ABSTRACT

Mass Transfer From Single Drop
Part (1) Design and Hydrodynamics

Key words: liquid - liquid extraction, Spray column drop size, drop velocity,
Project Supervisor: Prof. Dr. Mohsen A. Hashem

Abstract

Design of solvent extraction columns and study of the hydrodynamic of single liquid
drops has been undertaken in spray columns. Experiments were performed using different
binary chemical systems and a glass column. This first part is concerns with the
hydrodynamics of single drops where the systems Benzene / water, Toluene / water and
Kerosene / water are used. The relationship between the drop size \(d \) and terminal
velocity \(V_t \) was examined and a new model is suggested. Such information is required
in estimating drop size distributions which are usually expected to change along the
column. Experimental results indicate a decrease in \(V_t \) on increasing the down flow. It is
concluded that down flow of the continuous phase has a pronounce effect on the drop
terminal velocity and drop formation time inside the column.