefore, the performance of chitosan was evaluated through factorial experiments using the conventional jar test
	method. The final arsenic concentration was recorded, and the percentage removed was calculated. A regression model
	equation was developed with the R ² value of 0.9972 from which the optimal conditions could be produced. The optimal
	conditions for chitosan to react with arsenic in water were achieved with the following optimum conditions: agitation
	speed: 187.92 rpm, pH: 6.86, contact time: 4.46 min, and chitosan dosage: 23.76 mg/L. The theoretical optimal percentage
	removed of arsenic obtained was 98.85%. Therefore, this study could provide a more environment-friendly and

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

economical solution than the other methods practiced now.

Google Scholar link

https://scholar.google.com/citations?user=u1OnYnIAAAAJ&hl

Research gate link

https://www.researchgate.net/profile/Isam-Qudsieh

Scopus link

https://www.scopus.com/authid/detail.uri?authorId=6508238267

Academia link

https://jazan.academia.edu/IsamYQudsieh

جامعة جـــازان
كلية الهندســة
وكالـة التطـوير
وحــدة الجـودة

Faculty Name: Dr. Mohamed Imran Masoom

	2019-2020
Paper Title	Study of Structural, Magnetic, Dielectric Properties and Estimation of Magnetoeletric Coupling of La, Mn codoped Bi _{1-x} La _x Fe _{0.97} Mn _{0.03} O ₃ Ceramics
Journal Name	Arabian journal of science and engineering
Link of the paper	https://link.springer.com/article/10.1007/s13369-019-04078-0
Abstract	La and Mn co-doped $Bi_{1-x}La_xFe_{0.97}Mn_{0.03}O_3$ (BLFMO x , x = 0.05, 0.1, 0.2) ceramicswereprepared by solid-state reactionmethod, and their structural, magnetic, dielectric and magnetocapacitancepropertieswerestudied. It was discovered that the co-substitution of La & Mn at sites of Bi & Fe suppressed impure phases which normally occur in BiFeO $_3$ synthesis. BLFMO $_x$ samples were calcinated, and well crystalline phases were acquired at a sintering temperature of 950 °C. X-rays diffraction patterns of the samples were recorded and investigated for the affirmation of crystal structure and determination of the lattice parameters. The normal grain size of the samples was observed to be between 1 and 2 μ m. M–H graphs of BiFeO $_3$ and BLFMO $_{0.05}$ ceramics consist of straight-line, confirming antiferromagnetic nature of samples. Dielectric constant was diminished within crease in frequency for each composition.

جامعة جـــازان
كلية الهندســة
وكالـة التطـوير
وحــدة الجـودة

BLFMO	ceramics show	vedne	egativemagn	etocapacitai	nce and	decrease	in dielect	ric constant	withmagneticfield.
Relative	difference	in	dielectric	constant	initiated	l by	externalma	gneticfieldm	ightbeapproximated
by $\Delta \varepsilon / \varepsilon =$	kM ² for BLF	MO_X ,	and here, ma	agnetoelectr	ric interac	tion (k) i	snegative.		

	2019-2020
Paper Title	UV light enabled photocatalytic activity of α-Fe ₂ O ₃ nanoparticles synthesized via phase transformation
Journal Name	Materials Letters
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0167577X19313795
Abstract	In thiswork, hematite $(\alpha\text{-Fe}_2O_3)$ nanoparticles (NPs) weresynthesized by coprecipitationmethodinvolving chemical precipitation of aqueous salts of iron $(\text{Fe}^{2+}/\text{Fe}^{3+})$ using NaOHaqueous solution. The synthesis of $\alpha\text{-Fe}_2O_3\text{NPs}$ via phase transformation and its photocatalytic application under ultraviolet (UV) light is rarely reported. The maximum removal of methyleneblue (MB) dye (92%) was achieved at pH 10 and 200 mg amount of catalyst, whereas the concentration of dyewas 10 ppm. The removal percentage of MB dyewas found to vary with pH of the solution, concentrations of dye, and amount of $\alpha\text{-Fe}_2O_3$ NPs for certain interval of time. Moreover, plot of $\ln(C_t/C_0)$ Vs time exhibited almost a linear relationship between them which suggested the pseudo-first order kinetics reaction of photocataly tic degradation of MB.

2019-2020

Paper Title	Influence of polymer washing on thermal conductivity enhancement of Cu nanofluids
Journal Name	Asia-pacific journal of chemical engineering
Link of the paper	https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.2501
Abstract	This workaims at enhancing the thermal conductivity of base fluids (water and methanol) through successive washing of polymersfrom the surface of polyvinylpyrollidone (PVP)- stabilizedcopper (Cu) nanoparticles. Cu nanofluidsweresuccessfullysynthesized and characterizedusing transmission electron microscope and UV-vis spectrophotometer. Thermal conductivity of freshlyprepared Cu nanofluid shows ~10% enhancements. The poorenhancement in thermal conductivityis due to the presence of thickpolymercoating on the surface of nanoparticles. A new technique has been developed to erode the polymersfrom the nanoparticle surface by repeatedwashing and redispersion. After one- time washing and redispersion, the thermal conductivity of nanofluid has been increased to 0.732 W/mK (~22% enhancements). Greaterenhancement (~30.34%) has been achievedafterthree times continuouswashing and redispersion. Finally, the experimental values of thermal conductivitywerecompared and validatedagainst the existing Maxwell effective model.

	2019-2020
Paper Title	Fe ₃ O ₄ nanoparticles decorated multi-walled carbon nanotubes based magnetic nanofluid for heat transfer application
Journal Name	Materials Letters
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0167577X20307485

Abstract	The synthesis of magnetic multi-walledcarbon nanotubes (MWCNTs)-iron oxide (Fe ₃ O ₄) nanocomposite (NC)
	providesmanyinteresting traits in individualmoietiesunfolding new opportunities for a wide range of applications.
	Severalpreparation techniques have been employed in the recentpast to synthesize MWCNTs-Fe ₃ O ₄ NCs. Herein,
	we report the synthesis of Fe ₃ O ₄ nanoparticles (NPs) decoratedMWCNTs NC for heattransfer application. The NC
	wassynthesized via co-precipitationmethodwith a high-qualityyield. The magneticcharacterization of the as-
	synthesized NC exhibited saturation magnetization and wasfound to be 34.86 emu/g. Finally,
	magneticnanofluidswereprepared by dispersing different amounts of the as-synthesized NC intomineraloil,
	whichisrarelyreported. A ~50% enhancement in the thermal conductivity of the
	magneticnanofluidwasobservedwithloading of ~0.5 g/L of NC, whichisbetterthan the resultsreportedso far for
	variousnanofluids.

	2019-2020
Paper Title	Structural, optical and photoluminescence investigations of nanocrystalline CuO thin films at different microwave powers
Journal Name	Optical and quantum electronics
Link of the paper	https://link.springer.com/article/10.1007/s11082-020-02535-x
Abstract	Thin films of copper oxide werepreparedthroughtwosteps: the formation of metalliccopperthin films by DC sputtering technique and oxidizing the metalliccopper films throughmicrowave plasma chemicalvapordeposition technique. X-ray diffraction (XRD) and fieldemission scanning electron microscope (FESEM) wereused to detect the crystalline phases and the films morphology, respectively. TenoriteCuO phase withinterlockingbetween grains wereobserved and detected. Optical and photoluminescence propertieswereinvestigated by UV–Vis-NIR to detect

the opticaltransparency, optical band gap, and refractive index of the prepared films. The optical transmittance of
the studied films wasresolved by Swanepoel'sprocedure due to the presence of the opticalinterference in
such samples. The optical band gap values were observed to decrease from 2.355 to 1.986 eV as the microwave
power increase. A strong UV emission at around 358 nm wasobserved in all CuOsamples. Moreover, weakblue
and green emission were also observed in the photolumine scence spectra.

	2020-2021
Book Chapter Title	Inorganic Nanostructures for Brain Tumor Management
Publisher Name	<u>Springer</u>
Link of the paper	https://link.springer.com/protocol/10.1007/978-1-0716-1052-7_6
Abstract	The nanoparticles have been widelyinvestigated as therapeutic agents for cancer treatments in biomedicalfields due to their unique physical/chemicalproperties, versatile syntheticstrategies, easy surface functionalization, and excellent biocompatibility. Even though the advancement of certain treatment techniques isavailable for the diagnosis of the tumor, still the blood-brainbarrieris the obstruction to the delivery of drugmolecules to the tumorcells in the central nervous system (CNS) and brainparenchyma. Though nano enabledtherapymake promise to deliver the anticancer drugs to cross the blood-brainbarrier (BBB). This chapterfocuses on the synthesis techniques and advancedcharacterization techniques adopted to design and developinorganic nanostructures. Variousinorganic nanostructure-based cancer therapeutic agents, including gold nanoparticles, magneticnanoparticles, carbon nanotube, earthmetal oxide nanoparticles, and other nanostructures, have also
	been discussed. Related challenges withthis research area and future prospect are also discussed herein.

	2020-2021
Paper Title	Carbon-coated Fe ₃ O ₄ core—shell super-paramagnetic nanoparticle-based ferrofluid for heat transfer applications
Journal Name	Nanoscale Advances
Link of the paper	https://pubs.rsc.org/en/content/articlehtml/2021/na/d1na00061f
Abstract	Herein, we report the investigation of the electrical and thermal conductivity of Fe ₃ O ₄ and Fe ₃ O ₄ @carbon (Fe ₃ O ₄ @C) core–shellnanoparticle (NP)-basedferrofluids. Differentsized Fe ₃ O ₄ NPsweresynthesized <i>via</i> a chemicalco-precipitationmethodfollowed by carboncoating as a shell over the Fe ₃ O ₄ NPs <i>via</i> the hydrothermal technique. The averageparticle size of Fe ₃ O ₄ NPs and Fe ₃ O ₄ @C core–shellNPswasfound to be in the range of ~5–25 nm and ~7–28 nm, respectively. The thickness of the carbonshell over the Fe ₃ O ₄ NPswasfound to be in the range of ~1–3 nm. The magneticcharacterizationrevealedthat the as-synthesizedsmallaverage-sized Fe ₃ O ₄ NPs (<i>ca</i> . 5 nm) and Fe ₃ O ₄ @C core–shellNPs (<i>ca</i> . 7 nm) weresuperparamagnetic in nature. The electrical and thermal conductivities of Fe ₃ O ₄ NPs and Fe ₃ O ₄ @C core–shell NP-basedferrofluidsweremeasuredusing different concentrations of NPs and with different sized NPs. Exceptional results were obtained, where the electrical conductivity wasenhanced up to ~3222% and ~2015% for Fe ₃ O ₄ (<i>ca</i> . 5 nm) and Fe ₃ O ₄ @C core–shell (<i>ca</i> . 7 nm) NP-basedferrofluids compared to the base fluid, respectively. Similarly, an enhancement in the thermal conductivity of ~153% and ~116% was recorded for Fe ₃ O ₄ (<i>ca</i> . 5 nm) and Fe ₃ O ₄ @C core–shell (<i>ca</i> . 7 nm) NPs,

respectively. The exceptionalenhancement in the thermal conductivity of the bare Fe ₃ O ₄ NP-
basedferrofluidcompared to that of the Fe ₃ O ₄ @C core—shell NP-basedferrofluidwas due to the more
pronouncedeffect of the chain-like network formation/clustering of bare Fe ₃ O ₄ NPs in the base fluid. Finally, the
experimental thermal conductivityresultswerecompared and validatedagainst the Maxwell effective model.
Theseresultswerefound to bebetterthanresultsreported till date usingeither the same or differentmaterialsystems.

	2020-2021
Paper Title	Thermal conductivity enhancement for CuO nanoflakes in oil- based and oil blend- based nanofluids
Journal Name	Journal of the Chinese chemical society
Link of the paper	https://onlinelibrary.wiley.com/doi/abs/10.1002/jccs.202100005
Abstract	We report the synthesis and characterization of copper oxide (CuO) nanoflakes (Nflks) for thermal conductivityanalysis. The synthesizedNflkswereused for the preparation of oil- based and oilblend- basednanofluids. A dynamic light scatteringstudywascarried out for aqueous suspension of CuONflks. The size distribution data show the twopeaksemerged at 178.2 ± 31.77 nm and 861.7 ± 248.6 nm. The zetapotentialwasinvestigated, and the peakwasobserved at -46.4 ± 14.3 mV. The average thermal conductivity coefficients were calculated for mineraloil, sunfloweroil, and oilblend, whichwerefound to be 0.086 , 0.105 , and 0.099 W/mK, respectively. Furthermore, thermal conductivityenhancementwascalculated, and the maximum percent enhancementwas recorded for sunfloweroil- basednanofluid, whichwasfound to be $\sim 20.68\%$ at 0.46 vol%. At similar vol%, the enhancement in thermal conductivity in oilblend- based and

جامعة جـــازان
كلية الهندســة
وكالـة التطـوير
وحــدة الجـودة

mineraloil- basednanofluidswasfound to be 16.14 and 15.73%, respectively. The oil- basednanofluids are promising in electronics and modern computational devices to minimize the heating effect.

