Course Description:

Course Name	Course Code	Contact Hours					
		Lectures	Sec/Lab	Credit hours	year	level	Prerequisite
Discrete Mathematics	107 Math	3	-	3	2	4	Non

Course summary:

General Course Objectives:

After finishing the course, the student is expected to be familiar with the following:

Identify functions of integer numbers and some relations on integer number.

Identify permutations and combinations.

Identify generating functions and their applications in counting.

Identify graphics and corridors and their applications.

Identify trees method and its uses in investigation.

Course Description:

Mathematical logic: Definitions, examples, truth tables of compound propositions, propositional equivalence, logical equivalence and De Morgan's Law

Basic structures: functions of integers numbers, some important functions, floor and ceiling functions and its properties

Basics of counting: matching, counting principles, permutations, combinations, binomial theorem, Pascal's identity and triangle, generalized permutations and combinations

Advanced counting techniques: iterative relations, recurrence relations, solving linear recurrence relation, generating functions, use of generating functions in counting

Graphs: initial concepts in graphic theorem, corridors and cycles, definitions of graphs (directed and undirected) and examples, basic terminology, degree of a vertex, isolated and pendant, in-degree and out-degree, representing graphs, adjacency matrices, incidence matrices

Trees: trees, trees generated, binary trees, investigation of tree in corridors problem, rooted tree **Boolean Algebra:** Boolean functions, logic gates

Course Assessments:

- First Exam 20%
- Second Exam 20%
- Quizzes and homework 10%
- Final Exam 50%

Methods of teaching the course:

- Academic lectures
- Scientific discussions
- Homework
- The use of mini-model of education
- Assign students to prepare scientific projects

The Textbook:

- Discrete mathematics and its applications, K.H. Rosen, McGraw-Hill, 6th edition(2007).

Scientific References:

- Discrete and Combinatorial Mathematics: An applied introduction, R.P. Grimaldi, Addison Wesley, 5th edition (2004)
- Donald Knuth et. Al, Concrete Mathematics: A foundation for computer science, Addison Wesley, 2nd edition (1994)
- John Dossey et al, Discrete Mathematics and its applications, Addison Wesley 5th edition (2006)