	2020-2021
Paper Title	Impact of the Microwave Power on the Structural and Optical Properties of Nanocrystalline Nickel Oxide Thin Films
Journal Name	Brazilian journal of physics
Link of the paper	https://link.springer.com/article/10.1007/s13538-021-00891-x
Abstract	Nanocrystalline nickel oxide thin films wereprepared by combined techniques of direct currentsputtering (DC sputtering) and microwave plasma chemicalvapordeposition to perform high-quality films. The prepared films weresubjected to threedifferentmicrowavepowers at 400, 800, and 1200 W. The structural and morphologicalproperties of the prepared films wereinvestigated by X-ray diffraction (XRD) and fieldemission scanning electron microscope (FESEM). The prepared films have a trigonal structure. The crystallite size wascalculatedfromScherer's formula and uniformdimensional model (UDM). The calculated size increasedfrom 213 to 241 Å as the microwave power increasesfrom 400 to 1200 W, respectively. The latticestrainwasalsocalculatedfrom UDM model, and ithad a lower value of 1.8×10^{-3} at 800 W. The opticalpropertiessuch as transmittance, reflectance, absorption coefficient, extinction coefficient, and the

	dispersion wereinvestigated. The optical transition of such films was direct transition, and the optical band gap
	values wereobserved to decreasefrom 3.950 to 3.367 eV as the microwave power increasefrom 400 to 1200 W,
	respectively. The refractive index and the dispersion energyparameterswerestudied in detail, and the static and
	latticedielectric constant werededuced.

	2020-2021
Paper Title	Colloidal Fe ₃ O ₄ nanoparticles-based oil blend ferro-nanofluid for heat transfer application
Journal Name	European physical journal plus
Link of the paper	https://epjplus.epj.org/articles/epjplus/abs/2021/07/13360_2021_Article_1711/13360_2021_Article_1711.html
Abstract	The thermal conductivity enhancement of oil blend-based ferro-nanofluids for heat transfer application is rarely reported. Herein, highly stable ferro-nanofluids were prepared by dispersing oleic acid coated Fe ₃ O ₄ NPs into the blend of sunflower oil and mineral oil at varying volume ratios. The maximum thermal conductivity enhancement of ~91% was obtained for M10 (base fluid) oil blend-based ferro-nanofluid at 0.6 vol% of Fe ₃ O ₄ NPs as compared to the pure mineral oil. The dispersed NPs into the oil blend-based ferro-nanofluid executed Brownian motion which led to the collisions between the NPs as well as with the molecules of the oil blend. The formation of a chain like network by small-sized NPs effectively led to a larger volume fraction of NPs, which caused the enhancement of the thermal conductivity of oil blend-based ferro-nanofluids. Moreover, a nano-adsorption layer of oil blend was formed on the surfaces of NPs, which served as a bridge for the heat exchange between NPs and oil blend. The experimental results were validated against a similar pre-existing thermal

جامعة جـــازان
كلية الهندســة
وكالـة التطـوير
وحــدة الجـودة

conductivity enhancement model. Hence, this study provides a more efficient method to prepare oil-based ferro-nanofluids with a tunable thermal conductivity for heat transfer applications.

	2020-2021
Paper Title	Systematic exploration of electrospun polyvinylidene fluoride (PVDF)/multi-walled carbon nanotubes'
	(MWCNTs) composite nanofibres for humidity sensing application
Journal Name	Journal of Taibah University for Science
Link of the paper	https://www.tandfonline.com/doi/full/10.1080/16583655.2021.1964232
Abstract	In this paper, the electrospinning technique was used to obtain multi-walled carbon nanotubes (MWCNTs) supported on electrospun polyvinylidene fluoride (PVDF) nanofibres (NFs) (PVDF/MWCNTs), a composite-based mat of NFs. The surface morphology of the PVDF/MWCNTs NFs was analysed by a field effect scanning electron microscope. The thickness of the NFs mat varies with the time and concentration of MWCNTs. The contact angle (CA) measurement shows that 2.5 wt% of MWCNTs in NF mat shows 61° CA which suggests the hydrophilic nature of the prepared NF mat. Fourier transform infrared and Raman spectroscopy revealed the implantation of MWCNTs in PVDF matrix and side wall attachment with polymer chain. X-ray diffraction and FTIR studies show that as the MWCNT content increases, the α-phase in PVDF decreases, indicating that

MWCNT has a strong effect on phase transformation. Consequently, the NFs show an almost linear capacitive
response. They showed that the high-capacitive changes in PVDF/MWCNTs' NFs are achieved at 2.5 wt%
MWCNTs' addition at different humidity levels. The sensitivity of the PVDF/MWCNTs' (2.5 wt%) NF mat-based
capacitive sensor exhibits high sensitivity ~0.71pF/%RH. Hence, PVDF/MWCNTs' NFs perform attention-
grabbing properties for the humidity sensing application.

	2020-2021
Paper Title	Advanced biomedical applications of iron oxide nanostructures based ferrofluids
Journal Name	Nanotechnology
Link of the paper	https://iopscience.iop.org/article/10.1088/1361-6528/ac137a/meta
Abstract	Ferrofluids or magnetic nanofluids are highly stable colloidal suspensions of magnetic nanoparticles (NPs) dispersed into various base fluids. These stable ferrofluids possess high thermal conductivity, improved thermophysical properties, higher colloidal stability, good magnetic properties, and biocompatibility, which are the primary driving forces behind their excellent performance, and thus enable them to be used for a wide range of practical applications. The most studied and advanced ferrofluids are based on iron oxide nanostructures especially NPs, because of their easy and large-scale synthesis at low costs. Although in the last decade, several

review articles are available on ferrofluids but mainly focused on preparations, properties, and a specific
application. Hence, a collective and comprehensive review article on the recent progress of iron oxide
nanostructures based ferrofluids for advanced biomedical applications is undeniably required. In this review, the
state of the art of biomedical applications is presented and critically analyzed with a special focus on
hyperthermia, drug delivery/nanomedicine, magnetic resonance imaging, and magnetic separation of cells. This
review article provides up-to-date information related to the technological advancements and emerging trends in
iron oxide nanostructures based ferrofluids research focused on advanced biomedical applications. Finally,
conclusions and outlook of iron oxide nanostructures based ferrofluids research for biomedical applications are
presented.

	2020-2021
Paper Title	A facile co-precipitation synthesis of novel WO ₃ /NiWO ₄ nanocomposite with improved photocatalytic activity
Journal Name	Materials science in semiconductor processing
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S1369800121003176
Abstract	Herein, we are presenting the synthesis of pure WO ₃ nanoparticles (NPs) and WO ₃ /NiWO ₄ <u>nanocomposites</u> (NCs) with improved <u>photocatalytic activities</u> via a simple co-precipitation process. Structural, morphological, and

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

compositional studies approved the synthesis of the nanocomposite. Furthermore, XPS analysis confirm the chemical composition and incorporation of Ni in the final products. The Scherrer equation used to determine the crystallite size and noticed that it reduced from 34 to 21 nm on Ni added in WO₃ and also FESEM study give the average grain size of NPs around 30 nm. HRTEM and SAED studies reveals the nanocomposite phase with lattice spacing of ~0.37 nm, and ~0.29 nm, which is perfectly matched with (020) of WO₃ and (111) of NiWO₄, respectively. FTIR analysis reveals the functional groups of the formation of WO₃/NiWO₄ NCs. Diffused reflectance spectroscopy was employed to determine the energy gap (Eg) through Kubelka-Munk relation and noticed that the Eg value is reduced from 2.61 to 2.49 eV. PL emission analysis was done under 280 nm excitation and possess the intense emission peaks at 361, 383, 412, and 492 nm, among them 383 nm is high intense, which is originated from near band edge transition. The photocatalytic degradation of Methylene blue (MB) dye was investigated under UV light. The percent degradation of MB dye was observed to be ~70.83%, 71.88%, 76.39%, 86.81% and 90.63% for pure WO₃, 5 wt% Ni, 10 wt% Ni, 15 wt% Ni and 20 wt% Ni nanocomposites, respectively. The maximum percent photodegradation of MB dye has been done ~90.63% for 20 wt% Ni within 80 min of duration. These outcomes revealed that the prepared WO₃/NiWO₄ NCs will be highly applicable for hazardous MB dye degradation.

	2020-2021
Paper Title	Active adsorption performance of planetary ball milled Saudi Arabian bentonite clay for the removal of copper ions from aqueous solution
Journal Name	Europhysics letters EPL

Link of the paper	https://iopscience.iop.org/article/10.1209/0295-5075/ac1960/meta
Abstract	We report the role of local bentonite clay in the removal of Cu^{2^+} ions from aqueous solution. The fine bentonite clay powder was analysed by XRD, FTIR, SEM and DLS analysis techniques. Further, the adsorption experiments were carried out by varying many factors such as weight and size of bentonite clay, residence time, $p\mathrm{H}$ of the solution, stirring rate, temperature, and flow rate. The optimum conditions for effective removal of Cu^{2^+} ions was 1 g dose of bentonite and 63 µm size of bentonite, 50 minutes of residence time and 50 °C temperature at $p\mathrm{H}$ 3 with a flow rate of 1 L/min. The data fitted well the Freundlich model and a maximum adsorption capacity of 61.72 mg/g has been obtained. The value of Gibbs free energy changes (ΔG°), enthalpy changes (ΔH°) and entropy changes (ΔS°) were found to be $-3819.86~\mathrm{J~mol}^{-1}\mathrm{K}^{-1}$, $+15079.10~\mathrm{J~mol}^{-1}\mathrm{K}^{-1}$ and $+58.60~\mathrm{J~mol}^{-1}\mathrm{K}^{-1}$, respectively.

	2020-2021
Paper Title	Highly photocatalytic active r-GO/Fe ₃ O ₄ nanocomposites development for enhanced photocatalysis application: A facile low-cost preparation and characterization
Journal Name	Ceramics International

جامعة جــــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

Link of the paper	https://www.sciencedirect.com/science/article/pii/S027288422102455X
Abstract	This research explores reduced graphene oxide-Fe ₃ O ₄ nanocomposites synthesis, characterization, and it's ability to degrade methylene blue dye using sodium lamp as the visible white light source. The modified co-precipitation method was employed for the synthesis of the <u>photocatalyst</u> . The photocatalyst was further characterized by various characterization techniques. Moreover, photocatalytic activity was performed by varying performance conditions, and analyzed the results. It was found that photocatalyst has highly active performance at the working conditions of pH 12 with 50 mg catalyst for 10 ppm methylene blue dye solutions and produced 98.3% degradation of the dye within 80 min. It was also observed that minor positive performance was observed on varying temperature and catalyst concentration. The photocatalytic activity was found highly dependent on the pH of the solution and increased with an increase in pH. Additional studies were also performed by adding some amount of hydrogen peroxide in the solution without changing its pH. It was also noted that as the amount of hydrogen peroxide was increased in the solution, there was an increment in the degradation of the dye. A maximum of 98.8% degradation was recorded with the 9 ml addition of hydrogen peroxide-containing 25 mg catalyst, pH 8, and at 40 °C reaction temperature within 70 min of irradiation.

Goog	le	Scl	ho	lar

https://scholar.google.com/citations?hl=en&user=1TMI4qkAAAAJ&view_op=list_works&sortby=pubdate

Research gate

جامعة جــــازان كلية الهندســـة وكالــة التطــوير وحــدة الجــودة

https://www.researchgate.net/profile/Mohd-Imran-5

Scopus

https://www.scopus.com/dashboard.uri

Faculty Name: Mohamed Ahmed Mahmoud

2019-2020

Paper Title	Removal and recovery of U(VI) from aqueous effluents by flax fiber: Adsorption, desorption and batch adsorber		
	<u>proposal</u>		
Journal Name	Journal of Advanced Research		
Link of the paper	https://www.sciencedirect.com/science/article/pii/S2090123219301699		
Abstract	Flax fiber (Linen fiber), a valuable and inexpensive material was used as sorbent material in the uptake of uranium		
	ion for the safe disposal of liquid effluent. Flax fibers were characterized using BET, XRD, TGA, DTA and FTIR		
	analyses, and the results confirmed the ability of flax fiber to adsorb uranium. The removal efficiency reached		
	94.50% at pH 4, 1.2 g adsorbent dose and 100 min in batch technique. Adsorption results were fitted well to the		
	Langmuir isotherm. The recovery of U (VI) to form yellow cake was investigated by precipitation using NH ₄ OH		
	(33%). The results show that flax fibers are an acceptable sorbent for the removal and recovery of U (VI) from		
	liquid effluents of low and high initial concentrations. The design of a full scale batch unit was also proposed and		
	the necessary data was suggested.		

	2019-2020
Paper Title	Uranium (VI) ions uptake from liquid wastes by solanum incanum leaves: biosorption, desorption and recovery
Journal Name	Alexandria Engineering Journal

Link of the paper	https://www.sciencedirect.com/science/article/pii/S1110016820301125
Abstract	Solanum incanum leaves, new and valuable biomass were utilized as sorbent material for the removal of U (IV)
	ions from aqueous wastes. The leaves of solanum incanum were analyzed by SEM, XRD, EDS and FTIR
	analyses. Solanum incanum leaves have a good ability to (VI) uptake. The maximum biosorption capacity of SNL
	was 39.98 mg/g at pH 4 and 45 °C. 99.95% of U (VI) ions were biosorbed within 60 min in an endothermic
	(ΔH:167.267 KJ mol ⁻¹) batch system. The linear and nonlinear results of biosorption isotherms and kinetics
	indicate that Langmuir and second pseudo order models were an agreement with the experimental results. Also,
	the regeneration and reusing of biomass give acceptable results up to 8 cycles of the biosorption-desorption
	system.

	2019-2020
Paper Title	Oil spill cleanup by raw flax fiber: Modification effect, sorption isotherm, kinetics and thermodynamics
Journal Name	Arabian Journal of Chemistry
Link of the paper	https://www.sciencedirect.com/science/article/pii/S1878535220300605
Abstract	Modification of raw flax fiber by acetylating process and microwave energy was useful in the application of oil spill cleanup. The change in fibers was characterized by scientific analysis (FTIR, SEM, XRD and contact angle). The results indicate that the modified fibers by the acetylating process have extra hydrophobic properties than both microwave radiation and raw fibers. Oil/Artificial seawater (3.5% salinity by NaCl) system (O/W-S) was used as a liquid phase operation system. Fast oil sorption was reached at 6 min and attained (equilibrium) at 10 min. Acetylated fiber (ACF)has higher oil sorption capacity(24.54 g/g) than both raw(13.75 g/g) and microwave fiber (17.42 g/g) with exothermic effect. The sorption kinetics and isotherms indicate that the oil sorption onto ACF agreement with pseudo second-order kinetic model and Freundlich isotherm model. Also, the economic reusing of fiber was evaluated. The process of acetylation demonstrated the ability to improve the absorptive properties of the fibers, which makes them able to compete with synthetic fibers in the oil spill cleanup and
	industrial applications, as well as cheap and eco-friendly due to their biodegradation

	2020-2021
Paper Title	Preparation magnetic nanomaterial for U (VI) uptake from the aqueous solution
Journal Name	Journal of Saudi Chemical Society
Link of the paper	https://www.sciencedirect.com/science/article/pii/S1319610321000193
Abstract	Nanocomposite of magnetite-silica (Fe ₃ O ₄ @SiO ₂) was synthesized and walled with a shell of 5,7-dihydroxy-4-methylcoumarin (DHMC). The prepared dihydroxy-4-methylcoumarin magnetite-silica nanocomposite (DHMC-M-SNC) was used in the uranium uptake from the liquid phase in a batch system. The structure of DHMC-M-SNC was investigated by BET, XRD and FTIR analyses. DHMC-M-SNC appeared maximum sorption capacity reached 66.43 mg/g at 30 min and pH 5. The U (VI) sorption system onto DHMC-M-SNC was favorable at low temperature (Exothermic nature) and fitted well with Langmuir (R ² = 0.997) and pseudo-second-order models (R ² = 0.989). Also, recycling of DHMC-M-SNC shows a potential recycle up to 8 cycles. The results show that the prepared nanocomposite can be utilized as an operative sorbent in the U (VI) sorption from the liquid phase.

	2020-2021
Paper Title	Separation of U (VI) ions from the aqueous phase onto polyphenol silica nanocomposite in the batch adsorption
	system
Journal Name	Alexandria Engineering Journal
Link of the paper	https://www.sciencedirect.com/science/article/pii/S1110016821001332
Abstract	The chemical modified silica nanoparticles with a polyphenol compound were synthesized as a sorbent nanocomposite for U (VI) removal from the aqueous phase. The prepared Pyrogallol silica nanocomposite (PSCN) was described by some specific analysis. The experiments were carried out in a batch system. The maximum sorption capacity of the nanocomposite reached 58.45 mg/g at optimum operating conditions (sorption time 50 min, pH 5, dose 0.2 g, 100 mg/l of U (VI) and 30 °C). The sorption procedure was an exothermic system and the results were in good agreement with pseudo-second-order (R ² >99) and Langmuir isotherm (R ² > 97). Regeneration and recycling studies indicate that the prepared nanocomposite has good effectiveness for up to five cycles.

	2020-2021
Paper Title	Separation of Cd (II) from aqueous solution by keratin magnetic froth carbon in the batch and continuous system
Journal Name	Chemical Engineering Research and Design
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0263876221001775
Abstract	Removal uptake of cadmium Cd (II) from aqueous solution using keratin magnetic froth carbon (KMFC) prepared from molasses of the sugarcane industry was studied in the batch and column system. KMFC was characterized by Scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy (BET), X-ray Photo-electron Spectroscopy (XPS) analyses. In the batch system, the maximum sorption capacity (198.80 mg/g) was obtained at pH 5 and equilibrium sorption time (80 min) and the sorption results are well-fitting with Freundlich and pseudo-second-order models. Whereas the maximum removal efficiency (65%) with sorption capacity (236.2 mg/g) was obtained at column operational circumstances of 15 mL/min flow rate, 6 cm bed depth and 100 mg/L Cd (II) concentration. The higher values of R^2 > 0.98 with relatively lesser values of Error analysis EA \leq 0.66 \times 10 ⁻³ indicated a well-fitting of the Thomas model with the experimental sorption outcomes than Adams-Bohart and Yoon-Nelson kinetic models. Renewal and recycling of KMFC indicate that KMFC has a reputable efficiency of up to 7 cycles.

	2020-2021
Paper Title	Batch and column modeling of Cd (II) separation from aqueous phase using chitosan nitrogen foam carbon
Journal Name	Environmental Nanotechnology, Monitoring & Management
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S2215153221000696
Abstract	Beet molasses resulting from the sugar industry was mixed with keratin solution to prepare nitrogen foam carbon
	(N-PC) by carbonization. Amino functional groups were introduced to N-PC by coating with a chitosan layer to
	produce chitosan nitrogen foam carbon (CH- N-PC). The structure of CH- N-PC was characterized and used as an
	adsorbent in the column and batch sorption system to separate Cd (II) from the aqueous phase. In the column
	system, the maximum removal was reached 77.30% with a sorption capacity of 133.22 mg/g at optimum pH.5.0.
	Thomas model indicates a well-fitting with higher $R^2 > 0.98$ than other models. In the batch system indicated a
	well-fitting with Pseudo-second-order model ($R^2 > 0.998$) with agreement between experimental (qe: 219.45
	mg/g) and calculated sorption capacity (qe: 222.64 mg/g) than other models. The batch thermodynamic study
	showed that the sorption system is an exothermic process. CH-N-PC adsorbent has good regeneration with 2.0 M
	HCl and recycled up to 5 cycles which indicates the economical use of CH-N-PC in the Cd (II) column sorption
	system.

	2020-2021
Paper Title	Sorption of U(VI) ions from aqueous solution by eggplant leaves: Isotherm, kinetics and thermodynamics studies
Journal Name	Progress in Nuclear Energy
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0149197021001943
Abstract	The research aims to utilize eggplant (<i>Solanum melongena</i>) leaves to remove and recover U(IV) ions from aqueous solutions. The biomass was characterized by SEM, FTIR and EDS analyses. Eggplant leaves appeared a maximum U(VI) uptake up to 99.87% with sorption capacity:110.97mg/g at pH 5, 0.09 g dose, 28°C and 50 min in the batch sorption system. The nonlinear assessment of isotherm and kinetics showed that the sorption system was fitted well by the Freundlich model and the pseudo first-order kinetic model. Also, the thermodynamic study displayed an exothermic of the uptake process. Likewise, the sorption-desorption cycle showed the good stability of eggplant leaves structure up to 9 cycles. The high adsorption capacity, low cost, good stability and biodegradable properties of eggplant leaves make it a good adsorbent for removing and recovering U(VI) ions from aqueous solutions.

	2020-2021
Paper Title	Performance evaluation of Solanum incanum leaves as a biodegradable adsorbent for oil-spill cleanup in seawater
Journal Name	Desalination and Water Treatment Journal
Link of the paper	https://www.deswater.com/DWT_abstracts/vol_233/233_2021_182.pdf
Abstract	Leaves of Solanum incanum were used as oil adsorbent biomass in oil sorption from seawater. The capability of
	biomass to eliminate oil from seawater was related to its surface structure. The parameters of spilled oil ratio,
	sorption time, biomass dose, and the temperature of the oil/seawater system were studied. Maximum oil sorption
	capacity (11.54 g/g) was obtained at 4min and room temperature (28°C). The best fitting of Redlich-Peterson and
	Langmuir isotherm corroborates the homogeneous monolayer oil sorption process onto sorption sites of biomass
	rather than heterogeneous multilayer oil sorption. Pseudo-first-order kinetic model (R^2 : 0.97941 and χ^2 : 0.27082)
	provided good fitting compared to pseudo-second order (R^2 : 0.95173 and χ^2 : 0.63476) and Intraparticle Diffusion
	models (R^2 : 0.76666 and χ^2 : 3.06843), indicating the physical nature of oil sorption onto biomass. Moreover, the
	reusability results demonstrate acceptable sorption effectiveness of <i>Solanum</i> leaves up to three sorption cycles.

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

Google Scholar link

https://scholar.google.com/citations?hl=en&user=moQGvKcAAAAJ

Research gate link

https://www.researchgate.net/profile/Mohamed-Mahmoud-180

Scopus link

https://www.scopus.com/authid/detail.uri?authorId=56549489500

جامعة جـــازان
كلية الهندســة
وكالـة التطـوير
وحــدة الجـودة

Faculty Name: Dr. Omer Yahya Bakaher

	2019-2020	
Paper Title	Adsorption of benzene on impregnated carbon nanotubes	
Journal Name	Ain Shams Engineering Journal	
Link of the paper	https://doi.org/10.1016/j.asej.2020.03.012	
Abstract	Multi-walled carbon nanotubes impregnated with Fe_2O_3 nanoparticles were prepared. The multi-walled carbon nanotubes were used to remove benzene from water. The iron-impregnated carbon nanotubes from a range 5 wt% iron to 20 wt% iron were prepared. The removal of benzene increases with the increase of impregnated iron percent in the multi-walled carbon nanotube. Redlich-Peterson model gives better data representation. Maximum adsorption capacity of impregnated CNTs was found to be 271 mg/g. The highest adsorption capacity of carbon nanotubes impregnated by iron nanoparticles confirms a good possibility to be an excellent adsorbent compared to others adsorbents to remove benzene from water.	

	2019-2020
Paper Title	Uranium (VI) ions uptake from liquid wastes by solanum incanum leaves: biosorption, desorption and recovery
Journal Name	Alexandria Engineering Journal
Link of the paper	https://doi.org/10.1016/j.aej.2020.03.013
Abstract	Solanum incanum leaves, new and valuable biomass were utilized as sorbent material for the removal of U (IV) ions from aqueous wastes. The leaves of solanum incanum were analyzed by SEM, XRD, EDS and FTIR analyses. Solanum incanum leaves have a good ability to (VI) uptake. The maximum biosorption capacity of SNL was 39.98 mg/g at pH 4 and 45 °C. 99.95% of U (VI) ions were biosorbed within 60 min in an endothermic (DH:167.267 KJ mol ⁻¹) batch system. The linear and nonlinear results of biosorption isotherms and kinetics indicate that Langmuir and second pseudo order models were an agreement with the experimental results. Also, the regeneration and reusing of biomass give acceptable results up to 8 cycles of the biosorption-desorption system.

	2019-2020
Paper Title	Preparation and application of Poly (N-formylpiperidine) in the adsorption of Pb(II) from liquid phase
Journal Name	Ain Shams Engineering Journal
Link of the paper	https://doi.org/10.1016/j.asej.2020.01.014
Abstract	Poly (N-formylpiperidine) (P (N-FPP)) was prepared by copolymerizing N-formylpiperidine and benzaldehyde. Characterization of P (N-FPP) was determined by SEM, FTIR, XRD and BET analysis. Poly (N-formylpiperidine) has the acceptable adoptive uptake of Pb (II) ions from the liquid phase using a continuous column system. Column parameters (pH, initial concentration, bed height, temperature, and flow rate) were studied. The continuous system was evaluated by two kinetic models (Thomas and Adams-Bohart models). The maximum Pb(II) adsorption capacity 3.8325 mg/g was obtained at pH 4, flow rate 2 ml/min and 30 °C. Also, kinetic data showed that the Thomas model had better convenience (R ² = 998) than the Adams-Bohart model (R ² = 891). Finally, the regeneration process indicates that the P (N-FPP) had a good efficiency for 4 adsorption cycles.

	2019-2020
Paper Title	Removal and recovery of U(VI) from aqueous effluents by flax fiber: adsorption, desorption and batch adsorber proposal
Journal Name	Journal of Advanced Research
Link of the paper	https://doi.org/10.1016/j.jare.2019.10.011
Abstract	Flax fiber (Linen fiber), a valuable and inexpensive material was used as sorbent material in the uptake of uranium ion for the safe disposal of liquid effluent. Flax fibers were characterized using BET, XRD, TGA, DTA and FTIR analyses, and the results confirmed the ability of flax fiber to adsorb uranium. The removal efficiency reached 94.50% at pH 4, 1.2 g adsorbent dose and 100 min in batch technique. Adsorption results were fitted well to the Langmuir isotherm. The recovery of U (VI) to form yellow cake was investigated by precipitation using NH ₄ OH (33%). The results show that flax fibers are an acceptable sorbent for the removal and recovery of U (VI) from liquid effluents of low and high initial concentrations. The design of a full scale batch unit was also proposed and the necessary data was suggested.

	2020-2021
Paper Title	Batch and Continuous study on Adsorption of Chromium (Cr(VI)) on Carbon Nanotubes impregnated with Fe ₂ O ₃ (CNT/Fe)
Journal Name	Jouf University Science and Engineering Journal
Link of the paper	https://www.ju.edu.sa/en/jouf-university-science-and-engineering-journal-jusej/about-the-journal/
Abstract	Raw and impregnated carbon nanotubes with Fe ₂ O ₃ nanoparticles (CNT/Fe) were made to remove hexavalent chromium (Cr(VI)) ions from water. The effects of contact time, pH, agitation speed, impregnated percent and adsorbent dose on the value of adsorption were studied in both batch and continuous systems. The adsorption of Cr(VI) increases with the increase of impregnated iron percent and decrease in pH. Redlich-Peterson and Thomas models give better data representation for batch and continuous system respectively. Maximum Cr (VI) removal capacity by impregnated CNTs was obtained to be 44.8 mg/g at pH 2. Spent CNT/Fe was regenerated and reused again for 4 adsorption cycles and the results showed CNT/Fe had a good efficiency to adsorb Cr (VI) from water.

	2020-2021
Paper Title	Improving the performance of a present single stage power plant to a combined cycle power plant: A case study
Journal Name	Jouf University Science and Engineering Journal
Link of the paper	https://www.ju.edu.sa/en/jouf-university-science-and-engineering-journal-jusej/about-the-journal/
Abstract	This study is concentrated on improving the performance of a single cycle power plant to a combined cycle power plant. A simulation of the process was used to simulate a real case located in the southern region of Saudi Arabia as a case study. The importance of modifying single cycle power plant to a combined cycle power plant comes from increasing the energy efficiency and reducing the emissions. When the efficiency increased the consumption of the fuels decreased so the emissions will decrease. The unit used for study generates 72.3 MW and its efficiency is 30.44%. DWSIM software has been used to simulate the process of the single cycle, and then it was modified to a combined cycle. All the parameters needed to run the simulation has been collected from the unit used as a case study. As a first step the single cycle has been simulated using the real operating data, and then the simulation has been modified to a combined cycle power plant. The simple cycle power plant simulation has been validated by comparing the data collected from the simulation with the data collected from the actual plant. So the power from the simulation obtained to be 69.97 MW and the efficiency 31.00%. This can confirm that the simulation is valid. After validation the single cycle has been modified to a combined cycle to include the heat recovery steam generator. After modification the power of the unit has been increased from 69.97 MW to 109.99 MW and the overall efficiency of the unit increased from 31.50% to 48.78%. The carbon dioxide emissions were decreased from 16.13 kg/s to 11.42 kg/s to produce the same amount of power.

	2020-2021
Paper Title	Performance evaluation of Solanum incanum leaves as a biodegradable adsorbent for oil-spill cleanup in seawater
Journal Name	Desalination and Water Treatment Journal
Link of the paper	https://www.deswater.com/DWT_abstracts/vol_233/233_2021_182.pdf
Abstract	Leaves of Solanum incanum were used as oil adsorbent biomass in oil sorption from seawater. The capability of
	biomass to eliminate oil from seawater was related to its surface structure. The parameters of spilled oil ratio,
	sorption time, biomass dose, and the temperature of the oil/seawater system were studied. Maximum oil sorption
	capacity (11.54 g/g) was obtained at 4min and room temperature (28°C). The best fitting of Redlich-Peterson and
	Langmuir isotherm corroborates the homogeneous monolayer oil sorption process onto sorption sites of biomass
	rather than heterogeneous multilayer oil sorption. Pseudo-first-order kinetic model (R^2 : 0.97941 and χ^2 : 0.27082)
	provided good fitting compared to pseudo-second order (R^2 : 0.95173 and χ^2 : 0.63476) and Intraparticle Diffusion
	models (R^2 : 0.76666 and χ^2 : 3.06843), indicating the physical nature of oil sorption onto biomass. Moreover, the
	reusability results demonstrate acceptable sorption effectiveness of <i>Solanum</i> leaves up to three sorption cycles.

	2020-2021
Paper Title	Colloidal Fe3O4 nanoparticles-based oil blend ferro-nanofluid for heat transfer application
Journal Name	The European Physical Journal Plus
Link of the paper	https://epiplus.epj.org/articles/epjplus/abs/2021/07/13360_2021_Article_1711/13360_2021_Article_1711.html
Abstract	The thermal conductivity enhancement of oil blend-based ferro-nanofluids for heat transfer application is rarely reported. Herein, highly stable ferro-nanofluids were prepared by dispersing oleic acid coated Fe ₃ O ₄ NPs into the blend of sunflower oil and mineral oil at varying volume ratios. The maximum thermal conductivity enhancement of ~91% was obtained for M10 (base fluid) oil blend-based ferro-nanofluid at 0.6 vol% of Fe ₃ O ₄ NPs as compared to the pure mineral oil. The dispersed NPs into the oil blend-based ferro-nanofluid executed Brownian motion which led to the collisions between the NPs as well as with the molecules of the oil blend. The formation of a chain like network by small-sized NPs effectively led to a larger volume fraction of NPs, which caused the enhancement of the thermal conductivity of oil blend-based ferro-nanofluids. Moreover, a nano-adsorption layer of oil blend was formed on the surfaces of NPs, which served as a bridge for the heat exchange between NPs and oil blend. The experimental results were validated against a similar pre-existing thermal conductivity enhancement model. Hence, this study provides a more efficient method to prepare oil-based ferro-nanofluids with a tunable thermal conductivity for heat transfer applications

	2020-2021
Paper Title	Active adsorption performance of planetary ball milled Saudi Arabian bentonite clay for the removal of copper
	ions from aqueous solution
Journal Name	EPL (Europhysics Letters)
Link of the paper	https://iopscience.iop.org/article/10.1209/0295-5075/ac1960/meta
Abstract	We report the role of local bentonite clay in the removal of Cu ²⁺ ions from aqueous solution. The fine bentonite
	clay powder was analysed by XRD, FTIR, SEM and DLS analysis techniques. Further, the adsorption experiments
	were carried out by varying many factors such as weight and size of bentonite clay, residence time, pH of the
	solution, stirring rate, temperature, and flow rate. The optimum conditions for effective removal of Cu ²⁺ ions was
	1 g dose of bentonite and 63 μ m size of bentonite, 50 minutes of residence time and 50 °C temperature at p H 3
	with a flow rate of 1 L/min. The data fitted well the Freundlich model and a maximum adsorption capacity of
	61.72 mg/g has been obtained. The value of Gibbs free energy changes (ΔG°), enthalpy changes (ΔH°) and
	entropy changes (Δ S°) were found to be $-3819.86~\mathrm{J~mol^{-1}K^{-1}}$
	, $+15079.10~\mathrm{J~mol^{-1}K^{-1}}$ and $+58.60~\mathrm{J~mol^{-1}K^{-1}}$, respectively.

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

Googl	_ (7 - 1		
1-000			$\mathbf{m}_{\mathbf{z}}$
OUUE		IUIAI	

https://scholar.google.com/citations?user=3kwcCi4AAAAJ&hl=en

Research gate link

https://www.researchgate.net/profile/Omer-Bakather

Scopus link

Nil

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

Faculty Name:Dr. Mohamed Ibrahim Osman Hassan

	2019-2020	
Paper Title	Uranium (VI) ions uptake from liquid wastes by Solanum incanum leaves: Biosorption, desorption and	
	recovery	
Journal Name	Alexandria Engineering Journal	
Link of the paper	https://www.sciencedirect.com/science/article/pii/S1110016820301125?via%3Dihub	
Abstract	Solanum incanum leaves, new and valuable biomass were utilized as sorbent material for the removal of U (IV) ions from aqueous wastes. The leaves of solanum incanum were analyzed by SEM, XRD, EDS and FTIR analyses. Solanum incanum leaves have a good ability to (VI) uptake. The maximum biosorption capacity of SNL was 39.98 mg/g at pH 4 and 45 °C. 99.95% of U (VI) ions were biosorbed within 60 min in an endothermic (ΔH:167.267 KJ mol-1) batch system. The linear and nonlinear results of biosorption isotherms and kinetics indicate that Langmuir and second pseudo order models were an agreement with the experimental results. Also, the regeneration and reusing of biomass give acceptable results up to 8 cycles of the biosorption-desorption system.	

	2020-2021		
Paper Title	raper Title IMPROVING THE PERFORMANCE OF A PRESENT SINGLE STAGE POWER PLANT TO A COMBINED CYCLE POWER PLANT: A CASE STUDY		
Journal Name	Jouf University Science and Engineering Journal		
Link of the paper	https://www.ju.edu.sa/en/jouf-university-science-and-engineering-journal-jusej/home/		
Abstract	This study is concentrated on improving the performance of a single cycle power plant to a combined		

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

cycle power plant. A simulation of the process was used to simulate a real case located in the southern region of Saudi Arabia as a case study. The importance of modifying single cycle power plant to a combined cycle power plant comes from increasing the energy efficiency and reducing the emissions. When the efficiency increased the consumption of the fuels decreased so the emissions will decrease. The unit used for study generates 72.3 MW and its efficiency is 30.44%. DWSIM software has been used to simulate the process of the single cycle, and then it was modified to a combined cycle. All the parameters needed to run the simulation has been collected from the unit used as a case study. As a first step the single cycle has been simulated using the real operating data, and then the simulation has been modified to a combined cycle power plant. The simple cycle power plant simulation has been validated by comparing the data collected from the simulation with the data collected from the actual plant. So the power from the simulation obtained to be 69.97 MW and the efficiency 31.00%. This can confirm that the simulation is valid. After validation the single cycle has been modified to a combined cycle to include the heat recovery steam generator. After modification the power of the unit has been increased from 69.97 MW to 109.99 MW and the overall efficiency of the unit increased from 31.50% to 48.78%. The carbon dioxide emissions were decreased from 16.13 kg/s to 11.42 kg/s to produce the same amount of power.

	2020-2021
Paper Title Active adsorption performance of planetary ball milled Saudi Arabian bentonite clay for the	
	copper ions from aqueous solution
Journal Name	Europhysics Letters (EPL)
Link of the paper	https://iopscience.iop.org/article/10.1209/0295-5075/ac1960
Abstract	We report the role of local bentonite clay in the removal of Cu2+ ions from aqueous solution. The fine bentonite clay powder was analysed by XRD, FTIR, SEM and DLS analysis techniques. Further, the adsorption experiments were carried out by varying many factors such as weight and size of bentonite clay, residence time, p H of the solution, stirring rate, temperature, and flow rate. The optimum conditions for effective removal of Cu2+ ions was 1 g dose of bentonite and 63 μ m size of bentonite, 50 minutes of residence time and 50 °C temperature at p H 3 with a flow rate of 1 L/min. The data fitted well the Freundlich model and a maximum adsorption capacity of 61.72 mg/g has been obtained. The value of Gibbs free energy changes (ΔG°), enthalpy changes (ΔH°) and entropy changes (ΔS°) were found to be -3819.86 J mol $^{-1}$ K $^{-1}$, respectively.

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

Google Scholar

 $\frac{https://scholar.google.com/citations?hl=en\&user=P16aEMIAAAAJ\&view_op=list_works\&gmla=AJsN-}{F6jMyTpDTaWyD5AWTkId1TRf3sTDINgQpd0cUtyk9-66yRwI-V28oMdpUrx43Rm6GTq1F9T8fXsnHW9ReRZ_D-}\\ZutOqVGIpBOi6-spP7zsk26hKh_w$

Research gate

https://www.researchgate.net/profile/Mohamed-Hassan-219

Scopus

https://www.scopus.com/home.uri

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

Faculty Name: Ayman Yousef

	2019-2020
Paper Title	Synthesis and characterization of WC@ GNFs as an efficient supercapacitor electrode material in acidic medium
Journal Name	Ceramics International
Link of the paper	https://www.sciencedirect.com/science/article/pii/S0272884220322471?dgcid=rss_sd_all
Abstract	A two-step route to the preparation of graphene (G) nanoflakes (NFs), designed with tungsten carbide (WC) nanoparticles (WC@GNFs), through microwave irradiation and hydrothermal treatments. A uniform distribution of the WC nanoparticles on the graphene layers was confirmed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. Additionally, X-ray diffraction (XRD) study demonstrated the presence of the characteristic crystal planes of tungsten carbide on those of graphene. An increase in the graphitization degree ($G/1D = 4.9$) of the WC@GNF nanocomposite was determined by Raman spectroscopy. These highlighted physical properties enabled the application of this nanomaterial, as a supercapacitor electrode in an H_2SO_4 electrolyte. The cyclic voltammetry (CV) scans indicated that the charging process was controlled by a pseudocapacitive contribution in conjunction with the electrical double-layered features. A specific capacitance, 1009.52 F/g , was estimated, at 1 mV/s , with improved retention of 106% during repeated cycles, at 20 A/g for 2000 cycles to outperform the obtained results for most relevant W-based nanomaterials. Therefore, the method of

	fabricating WC, proposed in this work, could be a simple method of examining the performance of a series of
	comparable transition metal carbides toward the technology of supercapacitors technology.

	2019-2020
Paper Title	Novel Low Temperature Route to Produce CdS/ZnO Composite Nanofibers as Effective Photocatalysts
Journal Name	Catalysts
Link of the paper	https://www.mdpi.com/2073-4344/10/4/417/htm
Abstract	In this work, CdS/ZnO composite nanofibers (NFs) were prepared by the electrospinning of a sol-gel comprised
	of poly(caprolactone), zinc acetate dihydrate, cadmium acetate dihydrate, and ammonium sulfide. The electrospun
	NF mats were calcined under vacuum in an argon (Ar) atmosphere at 200 °C for 1 h. Standard physiochemical
	analysis techniques demonstrated the formation of the crystalline hexagonal phase of CdS and ZnO. Composite
	NFs showed good photocatalytic degradation of methylene blue (MB) dye under visible light irradiation compared
	to their counterparts. CdS nanoparticles, ZnO nanofibers, and composite NFs photodegraded 35.5%, 47.3%, and
	90% of the MB dye, respectively, within 100 min. The reaction kinetics of MB photodegradation using the
	composite NFs followed the pseudo-first-order relation. Owing to their facile preparation and good
	photodegradation ability, the proposed method can be used to prepare various photocatalysts for wastewater
	treatment.

	2019-2020
Paper Title	Electrospun carbon nanofiber-encapsulated NiS nanoparticles as an efficient catalyst for hydrogen production
	from hydrolysis of sodium borohydride
Journal Name	International Journal of Hydrogen Energy
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0360319919324528
Abstract	Carbon nanofibers (CNFs) incorporating NiS nanoparticles (NPs), namely NiS@CNFs were prepared by one-step
	electrospinning and successfully employed as a catalyst for hydrogen production from hydrolytic dehydrogenation
	of sodium borohydride (SBH). As-prepared NiS@CNFs, composed of polyacrylonitrile (PAN), nickel acetate,
	and ammonium sulfide, was calcined at 900 °C in argon atmosphere, and characterized using standard surface
	science techniques. The combined results revealed the growth of NiS NPs inside the CNFs, hence confirmed the
	presence of elemental Ni, S, and C. The as-prepared NiS@CNFs catalyst has a significantly higher surface area
	(650.92 m ² /g) than the reported value of 376 m ² /g. Importantly, this catalyst exhibited a much higher catalytic
	performance, for H ₂ production from SBH, than that of Ni@CNFs, as evidenced by its low activation energy
	(~25.11576 kJ/mol) and their R_{max} values of 2962 vs. 1770 mL/g·min. Recyclability tests on using NiS@CNFs
	catalyst showed quantitatively production (~100% conversion) of H ₂ from SBH and retained up to 70% of its
	initial catalytic activity after five successive cycles. The low cost and high catalytic performance of the designed
	NiS@CNFs catalyst enable facile H ₂ production from readily available hydrogen storage materials.

	2019-2020
Paper Title	A Comprehensive Review Covering Conventional and Structured Catalysis for Methanol to Propylene
	Conversion.
Journal Name	Catalysis Letter
Link of the paper	https://link.springer.com/article/10.1007/s10562-019-02914-4
Abstract	The conversion of methanol to propylene is a value-added process and has gained extreme significance because of
	high demand for propylene in the production of petrochemicals. The demand for propylene is increasing due to
	increasing usage of polypropylene. During the last two decades, propylene demand growth has far overtaken
	ethylene demand growth and it is predicted to be more than double in the next 20 years. The Dalian Institute of
	Chemical Physics has been working for the last three decades in the R&D of the methanol to olefins reaction and
	have developed MTP technology. The catalytic materials used in methanol to propylene conversion include
	SAPO-34 (small-pore molecular sieves), ZSM-5 (medium-pore zeolites) and its modified forms. Limited research
	has also been done using large pore zeolites such as mordenite and beta. High-silica EU-1 zeolite has been found
	as an efficient catalyst for MTP conversion. The use of SAPO-18, ZSM-23 and CON-type zeolite for MTP
	reaction has also been discussed. Methanol to propylene research has been carried using structured catalysts
	including ceramic based honeycomb or monolith and silicon carbide foam. The major difference in process design
	between SAPO-34 and H-ZSM-5 is that the SAPO-34 is used in fluidized bed process while H-ZSM-5 catalyst is
	used in fixed bed process. SAPO-34 is a selective catalyst for olefins but deactivates fast and thus requires

جامعة جــــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

frequent regeneration. The H-ZSM-5 is less selective for olefins but shows less deactivation and thus quite stable. A number of structured supports such as monolith, foam, and mesh have been researched for coating with the active zeolite based catalysts. The structured catalysts have the advantage to reduce the diffusional limitations of pellet catalyst system and have exhibited excellent results in terms of activity and selectivity for olefins as well as in reducing aromatics formation. The results obtained in our research using zeolite coated structured catalysts have shown significant increase in propylene selectivity. The significant findings of our work has been published and patented with US Patent and Trademark Office (USPTO).

	2020-2021
Paper Title	Fabrication of electrospun nickel sulphide nanoparticles onto carbon nanofibers for efficient urea electro-
	oxidation in alkaline medium
Journal Name	International Journal of Hydrogen Energy
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0360319921002871
Abstract	To design and synthesize a noble-metal free electrocatalyst with increased efficiency and stability during urea
	electro-oxidation in alkaline solution is still an important challenge in the electrocatalytic field. In this work,
	carbon nanofibers were decorated with nickel sulphide nanoparticles [NiS@CNFs] through the electrospinning
	technique with subsequent heating into an argon atmosphere at 900 °C for 2 h. This formed nanomaterial was
	extensively characterized through X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-
	SEM), <u>transmission electron microscopy</u> (TEM), energy dispersive X-ray analysis (EDX), Raman spectroscopy
	and N ₂ adsorption-desorption measurements. A conductive network of intertwined CNFs was clearly detected by
	FE-SEM analysis technique with varied diameters in the range of 0.6–1 μm. A highly porous nature could be
	suggested after incorporating NiS nanospecies resulting in increased specific surface area and
	valuable <u>electrocatalytic activity</u> for urea molecules electro-oxidation. The <u>pore size distribution</u> curves showed a
	decreased average pore diameter for NiS@CNFs nanocomposite by 2.53 folds when compared to that at CNFs.

The electroactivity of NiS@CNFs nanomaterial for catalyzing urea electro-oxidation was investigated using
cyclic voltammetry, <u>chronoamperometry</u> and electrochemical <u>impedance spectroscopy</u> measurements. Increased
activity of this nanocatalyst was registered when urea molecules were added in increased concentrations into
KOH solution. Lowered resistance values were also obtained describing the charge transfer process to confirm the
feasibility of the studied reaction at NiS@CNFs surface. Moreover, its drawn chronoamperogram showed a stable
performance during operation for long periods revealing a lowered catalytic decay. Accordingly, the
aforementioned results of our fabricated nanomaterial could provide a good guide for fabricating suitable
electrocatalysts for various electrocatalytic purposes.

2020-2021	
Paper Title	One-pot preparation of CdO/ZnO core/shell nanofibers: An efficient photocatalyst
Journal Name	Alexandria Engineering Journal
Link of the paper	https://www.sciencedirect.com/science/article/pii/S111001682030613X
Abstract	Herein, CdO/ZnO core/shell nanofibers (NFs) were fabricated by one-pot electrospinning technique form a
	solution composed of poly(vinyl alcohol), zinc acetate dihydrate, and cadmium acetate dihydrate. CdO/ZnO
	core/shell NFs exhibits an excellent photo-degradation of methylene blue (MB) under sunlight irradiation
	compared to pristine ZnO NFs. As 98.4% and 42.4% of MB dye was de-colorized during 210 min using

Ī	CdO/ZnO core/shell NFs and pristine ZnO NFs, respectively. The photo-degradation reaction of MB with
	CdO/ZnO core/shell NFs followed the pseudo-first-order relation.

	2020-2021	
Paper Title	Tungsten carbide@ graphene nanoflakes: Preparation, characterization and electrochemical activity for capacitive	
	deionization technology	
Journal Name	Journal of Colloid and Interface Science	
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0021979720308341	
Abstract	In this present work, tungsten carbide (WC) nanoparticles were intercalated between graphene nanoflakes (GNFs)	
	using sonication followed by hydrothermal treatment. Pristine WC, GNFs and a series of WC@GNFs	
	nanomaterials were physically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM),	
	transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and water contact angle	
	measurements. Cyclic voltammetry and electrochemical impedance studies were operated to investigate the	
	electrochemical performance of these nanocomposites as efficient capacitive deionization (CDI) electrodes with	
	improved electrochemical characteristics and specific capacitances in NaCl solution. Among the synthesized	
	nanomaterials, WC@GNFs containing 10% WC displayed appreciable specific capacitance [580.00 F g ⁻¹], salt	

removal efficiency [95.50%], electrosorptive capacity [22.155 mg g ⁻¹] and charge efficiency [0.356] values.
Accordingly, the measured results in this study indicate that WC@GNFs nanomaterials are suitable electrodes
with an easy preparation route for efficient CDI technology.

	2020-2021	
Paper Title	Graphitic nanofibers supported NiMn bimetallic nanoalloys as catalysts for H2 generation from ammonia borane	
Journal Name	International Journal of Hydrogen Energy	
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0360319921032511	
Abstract	Bimetallic nickel manganese nanoalloy-decorated graphitic <u>nanofibers</u> were prepared using electrospinning. The	
	introduced catalysts were explored as an effective and inexpensive catalyst for H2 generation from ammonia	
	borane using hydrolysis. Standard techniques were used to determine the morphology and chemical composition	
	of the nanofibers. Characterization indicated successful formation of bimetallic nickel-manganese-decorated	
	graphitic nanofibers. Introduced effective catalysts showed a high <u>reusability</u> for H ₂ generation using ammonia	

borane hydrolysis at low concentrations and temperatures. All formations of the introduced catalysts demonstrated
a higher <u>catalytic activity</u> in H ₂ generation than nickel-decorated <u>carbon nanofibers</u> . Samples composed of 55 wt%
nickel and 45 wt% manganese showed the best catalytic activity compared with other formulations.
Initial <u>turnover frequency</u> (TOF) of this sample was 58.2 min ⁻¹ , twice the TOF of the manganese-free catalyst.
Kinetics and thermodynamics revealed that the catalyst concentration followed the pseudo-first order reaction
while the ammonia borane concentration follow the pseudo-zero order reaction, providing activation energy of
38.9 kJ mol^{-1} .

2020-2021	
Paper Title	Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina waste
Journal Name	Case Studies in Construction Materials
Link of the paper	https://www.sciencedirect.com/science/article/pii/S2214509521002527
Abstract	The present study introduces the preparation of thermal insulation geopolymer bricks
	using ferrosilicon slag and alumina waste. Compressive strength, bulk density, cold and
	boiling water absorption, apparent porosity, thermal conductivity, and Fourier-transform

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

infrared spectroscopy were used to characterized the geopolymer bricks. Ferrosilicon slag suffers from low alumina content. Thus, alumina is added to compensate for this deficiency. Pristine ferrosilicon slag and the SiO₂/Al₂O₃ (Si/Al, ratio = 2) sample were prepared at different NaOH concentrations (i.e., 6, 8, 10, and 12 M; Na₂SiO₃/NaOH ratio = 2.5), different curing times (i.e., 3, 7, 14, and 28 days), and room temperature. The 8 M NaOH concentration achieved the best compressive strength. Accordingly, different Si/Al ratios were prepared and tested at 8 M NaOH, room temperature, and different curing times (i.e., 3, 7, 14, and 28 days). Results indicate that increasing the alumina content enhances the geopolymer properties but reduces the compressive strength of the prepared geopolymer. The sample with Si/Al ratio = 1 exhibited a higher compressive strength (10.9 MPa) than the other Si/Al ratios (i.e., 4, 3, 2, and 0.5) and the pristine ferrosilicon slag after 28 days of curing and at 8 M NaOH. The obtained value is consistent with the ASTM C62 and Egyptian standards. Furthermore, the addition of alumina waste decreased the thermal conductivity of the prepared geopolymer bricks.

	2020-2021
Paper Title	Insights on the role of supporting electrospun carbon nanofibers with binary metallic carbides for enhancing their capacitive deionization performance
Journal Name	Journal of Materials Research and Technology
Link of the paper	https://www.sciencedirect.com/science/article/pii/S2238785421011170
Abstract	Recent development in desalination technology can be progressed in terms of fabricated nanomaterials and
	operating parameters, as one among energy-storing systems including fuel cells, capacitors, batteries, and so on.
	Regarding the examined nanomaterials, embedded CoCr ₇ C ₃ nanoparticles onto carbon nanofibers
	(CoCr ₇ C ₃ @CNFs) were prepared using a facile electrospinning technique. Characterization techniques, such as
	XRD, FESEM, TEM, HRTEM, STEM, and EDX, were served to define the crystallinity, morphology and

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

chemical composition of the synthesized nanofibers. XRD chart demonstrated the formation of Cr_7C_3 species along with deposited metallic cobalt in this nanomaterial. The morphological study revealed the uniform distribution of metallic cobalt and Cr_7C_3 nanoparticles onto the fibrous CNFs structure. The electrochemical performance of $CoCr_7C_3@CNFs$ was studied in 1.0 M NaCl solution at 5 mV s⁻¹ to record a specific capacitance of 250 F g⁻¹. Electrochemical impedance spectroscopy measurements indicated better electron transfer properties after introducing $CoCr_7C_3$ to the CNFs structure. Furthermore, its outstanding electrosorption capacity of 20.40 mg g⁻¹ might encourage the preparation of additional nanocomposites for future capacitive deionization (CDI) technology.

Google Scholar link

 $\underline{https://scholar.google.com/citations?user=D9blbQEAAAAJ\&hl=en}$

Research gate link

https://www.researchgate.net/profile/Ayman-Yousef-12

جامعة جسازان كلية الهندسسة وكالة التطوير وحسدة الجسودة

Scopus link

https://www.scopus.com/feedback/author-affiliation/review.uri?afwFlowId=1619111582242

Faculty Name: Saleh Mohamed Matar

2019-2020	
Paper Title	Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae
	Isolate Actino 48
Journal Name	Agronomy
Link of the paper	https://www.mdpi.com/2073-4395/10/11/1620

Abstract	Viral plant diseases represent a serious problem in agricultural production, causing large shortages in the
	production of food crops. Eco-friendly approaches are used in controlling viral plant infections, such as biocontrol
	agents. In the current study, Streptomyces cellulosae isolate Actino 48 is tested as a biocontrol agent for the
	management of tobacco mosaic virus (TMV) and inducing tomato plant systemic resistance under greenhouse
	conditions. Foliar application of a cell pellet suspension of Actino 48 (2×10^7 cfu. mL ⁻¹) is performed at 48 h
	before inoculation with TMV. Peroxidase activity, chitinase activity, protein content, and the total phenolic
	compounds are measured in tomato leaves at 21 dpi. On the other hand, the TMV accumulation level and the
	transcriptional changes of five tomato defense-related genes (PAL, PR-1, CHS, PR-3, and PR-2) are studied.
	Treatment with Actino 48 before TMV inoculation (48 h) induced tomato plants to increase their levels of
	peroxidase and chitinase enzymes. Furthermore, a significant increase in the concentration of total phenolic
	compounds was observed in Actino 48 and TMV-treated tomato plants compared to TMV-treated tomato plants
	alone. Treatment with Actino 48 reduced the TMV accumulation level (53.8%) compared to treatment with the
	virus alone. Actino 48 induced plant growth, where the fresh and dry weights of tomato plants increased.
	Additionally, significant increases of the PAL, PR-1, CHS, and PR-3 transcripts were observed. On the other
	hand, a higher induction of PR-2 was only observed in TMV-treated tomato plants. In
	conclusion, S. cellulosae isolate Actino 48 can be used as a biocontrol agent for the reduction of symptoms and
	severity of TMV.

	2019-2020	
Paper Title	Maximization of siderophores production from 3 biocontrol agents, Pseudomonas aeruginosa F2 and 4	
	Pseudomonas fluorescens JY3 using batch and 5 exponential fed-batch fermentation,	
Journal Name	Processes, 8(4), 455	
Link of the paper	https://www.mdpi.com/2227-9717/8/4/455	

Abstract	Twenty fluorescent <i>Pseudomonas</i> isolates were tested for their ability to produce siderophores on chrome azurol S
	(CAS) agar plates and their antagonistic activity against six plant pathogenic fungal isolates was assessed.
	Scaling-up production of siderophores from the promising isolates, <i>P. aeruginosa</i> F2 and <i>P. fluorescens</i> JY3 was
	performed using batch and exponential fed-batch fermentation. Finally, culture broth of the investigated bacterial
	isolates was used for the preparation of two economical bioformulations for controlling Fusarium
	oxysporum and Rhizoctonia solani. The results showed that both isolates yielded high siderophore production and
	they were more effective in inhibiting the mycelial growth of the tested fungi compared to the other bacterial
	isolates. Exponential fed-batch fermentation gave higher siderophore concentrations (estimated in 10 µL), which
	reached 67.05% at 46 h and 45.59% at 48 h for isolates F2 and JY3, respectively, than batch fermentation.
	Formulated P. aeruginosa F2 and P. fluorescens JY3 decreased the damping-off percentage caused
	by F. oxysporum with the same percentage (80%), while, the reduction in damping-off percentage caused
	by R. solani reached 87.49% and 62.5% for F2 and JY3, respectively. Furthermore, both formulations increased
	the fresh and dry weight of shoots and roots of wheat plants. In conclusion, bio-friendly formulations of
	siderophore-producing fluorescent <i>Pseudomonas</i> isolates can be used as biocontrol agents for controlling some
	plant fungal diseases.

2019-2020	
Paper Title	Fermentation, formulation and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence
	of peanut soil-borne diseases
Journal Name	Journal of Integrative Agriculture , 18(9): 2080–2092
Link of the paper	https://www.sciencedirect.com/science/article/pii/S2095311919625785
Abstract	Four isolates of Bacillus subtilis coded, B4, B7, B8 and B10 were examined as biocontrol agents for their abilities
	and antagonistic effect on the in vitro growth of certain phytopathogenic fungi of peanut, Rhizoctonia

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

solani and Sclerotium rolfsii. Bacillus subtilis isolate B4 (GenBank accession no. EF150884) was the highly effective one for inhibiting the fungal mycelial growth. Batch fermentation of *B. subtilis* isolate B4 was carried out and the maximum biomass achieved was 4.53 g L⁻¹ at 11 h. Bacillus subtilis isolate B4 was formulated and evaluated as a biofungicide to reduce peanut soil-borne diseases under greenhouse and field conditions at the side of Rizolex-T (fungicide) as standard. Treatments by formulated plant growth-promoting rhizobacteria (PGPR) *B. subtilis* B4 and Rizolex-T in a soil infested with R. solani, S. rolfsii and mixture of them were more effective in decreasing percentage of damping-off, root and pod rot disease incidence (%) in greenhouse and open field environment during the two seasons 2015 and 2016. Treatments by PGPR gave highly dry weight and number of healthy pods compared to control of fungi treatment which was nearby to dry weights of healthy pods achieved by treatments by Rizolex-T in a soil infested with S. rolfsii, R. solani and mixture of them. Formulated PGPR B. subtilis B4 gave higher increasing of yield percentage than treatment by Rizolex-T in the two evaluated seasons 2015 and 2016. It can conclude that the produced bioforumlated agent was more efficient as fungicide when compared with the other chemical synthesized fungicides, safe for human and the environment and economy.

2020-2021	
Paper Title	Licorice, doum, and banana peel extracts inhibit Aspergillus flavus growth and suppress metabolic pathway of
	Aflatoxin B1 production

Journal Name	Agronomy. MDPI_Publisher, 11(8):1587; 2021
Link of the paper	https://doi.org/10.3390/agronomy11081587
Abstract	Three different concentrations of four (ethanol, acetone, methanol, and diethyl ether) extracts of licorice, doum, and banana peel were evaluated for antifungal and antimycotoxigenic efficiency against a maize aflatoxigenic fungus, <i>Aspergillus flavus</i> . Among them, the licorice diethyl ether 75% extract was intensely active, showing the best wet and dry weight inhibition and exhibiting the highest efficacy ratio (91%). Regarding aflatoxin B1 (AFB1) production, all the plant extracts tested were effective against AFB1 production after one month of maize storage, with average efficacy ratios ranging from 74.1% to 97.5%. At the same time, Thiram fungicide exhibited an efficacy ratio of 20.14%. The relative expression levels of three structural genes (<i>afI</i> D, <i>afI</i> P, and <i>afI</i> Q) and two regulatory genes (<i>afI</i> R and <i>afI</i> S) were significantly downregulated when compared to untreated maize grains or Thiram-treated maize grains. The doum diethyl ether 75% peel extract showed the highest total phenolic content (60.48 mg GAE/g dry extract wt.) and antioxidant activity (84.71 µg/mL). GC–MS analysis revealed that dimethoxycinnamic acid, aspartic acid, valproic acid, and linoleic acid might imbue the extracts with antioxidant capacities in relation to fungal growth and aflatoxin biosynthesis. Finally, the results suggest that the three plant extracts can be considered a promising source for developing potentially effective and environmentally safer alternative ways to control aflatoxin formation, thus creating a potentially protective method for grain storage.

2020-2021	
Paper Title	Reducing the incidence of onion downy mildew disease using bio-formulation of pseudomonas luorescens,
	limonene and acetyl
	salicylic acid
Journal Name	Plant Cell Biotechnology and Molecular Biology 22(1&2):103-120; 2021
Link of the paper	https://www.ikprress.org/index.php/PCBMB/article/view/5839
Abstract	Formulated Pseudomonas fluorescens isolate JY8, limonene (L) and acetyl salicylic acid (ASA) were evaluated

individually or in combinations for their ability to decrease onion downy mildew disease severity under
greenhouse and open field conditions. The foliar applications of formulated P. fluorescens JY8, limonene and
acetyl salicylic acid were used at the rate of 0.25%, 0.5% and 4 mM, respectively. On the other hand, the
recommended fungicide, Acrobat MZ 69% WP was utilized at the rate of 0.25%. In addition, two genes-encoding
enzymes, chalcone synthase and chalcone isomarease (CHS and CHI), in flavonoids biosynthesis pathway in
Allium cepa were detected at the functional and transcriptional level (mRNA level) in onion tissues under
different treatments. The obtained results showed that the foliar spray with recommended fungicide was the most
effective treatment to decrease onion downy mildew disease severity under greenhouse and open field conditions
followed by combination of limonene and acetyl salicylic acid (L+ASA), and limonene (L) alone. All treatments
containing P. fluorescens JY8 gave highly yield of onion bulbs except treatment with combination (JY8+L+ASA),
which was the least effective treatment. Electrophoretic pattern of PCR products for detection of CHS and CHI
encoding-genes demonstrated an induction of CHS gene expression at a main transcriptional band of ≈ 420 bp but
detection of CHI gene expression was observed at main two transcriptional bands of \approx 340 and 970 bp. The higher
expression of CHS gene was found in treatment of ASA but in case of CHI gene the higher expression was found
in treatments of JY8, ASA, JY8+ASA and L+ASA in comparison with other treatments and untreated control. In
conclusion, treatments with JY8 and ASA induced encoded polyphenol synthetic genes in onion tissues and these
genes might play an important role in defense reaction towards infection of downy mildew disease. But treatment
with limonene (L) reduced disease severity of onion downy mildew through its effect as antifungal material.

2020-2021	
Paper Title	Application of Bio-Friendly Formulations of Chitinase-Producing Streptomyces cellulosae Actino 48 for
	Controlling Peanut Soil-Borne Diseases Caused by Sclerotium rolfsii
Journal Name	J. Fungi 2021, 7, 167

Link of the paper	https://doi.org/10.3390/jof7030167
Abstract	Of ten actinobacterial isolates, Streptomyces cellulosae Actino 48 exhibited the strongest suppression
	of <i>Sclerotium rolfsii</i> mycelium growth and the highest chitinase enzyme production (49.2 U L ⁻¹ min ⁻¹). The
	interaction between Actino 48 and S. rolfsii was studied by scanning electron microscope (SEM), which revealed
	many abnormalities, malformations, and injuries of the hypha, with large loss of S. rolfsii mycelia density and
	mass. Three talc-based formulations with culture broth, cell-free supernatant, and cell pellet suspension of
	chitinase-producing Actino 48 were characterized using SEM, Fourier transform infrared spectroscopy (FTIR),
	and a particle size analyzer. All formulations were evaluated as biocontrol agents for reducing damping-off, root
	rot, and pods rot diseases of peanut caused by S. rolfsii under greenhouse and open-field conditions. The talc-
	based culture broth formulation was the most effective soil treatment, which decreased the percentage of peanut
	diseases under greenhouse and open-field conditions during two successive seasons. The culture broth formulation
	showed the highest increase in the dry weight of peanut shoots, root systems, and yielded pods. The
	transcriptional levels of three defense-related genes (PR-1, PR-3, and POD) were elevated in the culture broth
	formulation treatment compared with other formulations. Subsequently, the bio-friendly talc-based culture broth
	formulation of chitinase-producing Actino 48 could potentially be used as a biocontrol agent for controlling
	peanut soil-borne diseases caused by S. rolfsii.

Google Scholar link	
https://scholar.google.com/citations?user=27hFus4AAAAJ&hl=en	

Research gate link
https://www.researchgate.net/profile/Saleh-Matar-2

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

Scopus link

https://www.scopus.com/search/form.uri?zone=TopNavBar&origin=searchbasic&display=basic#basic

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

Faculty Name: Mehraj ud din Naik

	2021-2022
Paper Title	Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium (VI) removal from seawater
Journal Name	Chemical Engineering Journal
Link of the paper	https://doi.org/10.1016/j.cej.2021.130934
Abstract	The seawater contains 4.5 billion tons of uranium(VI), which is quite enough to provide a continuous supply of infinite nuclear energy. However, it is a sudden need to develop adsorbents from abundant available source, easy collect property, large durability and high uranium(VI) adsorption capacity from seawater. In this work, a single-step process was developed for the preparation of chitosan (Cs) functionalized tubular carbon nanocomposite microspheres (CsFTnCM) for efficient uranium(VI) adsorption from seawater. The application of newly synthesized adsorbent for uranium(VI) removal from seawater is explored. Thus prepared adsorbent (CsFTnCM2) is found to adsorb 99.5% uranium(VI) from seawater. The CsFTnCM2 (Cs/FTn,1:1) comprising NH ₂ and COOH content approximately 0.61 mmol/g and 0.23 mmol/g, respectively. This kind of adsorbent possessed a uranium(VI) loading capacity of 0.660 (mg/g) from seawater. The adsorption kinetics not only dependent on the physical structure of the adsorbent but depends on the proportion of FTn in the Cs-matrix. However, the kinetics of uranium(VI) adsorption was increased by increasing the content of FTn up to a certain limit. The adsorption efficiency of uranium(VI) was not affected by the presence of coexisted ions, whose concentration is 1000 times greater than uranium(VI) in seawater. The desorption of uranium(VI) from the seawater exposed adsorbents were investigated and the results showed the uranium(VI) strip from the adsorbents found to be efficiently using Na ₂ CO ₃ .

	2020-2021	
Paper Title	Modeling the Effects of the Contaminated Environments on COVID-19 Transmission in India	
Journal Name	Results in Physics	
Link of the paper	https://doi.org/10.1016/j.rinp.2021.104774	
Abstract	COVID-19 is an infectious disease caused by the SARS-CoV-2 virus that caused an outbreak of typical pneumonia first in Wuhan and then globally. Although researchers focus on the human-to-human transmission of this virus but not much research is done on the dynamics of the virus in the environment and the role humans play by releasing the virus into the environment. In this paper, a novel nonlinear mathematical model of the COVID-19 epidemic is proposed and analyzed under the effects of the environmental virus on the transmission patterns. The model consists of seven population compartments with the inclusion of contaminated environments means there is a chance to get infected by the virus in the environment. We also calculated the threshold quantity to know the disease status and provide conditions that guarantee the local and global asymptotic stability of the equilibria using Volterra-type Lyapunov functions, LaSalle's invariance principle, and the Routh–Hurwitz criterion. Furthermore, the sensitivity analysis is performed for the proposed model that determines the relative importance of the disease transmission parameters. Numerical experiments are performed to illustrate the effectiveness of the obtained theoretical results.	

	2020-2021
Paper Title	Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate
Journal Name	Mathematical Methods in the Applied Sciences
Link of the paper	https://doi.org/10.22541/au.162530373.38917682/v1
Abstract	The present paper studies a fractional-order SEIR epidemic model for the transmission dynamics of infectious diseases such as HIV and HBV that spreads in the host population. The total host population is considered bounded, and Holling type-II saturation incidence rate is involved as the infection term. Using the proposed SEIR epidemic model, the threshold quantity, namely basic reproduction number R0, is obtained that determines the status of the disease, whether it dies out or persists in the whole population. The model's analysis shows that two equilibria exist, namely, disease-free equilibrium (DFE) and endemic equilibrium (EE). The global stability of the equilibria is determined using a Lyapunov functional approach. The disease status can be verified based on obtained threshold quantity R0. If R0< 1, then DFE is globally stable, leading to eradicating the population's disease. If R0> 1, a unique EE exists, and that is globally stable under certain conditions in the feasible region. The Caputo type fractional derivative is taken as the fractional operator. The bifurcation and sensitivity analyses are also performed for the proposed model that determines the relative importance of the parameters into disease transmission. The numerical solution of the model is obtained by the generalized Adams-Bashforth-Moulton method. Finally, numerical simulations are performed to illustrate and verify the analytical results.

	2020-2021
Paper Title	Preparation of amidoxime modified porous organic polymer flowers for selective uranium recovery from seawater
Journal Name	Chemical Engineering Journal
Link of the paper	https://doi.org/10.1016/j.cej.2021.129370
Abstract	Simple and facile technologies for efficient uranium(VI) removal from seawater is highly interesting for energy and environmental sustainability. By take advantage of the polymerization of acrylonitrile, amidoxime modified porous organic polymer flower-like structure (POP-AOF) adsorbent is synthesized. POP-AOF is of great interest for energy and environmental applications, since their unique structures not only provides high functionality but also accelerates high selectivity via secondary building units. The unique structure of POP-AOF showed multistep kinetics controlled by chemisorption and intraparticle diffusion model. In practical applications, POP-AOF performed as an efficient adsorbent for selective uranium(VI) removal from simulated solution and seawater are investigated. Time-dependent measurement of uranium(VI) adsorption capacity and half-saturation time of seawater exposed POP-AOF is analyzed using a one-site ligand saturation model. The coordination was analyzed by spectroscopic analysis and amidoxime groups of POP-AOF act as a bidentate ligand to trap uranium(VI) from seawater. This work addresses the potential of acrylonitrile and amidoxime chemistry for the development of new adsorbents for efficient uranium(VI) removal from seawater.

	2020-2021	
Paper Title	Differential gradient evolution plus algorithm for constraint optimization problems: A hybrid approach	
Journal Name	An International journal of Optimization and Control : Theories & Applications (IJOCTA)	
Link of the paper	https://doi.org/10.11121/ijocta.01.2021.001077	
Abstract	Optimization for all disciplines is very important and applicable. Optimization has played a key role in practical engineering problems. A novel hybrid meta-heuristic optimization algorithm that is based on Differential Evolution (DE), Gradient Evolution (GE) and Jumping Technique named Differential Gradient Evolution Plus (DGE+) are presented in this paper. The proposed algorithm hybridizes the above-mentioned algorithms with the help of an improvised dynamic probability distribution, additionally provides a new shake off method to avoid premature convergence towards local minima. To evaluate the efficiency, robustness, and reliability of DGE+ it has been applied on seven benchmark constraint problems, the results of comparison revealed that the proposed algorithm can provide very compact, competitive and promising performance.	

	2020-2021	
Paper Title	Modeling the transmission dynamics of COVID-19 pandemic in caputo type fractional derivative	
Journal Name	Journal of Multiscale Modelling	
Link of the paper	https://doi.org/10.1142/S1756973721500062	
Abstract	COVID-19 disease, a deadly pandemic ravaging virtually throughout the world today, is undoubtedly a great calamity to human existence. There exists no complete curative medicine or successful vaccines that could be used for the complete control of this deadly pandemic at the moment. Consequently, the study of the trends of this pandemic is critical and of great importance for disease control and risk management. Computation of the basic reproduction number by means of mathematical modeling can be helpful in estimating the potential and severity of an outbreak and providing insightful information which is useful to identify disease intensity and necessary interventions. Considering the enormity of the challenge and the burdens which the spread of this COVID-19 disease placed on healthcare system, the present paper attempts to study the pattern and the trend of spread of this disease and prescribes a mathematical model which governs COVID-19 pandemic using Capu to type derivative. Local stability of the equilibria is also discussed in the paper. Some numerical simulations are given to illustrate the analytical results. The obtained results shows that applied numerical technique is computationally strong for modeling COVID-19 pandemic.	

2020-2021	
Paper Title	Stability analysis of a fractional-order cancer model with chaotic dynamics
Journal Name	International Journal of Biomathematics
Link of the paper	https://doi.org/10.1142/S1793524521500467
Abstract	In this paper, we develop a three-dimensional fractional-order cancer model. The proposed model involves the interaction among tumor cells, healthy tissue cells and activated effector cells. The detailed analysis of the equilibrium points is studied. Also, the existence and uniqueness of the solution are investigated. The fractional derivative is considered in the Caputo sense. Numerical simulations are performed to illustrate the effectiveness of the obtained theoretical results. The outcome of the study reveals that the order of the fractional derivative has a significant effect on the dynamic process. Further, the calculated Lyapunov exponents give the existence of chaotic behavior of the proposed model. Also, it is observed from the obtained results that decrease in fractional-order pp increases the chaotic behavior of the model.

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

Google Scholar link

https://scholar.google.com/citations?hl=en&user=BhCrcd4AAAAJ&view_op=list_works&sortby=pubdate

Research gate link

https://www.researchgate.net/profile/Mehraj-Ud-Din-Naik

Scopus link

https://www.scopus.com/authid/detail.uri?authorId=16480840700

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

Faculty Name: Mohammad Ashraf Ali

	2019-2020 (5 PAPERS)
Paper Title	Selective Production of Propylene from Methanol over Monolith Supported Modified ZSM- 5 Catalysts
Journal Name	Energy & Fuels, 33 (2), 1458-1466, 2019
Link of the paper	https://pubs.acs.org/doi/10.1021/acs.energyfuels.8b04020
Abstract	The catalytic activity of ZSM-5 zeolites with a SiO2/Al2O3 molar ratio of 30, 50, 80, 280, and 410 was investigated in a fixed bed continuous flow reactor system and was found that the ZSM-5 zeolite with SiO2/Al2O3 molar ratio of 280 (HZ-280) exhibited best catalyst performance. The optimized reaction conditions achieved were 500 °C, 1 bar pressure, and weight hourly space velocity of 15 h–1 using methanol as feed. At optimum reaction conditions, HZ-280 exhibited propylene selectivity of 47.3% and propylene yield 17.4% with 100% methanol conversion. HZ-280 zeolite was modified with P, Ce, Fe, and La to select the best promoter to enhance propylene selectivity and yield. The best-modified catalyst obtained was HZ-280 with 0.1 wt % phosphorus loading, which further improved propylene selectivity by 14% and yield by 24.7%. Then, the monolith structured catalysts were prepared by single-layer (6.8%), double-layer (10.3%), and triple-layer (13.1%) coating of HZ-280 catalyst. HZ-280 single-layer-coated monolith-structured catalyst effectively increased propylene selectivity by 19.2% and yield by 34.5% with no liquid hydrocarbons in the product. HZ-280-coated monolith catalyst was regenerated and was reused for three cycles. Negligible activity loss was observed for methanol conversion and propylene selectivity. This reflects that the structured catalyst is viable and economical for commercial applications. Analytical techniques such as X-ray diffraction, scanning electron microscopy—energy-dispersive X-ray, Brunauer—Emmett—Teller, and NH3-temperature-programmed desorption

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

were used for characterization of the catalysts

	2019-2020
Paper Title	A Comprehensive Review Covering Conventional and Structured Catalysis for Methanol to Propylene Conversion
Journal Name	Catalysis Letter, 149, 3395–3424, 2019
Link of the paper	https://link.springer.com/article/10.1007/s10562-019-02914-4
Abstract	The conversion of methanol to propylene is a value-added process and has gained extreme significance because of high demand for propylene in the production of petrochemicals. The demand for propylene is increasing due to increasing usage of polypropylene. During the last two decades, propylene demand growth has far overtaken ethylene demand growth and it is predicted to be more than double in the next 20 years. The Dalian Institute of Chemical Physics has been working for the last three decades in the R&D of the methanol to olefns reaction and have developed MTP technology. The catalytic materials used in methanol to propylene conversion include SAPO-34 (small-pore molecular sieves), ZSM-5 (medium-pore zeolites) and its modifed forms. Limited research has also been done using large pore zeolites such as mordenite and beta. High-silica EU-1 zeolite has been found as an efcient catalyst for MTP conversion. The use of SAPO-18, ZSM-23 and CON-type zeolite for MTP reaction has also been discussed. Methanol to propylene research has been carried using structured catalysts including ceramic based honeycomb or monolith and silicon carbide foam. The major diference in process design between SAPO-34 and H-ZSM-5 is that the SAPO-34 is used in fuidized bed process while H-ZSM-5 catalyst is used in fxed bed process. SAPO-34 is a selective catalyst for olefns but deactivates fast and thus requires frequent regeneration. The H-ZSM-5 is less selective for olefns but shows less deactivation and thus quite stable. A

number of structured supports such as monolith, foam, and mesh have been researched for coating with the active
zeolite based catalysts. The structured catalysts have the advantage to reduce the difusional limitations of pellet
catalyst system and have exhibited excellent results in terms of activity and selectivity for olefns as well as in
reducing aromatics formation. The results obtained in our research using zeolite coated structured catalysts have
shown significant increase in propylene selectivity. The significant findings of our work has been published and
patented with US Patent and Trademark Ofce (USPTO).

	2019-2020
Paper Title	Liquid Phase Selective Hydrogenation of Phenol to Cyclohexanone over Electrospun Pd/PVDF-HFP Catalyst
Journal Name	Fibers, 7(4), 28, 2019
Link of the paper	https://www.mdpi.com/2079-6439/7/4/28
Abstract	Cyclohexanone is an important industrial intermediate in the synthesis of materials such as nylons, but preparing
	it efficiently through one-step hydrogenation of phenol is hindered by over-reduction to cyclohexanol. Using an
	efficient catalyst can enhance the selectivity of cyclohexanone at high phenol conversion. In this study, catalysts
	comprised of palladium nanoparticles supported on electrospun PVDF-HFP (polyvinylidene fluoride-co-
	hexafluoropropylene) nanofibers were prepared using the electrospinning technique. The catalysts were
	characterized using thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), transmission
	electron microscope (TEM), and drop shape analyzer (DSA). The prepared catalysts were used to hydrogenate
	phenol into cyclohexanone in a batch reactor. The Pd/PVDF-HFP catalyst showed a very high product selectivity
	and high phenol conversion. The conversion of phenol achieved was 98% with 97% cyclohexanone selectivity in
	7 h using 15 wt% of palladium (0.0021 moles) relative to phenol (0.0159 moles). The turnover number (TON) and

turnover frequency (TOF) values calculated were 7.38 and 1.05 h-1, respectively. This paper presents original
research in heterogeneous catalysis using novel electrospun nanofibers. Multiphase hydrogenation of phenol to
cyclohexanone over electrospun Pd/PVDF-HFP catalyst has not been reported by any researcher in the literature.
This work will also provide a research window for the application of electrospun polymeric nanofibers in
multiphase reactions.

	2019-2020	
Paper Title	UV light enabled photocatalytic activity of α-Fe2O3 nanoparticles synthesized via phase transformation.	
Journal Name	Materials Letters, 258, 1-4, 2020	
Link of the paper	https://www.sciencedirect.com/science/article/abs/pii/S0167577X19313795	
Abstract	In this work, hematite (a-Fe2O3) nanoparticles (NPs) were synthesized by co-precipitation method involving	
	chemical precipitation of aqueous salts of iron (Fe2+/Fe3+) using NaOH aqueous solution. The synthesis of a-	
	Fe2O3NPs via phase transformation and its photocatalytic application under ultra violet (UV) light is rarely	
	reported. The maximum removal of methylene blue (MB) dye (92%) was achieved at pH 10 and 200 mg amount	
	of catalyst, whereas the concentration of dye was 10 ppm. The removal percentage of MB dye was found to vary	
	with pH of the solution, concentrations of dye, and amount of a-Fe2O3 NPs for certain interval of time. Moreover,	

plot of ln(Ct/C0) Vs time exhibited almost a linear relationship between them which suggested the pseudo-first
order kinetics reaction of photocatalytic degradation of MB.

	2019-2020	
Paper Title	Designing a Photo Catalytic Reaction System for Degradation of Organic dyes in Wastewater Using	
	Nanostructured Materials	
Journal Name	Int. J. Nano. Chem., 6(1), 21-25, 2020	
Link of the paper	http://www.naturalspublishing.com/files/published/63k5se841ulq33.pdf	
Abstract	In this study, degradation of methylene blue (MB) from water was investigated by photocatalysis process in the	
	presence of nanoTiO2 and nanoTiO2/AC under solar irradiation process. The parameters studied were amount of	
	catalyst, initial concentration of the organic dye MB and the pH of the MB solution to achieve the best parameters	
	for efficient degradation process. The results showed that pH of solution changed towards basic was found to	
	enhance the photocatalytic efficiency. The amount of the catalyst was found to be 6 mg as optimal. The 10 ppm of	
	MB concentration leads to achieve highest degradation efficiency of MB.	

2020-2021 (PAPER)	
Paper Title	A comprehensive and updated review of studies on the oxidation of cyclohexane to produce KA oil.
Journal Name	Reviews in Chemical Engineering
Link of the paper	https://doi.org/10.1515/revce-2020-0059

Abstract	Oxidation of cyclohexane is an essential chemical reaction for the industrial manufacture of cyclohexanol and
	cyclohexanone. These two compounds, together known as ketone-alcohol (KA) oil, are the main feedstock for
	nylon 6 and nylon 6,6 productions. Several types of catalysts and reaction conditions have been used for
	cyclohexane oxidation. This paper presents a thorough literature review of catalytic materials used for
	cyclohexane oxidation to produce KA oil using oxygen, air and other oxidizing agents as well as utilizing
	different solvents. This review covers research and development reported over the years 2014–2020. This review
	aims to comprehend the type of catalysts, solvents, oxidants and other reaction parameters used for the oxidation
	of cyclohexane. Three types of cyclohexane oxidation processes namely thermocatalytic, photocatalytic and
	microwave-assisted catalytic have been reported. The results of the review showed that metal and metal oxide
	loaded silica catalysts performed excellently and provided high selectivity of KA oil and cyclohexane conversion.
	The use of peroxides is not feasible due to their high price compared to air and oxygen. Gold nanoparticles
	supported on silica performed with high selectivity and good conversion. The use of hydrochloric acid as an
	additive was found very effective to enhance the photocatalytic oxidation of cyclohexane. Water on the catalyst
	surface enhanced the reactivity of the photocatalysts since it helps in the generation of hydroxyl radicals.

2020-2021 (PAPER)		
Paper Title	An updated comprehensive literature review on phenol hydrogenation	
Journal Name	Catalysis Letters	
Link of the paper	https://doi.org/10.1007/s10562-021-03714-5	
Abstract	Cyclohexanone is an important industrial intermediate to produce nylons. The main industrial routes for cyclohexanone manufacture used cyclohexane and phenol as feedstock. The selective hydrogenation of phenol to cyclohexanone comprises one-step and two-step processes. This review presents a detailed analysis of the	

research findings available in the open literature for phenol hydrogenation to produce cyclohexanone and
cyclohexanol and covers the research conducted during 2014–2020 using conventional and modern catalysts. This
review aims to disseminate the knowledge of the current research conducted for phenol hydrogenation and
provide a comprehensive resource for researchers working in this field. This review has included and discussed
both methods of thermocatalytic and electrocatalytic hydrogenation of phenol. Most of the studies have used
carbon or carbon-nitrogen supported catalysts loaded with Pd. The carbon and carbon-nitrogen materials were
derived from different sources including polymers, activated carbon, and MOF. Oxygen treatment was found to
produce highly active and stable catalysts. The high performance was found associated with the high surface area
of the catalyst and uniformly dispersed metal nanoparticles. The acidic conditions exhibited an increase in catalyst
performance. Alkali-promoted precious metal-loaded catalysts performed better than un-promoted catalysts.

	2020-2021 (PAPER)
Paper Title	Highly photocatalytic active r-GO/Fe3O4 nanocomposites development for enhanced photocatalysis application:
	A facile low-cost preparation and characterization
Journal Name	Ceramics International
Link of the paper	https://doi.org/10.1016/j.ceramint.2021.08.083
Abstract	This research explores reduced graphene oxide-Fe ₃ O ₄ nanocomposites synthesis, characterization, and it's ability
	to degrade methylene blue dye using sodium lamp as the visible white light source. The modified co-precipitation
	method was employed for the synthesis of the photocatalyst. The photocatalyst was further characterized by
	various characterization techniques. Moreover, photocatalytic activity was performed by varying performance
	conditions, and analyzed the results. It was found that photocatalyst has highly active performance at the working
	conditions of pH 12 with 50 mg catalyst for 10 ppm methylene blue dye solutions and produced 98.3%

degradation of the dye within 80 min. It was also observed that minor positive performance was observed on
varying temperature and catalyst concentration. The photocatalytic activity was found highly dependent on the pH
of the solution and increased with an increase in pH. Additional studies were also performed by adding some
amount of hydrogen peroxide in the solution without changing its pH. It was also noted that as the amount of
hydrogen peroxide was increased in the solution, there was an increment in the degradation of the dye. A
maximum of 98.8% degradation was recorded with the 9 ml addition of hydrogen peroxide-containing 25 mg
catalyst, pH 8, and at 40 °C reaction temperature within 70 min of irradiation.

	2020-2021 (Conference)
Paper Title	Synthesis of Ag nanoparticles loaded on nanoTiO2 catalyst using mechanical ball milling for phenol
	photodegradation
Journal Name	Proceedings of the 9 th Jordan International Chemical Engineering Conference (JICHEC9), 12-14 Oct. 2021
Link of the paper	http://www.jeaconf.org/JICHEC
Abstract	The nanoTiO ₂ loaded with Ag nanoparticles (Ag/nanoTiO ₂) was prepared by the mechanical ball milling method
	and used for the photocatalytic degradation of phenol in an aqueous solution. The Ag/nanoTiO2 catalyst was
	characterized by X-Ray Diffraction (XRD) and UV-Visible spectrophotometer. The bandgap analysis for the
	Ag/nanoTiO ₂ catalyst was performed by the Tauc plot method and was found to be 2.6 eV. The presence of Ag
	and nanoTiO ₂ were identified by their peaks in the XRD spectrum. The photodecomposition of phenol was carried
	out using pure nanoTiO ₂ and Ag/nanoTiO ₂ under sunlight, ultraviolet light, and visible white light using different

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

amounts of catalyst and phenol concentration. The visible white light provided highest phenol degradation among the three irradiation sources. The loading of Ag on nanoTiO₂ improved the phenol degradation rate and offered higher phenol degradation as compared to nanoTiO₂. A maximum of 94% degradation was recorded in 120 minutes for 10 mg of Ag/nanoTiO₂ catalyst and 10 ppm concentration of phenol at pH 8 under the visible white light source. The phenol photodegradation reaction with Ag/nanoTiO₂ catalyst was found to follow zero-order kinetics.

Google Scholar link

https://scholar.google.com/citations?hl=en&user=5nMmifIAAAAJ&view_op=list_works&sortby=pubdate

Research gate link

https://publons.com/researcher/1549657/m-a-ali/publications/

Scopus link

https://www.scopus.com/authid/detail.uri?authorId=55262680900

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحـدة الجـودة

Faculty Name:Dr. Salah Eldeen Fadoll Hegazi

	2020-2021
Paper Title	Active adsorption performance of planetary ball milled Saudi Arabian bentonite clay for the removal of copper ions from aqueous solution
Journal Name	Europhysics letters EPL
Link of the paper	https://iopscience.iop.org/article/10.1209/0295-5075/ac1960/meta
Abstract	We report the role of local bentonite clay in the removal of ${\rm Cu}^{2+}$ ions from aqueous solution. The fine bentonite clay powder was analysed by XRD, FTIR, SEM and DLS analysis techniques. Further, the adsorption experiments were carried out by varying many factors such as weight and size of bentonite clay, residence time, $p{\rm H}$ of the solution, stirring rate, temperature, and flow rate. The optimum conditions for effective removal of ${\rm Cu}^{2+}$ ions was 1 g dose of bentonite and 63 µm size of bentonite, 50 minutes of residence time and 50 °C temperature at $p{\rm H}$ 3 with a flow rate of 1 L/min. The data fitted well the Freundlich model and a maximum adsorption capacity of 61.72 mg/g has been obtained. The value of Gibbs free energy changes (ΔG°), enthalpy changes (ΔH°) and entropy changes (Δ S°) were found to be $-3819.86~{\rm J}~{\rm mol}^{-1}{\rm K}^{-1}$, $+15079.10~{\rm J}~{\rm mol}^{-1}{\rm K}^{-1}$ and $+58.60~{\rm J}~{\rm mol}^{-1}{\rm K}^{-1}$, respectively.

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجــودة

Goog			
-1-000	TAX	A Y A Y	
COUL		100	(4)

https://scholar.google.com/citations?user=LAWinQIAAAAI&hl=en&oi=sra

Research gate

https://www.researchgate.net/profile/Salah-Hegazi

Scopus

https://id.elsevier.com/settings/updateAddress

جامعة جـــازان كلية الهندســة وكالـة التطـوير وحــدة الجـودة

Faculty Name: Mohammed Farji

	2020-2021
Paper Title	Development of Photovoltaic Cells: A Materials Prospect and Next-Generation Futuristic Overview
Journal Name	Brazilian Journal of Physics
Link of the paper	https://link.springer.com/article/10.1007/s13538-021-00981-w
Abstract	Photovoltaic (PV) solar cells are in high demand as they are environmental friendly, sustainable, and renewable
	sources of energy. The PV solar cells have great potential to dominate the energy sector. Therefore, a continuous
	development is required to improve their efficiency. Since the whole PV solar panel works at a maximum
	efficiency in a solar panel called maximum power point (MPP) and characterized by I-V analysis, an MPP
	technique has been developed to exploit the PV modules' maximum power in all possible conditions. Various
	methods of fabrication for PV solar cells have been discussed in this review. The performances of these PV cells
	have also been compared and summarized in a table. Moreover, in this review, the development of different
	generations of PV solar cells and their respective characteristics for future applications have been discussed.
	Furthermore, the MPP method and its suitability for an artificial neural network (ANN)-based approach to detect
	the global maximum power point have also been discussed in this review. Finally, the conclusion and future
	perspective of PV solar cells have been presented.

جامعة جازان كلية الهندسة وكالة التطوير وحدة الجودة

Google Scholar link

https://scholar.google.com/citations?hl=en&pli=1&user=FvcTjFEAAAAJ

Research gate link

https://www.researchgate.net/profile/Mohammed-Farji

Scopus link

<u>nil</u>